تخمین ضرایب روابط برای تعدادی از حوضه‌های آبریز دریای مازندران

سید فرهاد موسوی، جعفر جمشیدزاده گلاری، می‌سید سعید آسان‌شی، ناصر رستم‌فناور

چکیده

تخمین ضرایب سیلابی، روش‌برای جلوگیری از خسارات ناشی از وضعیت آبی سیلابی است. به ویژه روش‌های محاسباتی شده در تالارها. در این مقاله متغیر این شده است که به صورت زیر می‌باشد:

\[Q(y) = F, C(y), I(t_c, y), A \]

که در آن \(Q \) ضرایب روابط با دو روشکن می‌باشد و \(A \) مساحت هیدرولیک سیلابی است. مدل‌های به‌کار گیری شده در این مقاله شامل روشکن موثر و روشکن مناسب می‌باشد. این ضرایب تأثیر بسزایی بر تعدادی از حواضات آبریز دریای مازندران داشته و به‌وسیله آن‌ها حواضات آبریز دریای مازندران محاسبه می‌شود.

واضوهای کلیدی - حواضه‌های آبریز دریای مازندران، ضرایب روابط، روش استدلالی - احتمالی

دیوانه و فنون کشاورزی و منابع طبیعی/جلد سوم/شماره دوم/تابستان 1378
مقدمه
با توجه به کمبود منابع آب، رشد جمعیت و ضرورت استفاده بهینه از منابع آب موجود، داده‌های آماری مربوط به طرح‌های زاهی آب از اهمیت روزافزون و راهبردی است. در صورت وجود آمار کافی از پارامترهای میزان، توان پروارد و دقیقه تری برای سیلاب در مقایسه با روش‌های گیرم‌نمونه‌ای انجام داد. این پرواردها می‌توانند سری‌می‌سازند و دپی‌می‌سازند آب‌های از رودخانه‌ها و حوضه‌های آب‌زی، عملاً به دلایل اقتصادی، استانداردهای ایمنی و بازارسنجی و جو و داده‌های فیزیک‌محوری، آبی‌رنگی‌یابی، محتویات مصنوعی، می‌تواند رابطه‌ی بین خاصیت‌های آبی به سطح دستورالعمل دارد.

روش‌های معمول برای دستیابی به مقدار روان‌های سطحی وجود دارند که بعضی از این روش‌ها جنبه عمومی پیدا کرده و کم و بیش در سطح جهان مورد استفاده قرار گرفته و تعدادی نیز که برای یک تجربه در بعضی از این کشورات مورد استفاده قرار گرفته.

کریگر ۱ و ۲ برای تعبیرنده‌ی سیل در سطوح آب‌زی آبی کمک و بزرگ می‌سازند. این روش به صورت زیر اند:

\[Q = 44CA^{0.884}A^{0.116} \] ۱

که:
- \(Q \) مقدار روان‌های سطحی (می‌کوب/سی وسکین)
- \(C \) مساحت حوضه (مایل مربع)
- \(A \) ضریب حوضه (که از ۰ تا ۱۰۰ تغییر می‌کند)

روابط فوق در جهت رسیدن به حداکثر دید بسیار به شرح زیر می‌باشند:

\[Q_D = CA^{0.884} \] ۲

\[Q_{max} = Q_D (1 + \frac{1}{A \ln T}) \] ۳

\[Q_p = Q_{max} (1 + \frac{1}{68 A^{-0.1}}) \] ۴

که:
- \(Q_D \) مقدار حداکثر سیلاب (می‌کوب/سی وسکین)
- \(Q_{max} \) مقدار حداکثر سیلاب در حفره (می‌کوب/سی وسکین)
- \(Q_p \) مقدار حداکثر سیلاب در حفره (می‌کوب/سی وسکین)

۱- Creager ۲- Fuller
تخمین ضرایب روابط پرای تعدادی از حوضه‌های آبریز دریای مازندران

\[Q_{\text{max}} = Q \] (مصرف‌کننده مصرف‌کننده)

\[Q_{p} = Q_{\text{max}} \] (مصرف‌کننده مصرف‌کننده)

\[A = \text{مساحت حوضه} \] (مایل مربع)

\[\text{ضریب سیال} = C \]

مقدار ضریب روابط به وضیعت فیزیکی حوضه مثل شیب و بانک خاک و غیره بستگی دارد. مقدار ضریب آن در مودال 8 برای خاکهای با بانک سنگی و کم شیب 15 تا 20، و برای خاکهای سنگی و کم شیب 20 تا 35 می‌باشد.

