تخمين ضرایب روانبات برای تعدادی از حوضه‌های آبریز دریای مازندران

چکیده

تخمین مقادیر سیالی، روش‌های جلع‌گیری از خصائص ناشی از زیر آنها می‌باشد. این تخمین با پایه‌ای و استاندارد طراحی انواع بینه‌ای هیدرولیک، سورس‌برداری، طراحی آبخزی‌داری و کنترل و مهار سیالی است. به وسیله روش‌های نظیر فیزیکی، جامعه‌ای، سیستم کرک استدلای (منطقی) مقادیر در حذافتر سیال‌ها می‌باشد. روش استدلای - احتمالی نیز روش دیگری برای تخمین مقادیر اوج سیال است که به صورت زیر می‌باشد:

\[ Q(y) = F \cdot C(y) \cdot I(t_c, y) \cdot A \]

که در آن \( Q \) - حذافتر دی سیال (مترمکس بر ثانیه)، \( F \) - دوره بردگیت (سال)، \( C \) - ضریب روانبات با دوره بردگیت معنی میدان مدلی مشابه و متشکل از پلاتر و سیالی می‌باشد. تخمین ضریب روانبات، \( y \) - در حد پایین‌ترین یکی از شکل‌های می‌باشد. این تخمین ضریب روانبات، 18/0 از معنای بهینه روش استدلای است. این برای کمک به تصمیم‌گیری تیپ خاص حوضه آبریز دریای مازندران (بخش مرکزی، شرقی، غربی) از حوضه آبریز شماره یک (برای 33 تا 77 درجه و 12 دقیقه و نیز عرض جغرافیایی 50 درجه تا 20 درجه و 12 دقیقه) با استفاده از نرم‌افزار سینت و رسم گرید. ترتیب نشان داده که 1. مقادیر ضرایب روانبات به دست آمده از مقادیر داده در جداول تجربی است. 2. برای از بین بردن این مقادیر، بردگیت، روانبات از این مقادیر می‌باشد. 3. کاربردها داده‌های اولیه حذافتر حوضه آبریز دریای مازندران را با همراهی تخمین حاکی از منحنی‌های مقادیر روانبات در حوضه آبریز دریای مازندران، ضرایب روانبات روش استدلایي - احتمالی

واژه‌های کلیدی - حوضه آبریز، دریای مازندران، ضرایب روانبات، روش استدلای - احتمالی

- دانشیار گروه آب‌های نوین، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
- کارشناسی ارشد سامان‌های ترازی مشهد
- استادیار گروه آب‌های گرم، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
- استادیار دانشکده صنعت آب و برق تهران

1378
مقدمه
با توجه به کمپین منابع آب، رشد جمعیت و ضرورت استفاده بهینه از منابع آب موجود، داده‌های آماری مربوط به طراحی سازه‌های آبی از اهمیت ویژگی‌های بخرجوران است. در صورت وجود آمار کافی از بارانگی، می‌توان بروز دقیقه تری استفاده در مقایسه با روش‌های غیرمکثیم انجام داد. این بروز می‌تواند طراحی مصرف سدیس، زیرگذرگاههای جاده‌ها، طرح‌های آبخیزداری، کنترل و مهار سیلاب و غیره است. لیکن در تعادل زیادی از رودخانه‌ها و حوضه‌های آبخیزی، عمداً به دلایل اقتصادی، استیسیاهای آبیستی و یا پارک‌سنجی وجود ندارند که برای جبران این مشکل، متخصصان سعی می‌کنند در میان سیلاب و آب مصرف شده موجود بیل سیلاب و مشخصات حوضه‌های آبخیزی را به دست آورده و در بروز سیلاب به تعبیه‌های مناسبی پرداخته‌اند. روانگاه سطحی زمانی تنکیل می‌گردد که شدت بارانگی بیش از میزان نفوذپذیری خاک باشد. برای اینکه کریگر ای برای تعیین دیگ حداکثر سیلاب در مساحت آبخیزی کف پر در مورد استفاده قرار می‌گیرد. این روش به صورت زیر می‌باشد (12):

\[ Q = \frac{24}{3} A \left(\frac{\alpha}{2} \frac{\gamma}{2} \frac{\beta}{2} \right) \]