روش منطقی با استدلالی برای محاسبه سیال‌های شری و کشاورزی استفاده می‌شود. شکل کلی این روشه به صورت زیر ارائه گردیده است (\(SCS \)):

\[Q = \frac{\sqrt{36m}}{A} \] (مصرف‌کننده مصرف‌کننده)

\[Q_{p} = F.C.I.A \] (مصرف‌کننده مصرف‌کننده)

\[Q_{p} = Q_{\text{max}} \] (مصرف‌کننده مصرف‌کننده)

\[A = \text{مساحت حوضه} \] (مایل مربع)

\[\text{ضریب سیال} = C \]

\[F = \text{ضریب تبدیل واحدها که در صورت کاربرد واحدها فاقد می‌باشد} \]

\[P = \text{رطوبت (سانتی‌متر)} \]

\[S = \text{رطوبت (سانتی‌متر)} \]

\[S = \frac{1 + 0.4}{CN} \]

\[Q = F.C.I.A \] (مصرف‌کننده مصرف‌کننده)

\[Q = \text{روش سیسبس کریک} \] (مصرف‌کننده مصرف‌کننده)

\[Q = CA^{2/3} \] (مصرف‌کننده مصرف‌کننده)

تحقیق حاضر در قسمتی از حوزه آبزیان شماره ۱ انجام گرفته است که زیر حوزه‌های اتک، گرگ‌زده، هزار، نکا و نور در این محدوده قرار دارند. رودخانه‌های مانند هزار که ریزتم برخی بارندگی‌ها، از طریق، ایستگاههای آب‌نگاری که جدا از ۱۰ سال آمار داشته نیز حذف شدند. موقعیت ۴ ایستگاه بارندگی و ۱۸ ایستگاه آب‌نگاری با آمار حداکثر ۱۵ سال در نمونه‌برداری آورده شده است. مشخصاتی از وقوع‌های آبزی در منطقه حوزه مطالعه در جدول ۱ و موقعیت جغرافیایی ایستگاه‌های بارندگی آب‌نگاری در جدول ۲ ارائه گردیده است.

کل حوزه مورد مطالعه به شکل نوین در انتظار شهر جریان نمایندگان قرار گرفته و تا نهایت چهار منطقه از مشکلات آب و هوایی پایدار کرده است. حدود جغرافیایی منطقه از طول‌های شرقی ۵۱ درجه و ۶ دقیقه تا ۵۷ درجه و ۳۰ دقیقه و عرض‌های شمالی ۳۲ درجه و ۶ دقیقه تا ۳۷ درجه و ۱۳ دقیقه موجود است.

سپاس داشت سالانه دریای مازندران و بخش عمده ارتفاعات این منطقه از رسته‌های منطقه‌ای به‌ویژه درست که علت آن بارانی و رطوبیت زیاد و درجه حرارت مناسب است. این بخش در شدت شاخص مزارع (عمدتاً پنبه)، باعث می‌گردد و جنگل و ارتفاعات مزارع شیمیایی، مراکز و جنگلهای متراکم تر و نیمه متراکم می‌باشد.

از دیدگاه پوشش گیاهی و تنوع رسته‌ها، حوزه مورد مطالعه به سهبخش زیر تقسیم می‌شود:
الف - منطقه جنگلی: وسعت اراضی جنگلی به طور تقسیب حدود ۱/۳ میلیون هکتار بوده که معادل ۱/۵ درصد و مستوا کل حوزه است. جنگل‌های ابی و تیم انبوه عمده در نواحی شمال و مرکز و جنگل‌های نکت در بخش‌های جنوبی گستر شده‌اند.
ب - نواحی مرتفع: اراضی مرتفع در سطح حوضه دارای وسعت حدود ۷۰۰ کیلومتر مربع یک‌باره‌ای از ۲۴ درصد از کل حوضه را شامل می‌گردد.

مربوطه می‌باشد:
1- حوزه آبزی دریای خزر (۱۲ درصد مساحت ایران) ۲- حوزه آبزی خلیج فارس (۲۵ درصد)، ۳- حوزه آبزی دریای ارومیه (۲۳ درصد)، ۴- حوزه آبزی مرزی (۵ درصد) ۵- حوزه آبزی دریای هامون (۷ درصد) و ۶- حوزه آبزی شمال شرقی (۱۲ درصد)
نمودار ۱ - موقعیت ایستگاه‌های آب سنجی و بیانات بارندگی منطقه مورد مطالعه

شده (ایستگاه پلور) به ترتیب ۳۳ و ۳-۹ درجه سانتی‌گراد بوده است.

بادهای عمدتاً منطقه ناشی از جبهه‌های هوا وود و روبده به منطقه و نیز نسبت بین دریای کوهستان است. درگذو اول جهت باد از غرب و شمال غرب (میان‌تان) با شمال و شمال شرق (قطب شمال و سیبری) و درگذو دوم از شمال به جنوب است (۶).

مشخصه اصلی پستی و بالعید در این حوضه آب‌زیاد ارتفاعات در جنوب منطقه و در ایب مازندران در شمال آن می‌باشد. حداکثر ارتفاع منطقه ۶۵۰ متر و مریون به قله دماوند در حوضه آب‌زیاد رودخانه هزار بوده و در نواحی غرب آن یک سری قلل دیگر با ارتفاع بین ۲۰۰۰ تا ۱۴۰۰ متر قرار دارند (۳).

از نظر زمین‌شناسی، حوضه آب‌زیاد رودخانه‌های مازندران در

ج - باغات و اراضی کشاورزی: اراضی کشاورزی به‌طور عمده در دشت ساحلی در مازندران گسترده دارد. وسعت اراضی کشاورزی و باغات در حوضه رودخانه‌های مازندران بیش از ۵۰۰ کیلومتر مربع است (۳).

آب و هوای کوه‌های این منطقه با طوفان‌کلی می‌توان درگوه‌های اقلیمی معنادار سرد با معنادار گرم و در مجموع معنادار طبقه‌بندی نمود. میانگین دوچرخه حرارت سالانه‌ها از غرب به شرق منطقه افزایش می‌یابد. اصولاً رطوبت در نواحی ساحلی همیشه زیاد است و مقدار آن از غرب به شرق تنازول پیدا می‌کند (۳). حداکثر درجه حرارت مطلق و میانگین حداکثر‌های ماه‌های شده در منطقه (ایستگاه پلور) به ترتیب ۴۶/۵ و ۲۰ درجه سانتی‌گراد بوده و حداکثر مطلق و میانگین حداکثر‌های ماه‌های ماه‌های
جدول ۱ - مشخصات حوضه‌های آب‌بریز در منطقه مورد مطالعه (۴)

<table>
<thead>
<tr>
<th>زمان تمکن</th>
<th>طول آب‌بریز (ساعت)</th>
<th>طول (کیلومتر مربع)</th>
<th>مساحت (کیلومتر مربع)</th>
<th>عرض جغرافیایی</th>
<th>عارض جغرافیایی</th>
<th>ایستگاه</th>
<th>رودخانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۹۸</td>
<td>۳۴۵۰۰</td>
<td>۶۵۰</td>
<td>۱۷</td>
<td>۵۰°۰۱′</td>
<td>۴۲°۳۰′</td>
<td>سردار رود</td>
<td>والت</td>
</tr>
<tr>
<td>۲/۷۵</td>
<td>۲۶۰۰</td>
<td>۳۵</td>
<td>۱۹</td>
<td>۴۳°۵۱′</td>
<td>۳۱°۱۱′</td>
<td>پلنگ آبی</td>
<td>کلاپرداد</td>
</tr>
<tr>
<td>۱/۸۸</td>
<td>۲۰۰</td>
<td>۹</td>
<td>۱۴</td>
<td>۴۳°۲۴′</td>
<td>۴۳°۰۳′</td>
<td>اسیه رود</td>
<td>کلاپرداد</td>
</tr>
<tr>
<td>۲/۵۰</td>
<td>۷۴۰۰</td>
<td>۷۳</td>
<td>۲۲</td>
<td>۴۴°۵۷′</td>
<td>۴۳°۴۷′</td>
<td>سردار رود</td>
<td>کورکورس</td>
</tr>
<tr>
<td>۱/۸۸</td>
<td>۳۸۰۰</td>
<td>۳۸</td>
<td>۱۲</td>
<td>۴۵°۳۷′</td>
<td>۴۵°۱۱′</td>
<td>خیبرود</td>
<td>خیبرود کنار</td>
</tr>
<tr>
<td>۴/۷۵</td>
<td>۱۸۸۰</td>
<td>۱۲۸/۱</td>
<td>۲۱</td>
<td>۴۵°۰۷′</td>
<td>۴۵°۰۵′</td>
<td>کنس رود</td>
<td>عالم کلا</td>
</tr>
<tr>
<td>۲/۶۸</td>
<td>۲۹۰۰</td>
<td>۲۹۰</td>
<td>۱۱</td>
<td>۴۵°۰۵′</td>
<td>۴۵°۰۶′</td>
<td>نگه لاریج</td>
<td>نگه لاریج</td>
</tr>
<tr>
<td>۷/۱۱</td>
<td>۲۰۰۰</td>
<td>۱۰۸/۳</td>
<td>۵۵</td>
<td>۴۵°۲۳′</td>
<td>۴۵°۲۳′</td>
<td>لاریج</td>
<td>لاریج</td>
</tr>
<tr>
<td>۲/۹</td>
<td>۵۳۰۰</td>
<td>۵۳۰</td>
<td>۱۷</td>
<td>۴۵°۰۶′</td>
<td>۴۵°۰۶′</td>
<td>نماینده</td>
<td>نماینده</td>
</tr>
<tr>
<td>۳/۴۱</td>
<td>۳۳۷۰</td>
<td>۲۹۳</td>
<td>۴۱</td>
<td>۴۵°۱۴′</td>
<td>۴۵°۱۴′</td>
<td>بااب رود</td>
<td>قران طلار</td>
</tr>
<tr>
<td>۲/۰</td>
<td>۲۸۱۲۵</td>
<td>۲۳۳</td>
<td>۳۸</td>
<td>۴۵°۲۶′</td>
<td>۴۵°۲۶′</td>
<td>شیرگاه</td>
<td>شیرگاه</td>
</tr>
<tr>
<td>۱/۶۲</td>
<td>۲۰۰۰</td>
<td>۱۳۷/۸</td>
<td>۱۱</td>
<td>۴۵°۰۲′</td>
<td>۴۵°۰۲′</td>
<td>لاجیم</td>
<td>لاجیم</td>
</tr>
<tr>
<td>۱/۶۲</td>
<td>۱۰۵۰</td>
<td>۱۰۵</td>
<td>۱۷</td>
<td>۴۵°۰۶′</td>
<td>۴۵°۰۶′</td>
<td>برادریکلا</td>
<td>برادریکلا</td>
</tr>
<tr>
<td>۱/۶۲</td>
<td>۲۰۵۰</td>
<td>۲۵۹</td>
<td>۱۲</td>
<td>۴۵°۰۷′</td>
<td>۴۵°۰۷′</td>
<td>تکا</td>
<td>تکا</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۷۲۰۰</td>
<td>۱۸</td>
<td>۲۱</td>
<td>۴۵°۰۶′</td>
<td>۴۵°۰۶′</td>
<td>گرگری</td>
<td>گرگری</td>
</tr>
<tr>
<td>۱/۰۸</td>
<td>۳۱۰۰</td>
<td>۲۱۱</td>
<td>۱۳</td>
<td>۴۵°۴۰′</td>
<td>۴۵°۴۰′</td>
<td>گرگری دشت</td>
<td>گرگری دشت</td>
</tr>
<tr>
<td>۱/۶۲</td>
<td>۲۵۰۰</td>
<td>۱۹۱</td>
<td>۱۳</td>
<td>۴۵°۵۳′</td>
<td>۴۵°۵۳′</td>
<td>سرمورد</td>
<td>نسبس ورد</td>
</tr>
<tr>
<td>۱/۶۲</td>
<td>۵۳۰۰</td>
<td>۲۸۱</td>
<td>۲۶</td>
<td>۵۵°۰۸′</td>
<td>۵۵°۰۸′</td>
<td>چهل چای</td>
<td>چهل چای</td>
</tr>
</tbody>
</table>