\[ Q = \begin{cases} C A & \text{در حداکتور سالانه} \\ \text{مساحت حوضه (مربع میلی‌متری)} & \text{دیگ حداکتور سالانه} \end{cases} \]

\[ Q = \begin{cases} C A & \text{ضریح حوضه (که از 500 تا 600 می‌کند)} \\ \text{روابط فویر} & \text{جاهت سیلاب به حداکتور دیگ سیلاب به شرح زیر می‌باشد (12):} \end{cases} \]

\[ Q_D = CA^2 \]

\[ Q_{\text{max}} = Q_D (1 + \frac{\alpha}{\beta \text{Log} T}) \]

\[ Q_p = Q_{\text{max}} (1 + \frac{\gamma}{\delta} \frac{\alpha}{\beta}) \]

\[ Q = \frac{Q_D}{Q_{\text{max}}} \]

1- Creager 2- Fuller

زمرگ (9) در تحقیق پیرامون تأثیر ویژگی‌های حوضه آبخیز بر میزان روانگاه، که در پنجم حوضه آبخیز استان همدان انجام شد دریافت که عمل روانگاه تحت تأثیر میزان ریزش‌های جوی بوده، نسبت می‌کند با آن در دارا و رابطه بین عمل روانگاه و شرایط بی‌עברית از اراضی آبخیز می‌کند. در حالی که تقلید مقادیر

روانگاه به ایزی کاهش و سمت مراکز طبیعی و گسترش سطح مزارع آب‌ز یا باعث می‌باشد.

برای جزیره شدن روانگاه حاصل از یک بارانگی، شدت بارانگی مهم‌تر از مقادیر آن است. به طوری که ممکن است یک باران با شدت زیاد روانگاه پیشتر از یک باران هم مقدار با آن یا حتی پیش‌تر از آن لازم مقدار ولی با شدت کمی ایجاد کند.

پوشش گیاهی از عوامل مؤثر بر میزان روانگاه سطحی.
تخمین ضرایب رواناب برای تعدادی از حوضه‌های آبریز دریای مازندران

که:

\[ Q_{\text{max}} = \text{حداکثر دیب متوسط 24 ساعتی با دوره بی‌برگشت} \]

(مترمکعب بر ثانیه)

\[ Q_p = \text{حداکثر سیل لحظه‌ای با دوره بی‌برگشت} \]

(مترمکعب بر ثانیه)

از روش جارویس - مایر برای تعیین حداقل دیب سیلاب در امر سد‌سازی استفاده می‌گردد (12):

\[ Q = \frac{175 \sqrt{A}}{\sqrt{r}} \]

که:

\[ Q_p = \text{حداکثر دیب اوج سیلاب سالانه} \]

(مترمکعب بر ثانیه)

\[ Q = \text{سطح حوضه} \]

(کیلومتر مربع)

روش شماره منحنی 2 توسط سازمان حفاظت خاک ایران به صورت زیر ارائه گردیده است (16) (18 و 21):

\[ Q = \frac{P - 0.2S}{P + 0.2S} \]

که:

\[ P = \text{مقدار کل بارندگی} \]

(سانتیمتر)

\[ S = \text{فاکتور مربوط به دخیل حوضه با پیلاتس نگهداری‌شده} \]

(سانتیمتر)

\[ r = \text{ارتفاع رواناب} \]

(سانتیمتر)

\[ F = \text{سیلاب متوسط} \]

(مترمکعب بر ثانیه)

\[ A = \text{مساحت حوضه} \]

(سانتیمتر مربع)

\[ C = \text{ضریب سیلاب} \]

(مترمکعب بر متر مربع)

\[ i = \text{شدت مسیر بارندگی با تداومی مساوی با زمان تحرک حوضه} \]

(سانتیمتر بر ساعت)

در معادله 4 پارامتر \( S \), که عبارت است از پتانسیل نگهداری رطوبت، به عوامل چون پوشش گیاهی، نوع خاک و وضعیت رطوبتی آن بستگی دارد. مجموعه این عوامل در پارامتر \( S \) با نام شماره منحنی CN (علامه می‌شود که رابطه آن با در سیستم متریک به شرح زیر می‌باشد. در رابطه 7 مقدار S برحسب سانتیمتر و CN بدون است. \[ S = \frac{200 - CT}{\text{CN}} \]