جدول ۲ - مشخصات ایستگاه‌های نبات‌بارانگی (۴)
بخش‌هایی از درون زمین ساختمانی بریز و گرگان - رشت واقع شده است. فرازهای گرگانی متمایز در این منطقه عمل کرده است. قدمتی‌ترین فاز کاتانگی‌ای یکی از مدل‌های رشدی که در این منطقه واقع شده است. این مدل در نهایت تأثیر فضایی و سطحی مشاهده می‌شود.

کلمات کلیدی: ناحیه زمین‌شناسی - مراحل تکثیر - ساختار سازمانی تکثیر - ناحیه‌بندی - فرازهای گرگانی - گرگان بزرگ - گرگان کوچک - گرگان کوچک کوچک - گرگان کوچک کوچک

روش‌های جاگی در منطقه این‌ها از رودخانه اشک، آزادی‌وار، ایل رود، پل حکمت و پل رود تجربه کرده‌اند. به‌طور کلی، سیال‌های تجاری، فرازهای گرگانی، گرگان بزرگ و گرگان کوچک مشاهده می‌شود.

در این سیال‌ها، حوضه‌های آبی‌آبی مورد مطالعه، باولا یک بحث قابل توجه باشد که در نظر گرفته شده است. در این بحث، بررسی‌های زمین‌شناسی، تحقیق‌های ساختاری و تحلیل‌های فیزیکی انجام می‌شود.

آمار سیال‌ها در حوضه‌های آبی‌آبی مورد مطالعه با توجه به رقم دقیق در هر سال به عنوان شاخص‌های حساسیت در نظر گرفته شده است. در این شاخص‌ها، بررسی‌های آبی‌آبی، بررسی‌های ساختاری و بررسی‌های فیزیکی انجام می‌شود.

\[\text{RSS} = \frac{\sum_{i=1}^{n} (Q_i - Q) \cdot (Q_i - Q)}{n - m} \]

\[\text{Q} = \frac{\text{SUM_M (Q_i)}}{\text{SUM_M (Q_i)}} \]

\[\text{P} = \frac{\text{SUM_M (P_i)}}{\text{SUM_M (P_i)}} \]

[11]
جدول ۳- نتایج دیجی‌با دوره‌های برجسته متغیر (ترمکمک بر ثانیه) و سایر پارامترهای آماری حاصل از برنامه TR

<table>
<thead>
<tr>
<th>بیشترین توسعه</th>
<th>RSS</th>
<th>Q₀</th>
<th>Q₁₀</th>
<th>Q₂₀</th>
<th>Q₃₀</th>
<th>Q₄₀</th>
<th>ایستگاه</th>
<th>روکش‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>سردارا، رود وانت</td>
<td>2/807</td>
<td>121/78</td>
<td>4/95</td>
<td>92/98</td>
<td>35/12</td>
<td>22/11</td>
<td>22/11</td>
<td>12/11</td>
</tr>
<tr>
<td>لوگ نیمال</td>
<td>9/85</td>
<td>28/3</td>
<td>23/45</td>
<td>9/3</td>
<td>22/11</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>لوگ نیمال</td>
<td>1/625</td>
<td>0/86</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>لوگ گامبیل</td>
<td>6/625</td>
<td>12/3</td>
<td>9/85</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
</tr>
<tr>
<td>لوگ گامبیل</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
</tr>
<tr>
<td>لوگ نیمال</td>
<td>2/807</td>
<td>121/78</td>
<td>4/95</td>
<td>92/98</td>
<td>35/12</td>
<td>22/11</td>
<td>22/11</td>
<td>12/11</td>
</tr>
<tr>
<td>لوگ گامبیل</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
</tr>
<tr>
<td>لوگ نیمال</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
<td>30/2</td>
</tr>
</tbody>
</table>

نتایج و بحث

تحلیل دیجی‌با دوره‌های برجسته TR (TR) در جدول ۳ آورده شده است. این نتایج که در تحلیل فواصل آمار دیجی‌با اندوز هر شدت در اینجا مدل‌ها و کامپوزیتی (جدول ۱) در این نتایج که در جدول ۳ دچار تغییر ضایعات در دوره‌های برجسته مختلط استفاده شده است. با توجه به این جدول مشاهده می‌گردد که در اینجا مدل‌ها و کامپوزیتی

1- SURFER
تخمین ضرایب رواناب برای تعادلی از حوضه‌های برنامه‌ریزی ابزاری دریای مازندران

گام‌بندی این تحقیق

1- استخراج نقاط داده‌برداری

2- شبکه‌گراف دریاچه‌ها

3- ضرایب رواناب

4- محدوده‌های مکانیکی

5- محدوده‌های هیدرولوژیک

6- محدوده‌های اقتصادی

7- محدوده‌های زمین‌شناسی

8- محدوده‌های اجتماعی

9- محدوده‌های اتاق‌های رعایت

10- محدوده‌های سیاست‌های محیطی

11- محدوده‌های سیاست‌های اقتصادی

12- محدوده‌های سیاست‌های سیاسی

13- محدوده‌های سیاست‌های تکنیکی

14- محدوده‌های سیاست‌های اجتماعی

15- محدوده‌های سیاست‌های دانشگاهی

16- محدوده‌های سیاست‌های دولتی

17- محدوده‌های سیاست‌های محلی

18- محدوده‌های سیاست‌های بین‌المللی

19- محدوده‌های سیاست‌های خصوصی

20- محدوده‌های سیاست‌های جهانی

21- محدوده‌های سیاست‌های بین‌المللی

22- محدوده‌های سیاست‌های اجتماعی

23- محدوده‌های سیاست‌های دانشگاهی

24- محدوده‌های سیاست‌های دولتی

25- محدوده‌های سیاست‌های محلی

26- محدوده‌های سیاست‌های بین‌المللی

27- محدوده‌های سیاست‌های خصوصی

28- محدوده‌های سیاست‌های جهانی

29- محدوده‌های سیاست‌های بین‌المللی

30- محدوده‌های سیاست‌های اجتماعی

31- محدوده‌های سیاست‌های دانشگاهی

32- محدوده‌های سیاست‌های دولتی

33- محدوده‌های سیاست‌های محلی

34- محدوده‌های سیاست‌های بین‌المللی

35- محدوده‌های سیاست‌های خصوصی

36- محدوده‌های سیاست‌های جهانی

37- محدوده‌های سیاست‌های بین‌المللی

38- محدوده‌های سیاست‌های اجتماعی

39- محدوده‌های سیاست‌های دانشگاهی

40- محدوده‌های سیاست‌های دولتی

41- محدوده‌های سیاست‌های محلی

42- محدوده‌های سیاست‌های بین‌المللی

43- محدوده‌های سیاست‌های خصوصی

44- محدوده‌های سیاست‌های جهانی

45- محدوده‌های سیاست‌های بین‌المللی

46- محدوده‌های سیاست‌های اجتماعی

47- محدوده‌های سیاست‌های دانشگاهی

48- محدوده‌های سیاست‌های دولتی

49- محدوده‌های سیاست‌های محلی

50- محدوده‌های سیاست‌های بین‌المللی

51- محدوده‌های سیاست‌های خصوصی

52- محدوده‌های سیاست‌های جهانی

53- محدوده‌های سیاست‌های بین‌المللی

54- محدوده‌های سیاست‌های اجتماعی

55- محدوده‌های سیاست‌های دانشگاهی

56- محدوده‌های سیاست‌های دولتی

57- محدوده‌های سیاست‌های محلی

58- محدوده‌های سیاست‌های بین‌المللی

59- محدوده‌های سیاست‌های خصوصی

60- محدوده‌های سیاست‌های جهانی

61- محدوده‌های سیاست‌های بین‌المللی

62- محدوده‌های سیاست‌های اجتماعی

63- محدوده‌های سیاست‌های دانشگاهی

64- محدوده‌های سیاست‌های دولتی

65- محدوده‌های سیاست‌های محلی

66- محدوده‌های سیاست‌های بین‌المللی

67- محدوده‌های سیاست‌های خصوصی

68- محدوده‌های سیاست‌های جهانی

69- محدوده‌های سیاست‌های بین‌المللی

70- محدوده‌های سیاست‌های اجتماعی

71- محدوده‌های سیاست‌های دانشگاهی

72- محدوده‌های سیاست‌های دولتی

73- محدوده‌های سیاست‌های محلی

74- محدوده‌های سیاست‌های بین‌المللی

75- محدوده‌های سیاست‌های خصوصی

76- محدوده‌های سیاست‌های جهانی

77- محدوده‌های سیاست‌های بین‌المللی

78- محدوده‌های سیاست‌های اجتماعی

79- محدوده‌های سیاست‌های دانشگاهی

80- محدوده‌های سیاست‌های دولتی

81- محدوده‌های سیاست‌های محلی

82- محدوده‌های سیاست‌های بین‌المللی

83- محدوده‌های سیاست‌های خصوصی

84- محدوده‌های سیاست‌های جهانی

85- محدوده‌های سیاست‌های بین‌المللی

86- محدوده‌های سیاست‌های اجتماعی

87- محدوده‌های سیاست‌های دانشگاهی

88- محدوده‌های سیاست‌های دولتی

89- محدوده‌های سیاست‌های محلی

90- محدوده‌های سیاست‌های بین‌المللی

91- محدوده‌های سیاست‌های خصوصی

92- محدوده‌های سیاست‌های جهانی

93- محدوده‌های سیاست‌های بین‌المللی

94- محدوده‌های سیاست‌های اجتماعی

95- محدوده‌های سیاست‌های دانشگاهی

96- محدوده‌های سیاست‌های دولتی

97- محدوده‌های سیاست‌های محلی

98- محدوده‌های سیاست‌های بین‌المللی

99- محدوده‌های سیاست‌های خصوصی

100- محدوده‌های سیاست‌های جهانی

1- Austin
جدول 4 - شدت بارندگی استگاه با بال (میلیمتر بر ساعت) با دوره‌های پرگشت و مدت مختلف

<table>
<thead>
<tr>
<th>مدت (ساعت)</th>
<th>1/15</th>
<th>1/12</th>
<th>4/27</th>
<th>3/5</th>
<th>1/13</th>
<th>1/7</th>
<th>1/24</th>
<th>1/27</th>
<th>1/22</th>
</tr>
</thead>
</table>

جدول 5 - شدت بارندگی استگاه ساری (میلیمتر بر ساعت) با دوره‌های پرگشت و مدت مختلف

<table>
<thead>
<tr>
<th>مدت (ساعت)</th>
<th>1/15</th>
<th>1/12</th>
<th>4/27</th>
<th>3/5</th>
<th>1/13</th>
<th>1/7</th>
<th>1/24</th>
<th>1/27</th>
<th>1/22</th>
</tr>
</thead>
</table>

درآمده است. این تفاوت علی‌الکاظمی واقعی و ثابت می‌باشد که در هر منطقه باید ضرایب رواناب خاص آن منطقه و با سطح اقتصادی مورد نظر به توجه داشته و مورد استفاده طراحان پروژه‌ها قرار گیرد. استفاده از جدول چار و همکاران (14) به‌عنوان نمونه قطعاً خطاپذیری را در برخورد داشته که هزینه پر هزینه‌تر و جدید و پیشرفت‌افزایشی می‌دهد و با خطرات وارد مورد

\[E = \frac{|Q_o - Q_e|}{Q_o} \times 100 \]
نمودار ۲- منحنی‌های ضریب رواناب با دوره پرگشت ۲ سال در بخشی از حوضه آبریز شمازه یک ایران
نمودار 4- منحنی‌های هم ضریب روان‌تبار با دو روزه پروگشت 100 سال در بخشی از حوضه آبریز شمازه یک ایران
جدول ۶- ضرایب روابط با دوره‌های گیرش متغیر از زیر حوزه‌های مختلف منطقه طرح

<table>
<thead>
<tr>
<th>ردیف</th>
<th>نام و دانه‌ای نام‌بستگی‌ها</th>
<th>C(0)</th>
<th>C(5)</th>
<th>C(25)</th>
<th>C(50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>سرداب‌رود والت</td>
<td>۰/۱۶۴</td>
<td>۰/۱۴۲</td>
<td>۰/۱۱۳</td>
<td>۰/۱۰۳</td>
</tr>
<tr>
<td>۲</td>
<td>پلنگ‌آب‌رود کالارآباد</td>
<td>۰/۲۸۵</td>
<td>۰/۲۸۵</td>
<td>۰/۲۳۱</td>
<td>۰/۲۲۷</td>
</tr>
<tr>
<td>۳</td>
<td>اسپرورد کازرون</td>
<td>۰/۳۸۹</td>
<td>۰/۳۸۹</td>
<td>۰/۳۵۱</td>
<td>۰/۳۴۷</td>
</tr>
<tr>
<td>۴</td>
<td>سرداب‌رود سرداب‌رود</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰/۶۲</td>
<td>۰/۶۱</td>
</tr>
<tr>
<td>۵</td>
<td>کورکوسی سرکوسی</td>
<td>۰/۲۲۲</td>
<td>۰/۲۲۲</td>
<td>۰/۱۷۴</td>
<td>۰/۱۷۱</td>
</tr>
<tr>
<td>۶</td>
<td>خیرود خیرود</td>
<td>۰/۹۲</td>
<td>۰/۹۲</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
</tr>
<tr>
<td>۷</td>
<td>کنسرود عالم‌کلا</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۸۵</td>
<td>۰/۸۵</td>
</tr>
<tr>
<td>۸</td>
<td>لوایح</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
</tr>
<tr>
<td>۹</td>
<td>نمارات‌ق پنچاب</td>
<td>۰/۵۵</td>
<td>۰/۵۵</td>
<td>۰/۵۲</td>
<td>۰/۵۲</td>
</tr>
<tr>
<td>۱۰</td>
<td>بلارود اردکان طالار</td>
<td>۰/۲۴۲</td>
<td>۰/۲۴۲</td>
<td>۰/۲۱</td>
<td>۰/۲۱</td>
</tr>
<tr>
<td>۱۱</td>
<td>شیرگاه کسیلان</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰/۷۱</td>
<td>۰/۷۱</td>
</tr>
<tr>
<td>۱۲</td>
<td>لاجیم وستان</td>
<td>۰/۹۱</td>
<td>۰/۹۱</td>
<td>۰/۸۹</td>
<td>۰/۸۹</td>
</tr>
<tr>
<td>۱۳</td>
<td>دارابکلا دارابکلا</td>
<td>۰/۱۹</td>
<td>۰/۱۹</td>
<td>۰/۱۷</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۱۴</td>
<td>نکا پایین‌زنده‌ن</td>
<td>۰/۷۹</td>
<td>۰/۷۹</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
</tr>
<tr>
<td>۱۵</td>
<td>گر گر</td>
<td>۰/۵۲</td>
<td>۰/۵۲</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۱۶</td>
<td>گرماهکث سنج شریش</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۱۷</td>
<td>اسمورود زرین‌گل</td>
<td>۰/۵۷</td>
<td>۰/۵۷</td>
<td>۰/۵۵</td>
<td>۰/۵۵</td>
</tr>
<tr>
<td>۱۸</td>
<td>چهل‌چای لزورد</td>
<td>۰/۱۳۶</td>
<td>۰/۱۳۶</td>
<td>۰/۱۲۴</td>
<td>۰/۱۲۴</td>
</tr>
</tbody>
</table>

درصد خطأ = \(E = \frac{Q_0}{Q_c} \)

که محاسبه شده ذکر شده.

دیبین این ایستگاه در جدول ۷ آورده شده است.

ب- ایستگاه امامزاده (گرگان) بر روی رویدانه قرآنآباد، با مساحت حوضه ۵۳ کیلومتر مربع، زمان تمرکز ۵۱ دقیقه و ۳۲ دقیقه و عرض ۱۳ درصد که در طول جغرافیایی ۵۵ درجه و ۱۲ دقیقه و عرض جغرافیایی ۵۶ درجه و ۳۸ دقیقه واقع شده است. نتایج

دیبین این ایستگاه هیدرومتری در منطقه مورد مطالعه که در محاسبات ضرایب روابط مورد استفاده قرار گرفته بود از و توسط شیفت محاسبه شده، این دیبین ایستگاه احتمالی و نیز روایت شده و همکاران (۱۴) محاسبه شده است.

مسیر در ساخت طراحی ایین دیبین در مقدار دیبین مشاهده می‌شود. در هر آماده، این ایستگاه بیان‌شده است:

الف- ایستگاه قرآنآباد بر روی رویدانه سیارن‌دود با مساحت حوضه ۲ کیلومتر مربع، زمان تمرکز ۵۵ دقیقه و شیفت

۲۵ درجه و ۵ دقیقه و عرض ۱۳ درصد که در طول جغرافیایی ۵۵ درجه و ۲۸ دقیقه و عرض جغرافیایی ۵۶ درجه و ۵۸ دقیقه واقع شده است. نتایج
جدول 7- مقایسه دی های حداکثر مشاهده شده و محاسبه شده با استفاده از ضرایب روش استدلالی-احتمالی و جدول چاوز همکاران (۱۴) در استنگه تی آباد بر روی رودخانه جمیر آباد

<table>
<thead>
<tr>
<th>دوره ضرایب</th>
<th>ضرایب</th>
<th>دی مسحابه</th>
<th>محاسبه درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>برگشت</td>
<td>2</td>
<td>33/42</td>
<td>7/27</td>
<td>18/41</td>
<td>5/23</td>
<td>3/65</td>
<td>6/34</td>
<td>9/68</td>
<td>15/05</td>
<td>9/05</td>
<td>1/32</td>
<td>9/68</td>
<td>15/05</td>
<td>9/05</td>
<td>1/32</td>
<td>9/68</td>
<td>15/05</td>
<td>9/05</td>
<td>1/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پراراب</td>
<td>5</td>
<td>2/77</td>
<td>18/77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 8- مقایسه دی های حداکثر مشاهده شده و محاسبه شده با استفاده از ضرایب روش استدلالی-احتمالی و جدول چاوز همکاران (۱۴) در استنگه امام‌زاده بر روی رودخانه تی آباد

<table>
<thead>
<tr>
<th>دوره ضرایب</th>
<th>ضرایب</th>
<th>دی مسحابه</th>
<th>محاسبه درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>برگشت</td>
<td>2</td>
<td>2/77</td>
<td>18/77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پراراب</td>
<td>5</td>
<td>0/33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول 9- مقایسه دیگر حداکثر مشاهده شده و محاسبه شده با استفاده از ضریب روش استدلال-احتمالی

<table>
<thead>
<tr>
<th>دوره</th>
<th>ضریب</th>
<th>دیده</th>
<th>محاسبه</th>
<th>روش خطای</th>
<th>رواناب</th>
<th>بارش بارندگی</th>
<th>ماهواره</th>
<th>شیب (متر)</th>
<th>شیب (متر)</th>
<th>مکعب (متر)</th>
<th>مکعب (متر)</th>
<th>مکعب (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۷/۵</td>
<td>۶۷/۱</td>
<td>۶۳/۸</td>
<td>۶۷/۱</td>
</tr>
<tr>
<td>۶۳/۸</td>
<td>۶۷/۱</td>
<td>۶۳/۸</td>
<td>۶۷/۱</td>
</tr>
<tr>
<td>۶۳/۸</td>
<td>۶۷/۱</td>
<td>۶۳/۸</td>
<td>۶۷/۱</td>
</tr>
<tr>
<td>۶۷/۱</td>
</tr>
</tbody>
</table>

سیلاب با دوره‌های پرگذشت طولانی استفاده می‌شود. روش مرسوم برای محاسبه حداکثر دبی سیلاب در حوضه‌های شهری و کوهک روش استدلالی-احتمالی می‌باشد. در این مطالعه، روش استدلالی-احتمالی با دقت قابل توجه معرفی و در مورد بهتری از حوضه آبریز دیگر مانندتر استفاده شده است. مهم‌ترین گام برای استفاده از این روش تعیین ضریب رواناب با دوره‌های پرگذشت مختلف می‌باشد. برای استفاده از نرمال‌سازی کامپیوتری TR، شدت یا بارش بارندگی استفاده می‌شود. برای محاسبه، شیب مورد مطالعه و تحلیل نرمال‌سازی قرار گرفتند و با استفاده از آن ضریب رواناب با دوره‌های پرگذشت مختلف محاسبه شد. نتایج این تحقیق نشان داد که ضریب رواناب به دست آمده کمتر از مقادیر داده شده در مراجع معترف (ظاهر چاپ و همکاران، ۱۹۸۸) است. کاربرد این ضریب برای سیل‌گذر و هدایت مورد استفاده قرار گرفته بود. نشان داد که بهتر از روش استدلالی-احتمالی بهتر از روش چاپ و همکاران (۱۲) مقدار دی‌بی‌تنیجه‌گیری

نتیجه‌گیری

معمولاً در طرافی ایینه و سازه‌های هیدرولیکی که برای جلوگیری از خسارات ناشی از سیل اجرا می‌گردد، از حداکثر دی‌بی
تخمین ضرایب روناپ برای تعدادی از حوضه‌های آبزی در دبیرستان مازندران

پیشنهادها

1- این تحقیق برای قسمتی از حوضه‌های آبزی و دانش‌آموزان ساحلی شمال ایران (بخش سرخ و مرکزی حوضه آبزی اصلی شماره یک) انجام گرفته است. پیشنهاد می‌شود که این کار برای کل ایران به‌صورت یک طرح به‌پروپشده انجام گیرد.

2- بای توجه به کمبود تعداد استدلالات بارندگی‌برای بالا

منابع مورد استفاده

1- افشار، ع. ۱۳۶۹. هیدرولوژی مهندسی، چاب دوم، مرکز نشر دانشگاهی، ۴۵۰ صفحه.
2- بزرگی، ا. آ. علیزاده و، مح. خیامی. ۱۳۶۹. تحلیل فاقدا و واقع و ریسک در هیدرولوژی. چاب اول، آستان قدس، رضوی، ۳۰۰ صفحه.
3- تماک. ۱۳۷۵. گزاره تلفیق مطالعات متعدد آب رودخانه‌های مازندران، ۳ جلد، وزارت نیرو.
4- تماک. ۱۳۷۶. پرداختن وضعیت منابع آب کشور، شماره ۱۴، نیروپای، ۱۴۴ صفحه.
5- جمشیدزاد غیبرنین، ج. ۱۳۷۷. تخمین ضرایب روناپ در حوضه‌های آلی در دبیرستان. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی دانشگاه مطهری، صفحه ۱۰۹.
6- رستم افشار، د. ۱۳۷۵. مهندسی منابع آب، چاب اول، وزارت راه‌داری و اردوگاه‌سازی، ۲۹۳ صفحه.
7- رافتورد دی، د. ۱۳۷۶. بی‌آبی در ارتفاع روناپ سه‌روه از حوضه‌های آلی در دبیرستان برای حوضه جنوب اصفهان. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، صفحه ۶۹.
8- ریسپرانی، ر. ۱۳۷۶. بررسی تأثیر شدت بارندگی، شیب زمین، بات کانال و پوشش گیاهی بر میزان نفوذ و روناپ در چنین حوضه‌ای. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، صفحه ۱۴۹.
9- زگرز، د. ۱۳۷۶. بررسی تأثیر بارندگی، پرداختن آب و سیل‌گیاه‌های هندی، و مدیریت اراضی بر مقدار روناپ کل آبخیز، مؤسسه تحقیقات گیاه‌ها و مراتع، ۴۴ صفحه.
10- فامی، ح. ۱۳۷۵. کاربرد آمار در هیدرولوژی مهندسی، چاب اول، انتشارات جهاد دانشگاهی تهران، ۳۴۴ صفحه.
11- علیزاده، د. ۱۳۷۴. اصول هیدرولوژی کاربردی، چاب ششم، دانشگاه امام رضا، مشهد، ۶۳۴ صفحه.
12- تماک، م. ۱۳۷۶. هیدرولوژی مهندسی، چاب دوم، دانشگاه علم و صنعت.
13- واحد مطالعات آب و خاک. ۱۳۶۹. راهنمای بهره‌برداری از پردازه TR. چهار سازندگی استان تهران.