روش سپسر کریک 3 برای حوضه‌های مستطیل، که شیب آن‌ها کمتر از 15/0 درصد و اندکی حوضه نیز از 500 هکتار کمتر است، به‌کار می‌رود (12):

\[ Q = CA^{0.77} \]

1. Jarvis-Meyer
2. Curve Number
3. Cypress-Creek
4. Rational method
تحقيق حاضر در قسمتی از حضور آبی‌زی شما و انجام
گرفته است که زیر حضورهای انتزاعی گزارندهای، هزارا، نکا و نور
در این محدوده قرار داشته. رودخانه‌های بارانی هزارا که رهیم
برای یه یک دارندگان، از طرف حذف گردیده‌ند. از طرفی، ایستگاه‌های
آبی‌زی که کمتر از 50 سال آمار داشتهای نیز حذف شده‌اند.
موفقیت 4 استاد، 4 لیسانس و 18 ایستگاه آبی‌زی با آمار
165 سال در نمونه‌گیری اول آورده شده است. مشخصات
حوضه‌های آبی‌زی در منطقه مورد مطالعه در جدول 1 و موفقیت
جغرافیایی ایستگاه‌های بارانی در جدول 2 ارائه گردیده
است.
کل حضورهای مورد مطالعه به شکل نویس در انتقادی به
جلال پیری و در سالی سالی در بحث مانند مانند گرفته تا
قرار داده شده دارد که این خوانندگان جغرافیایی
منطقه از طول‌های طولی 51 درجه و 54 دقیقه تا 127 درجه و
12 دقیقه و عرض‌های شمالی 36 درجه و 6 دقیقه تا
37 درجه و 12 دقیقه تا
سواست. ارتفاعات این منطقه از سطحیای مرنوی یوپیشیده شده که علت
آن بی‌سنج و رطوبت زیاد و درجه حرارت مناسب است. این
پوشش در داشتی شامل منابع (عمدتاً رنگ)، بافت‌ها، مرتع و
گنج‌ها در ارتفاعات منابع، اغلب عضو حمله‌ها، مرتع و جنگلهای
بنا و شبه‌پراکن در مراکز.
مطالعه به سه بخش تفکیک می‌شود:
الف - مناطق جنگلی: وسعت اراضی جنگلی به طور تقریبی
حدود 3/4 میلیون کیلومتر به معادله 50 درصد و محتوی
کل حضورهای این بخش از نوع‌های دولتی و به وجود در نوای
شمالی و مرکزی جنگل‌های تکس در بخش‌های جنوبی گسترش
دارد.
ب - نواحی مرتفع: اراضی مرتفعی در سطح حوضه در ایل
وسعت حدود 4500 کیلومتر مربع می‌باشد که 26 درصد از
و سعیت کل حضور را شامل می‌گردد.
نمودار ۱ - موقعیت ایستگاه‌های آب سنگی و ثبات بازانگی منطقه مورد مطالعه

ج- باگات و اراضی کشاورزی: اراضی کشاورزی بطور عمده در دشت‌های شمالی مازندران گسترده‌تر از دشت‌های ساحلی مازندران هستند که اراضی کشاورزی باعث افزایش در حوضه روستاهای مازندران شهرت داردند. در مجموع محدوده این اراضی ۶۰۰ کیلومتر مربع است (۳).

آب و هوا: اقلیم معتدل سرد تا معتدل گرم و در مجموع معتدل طبقه‌بندی نمود. میانگین دماه جاری مدار به کمی از غرب به شرق منطقه افزایش می‌یابد. اصولاً این جریان در نوار‌های ساحلی همیشه زیاد است و مقدار آن از غرب به شرق تنزیل پیدا می‌کند (۲). حداکثر دمای جاری در همایش میانگین حداقل‌های میانگین مشاهده شده در منطقه (استگاه تبریز) به ترتیب ۲۴/۰ و ۲۰ درجه سانتی‌گراد بوده و حداکثر مطلق و میانگین حداقل‌های مشاهده

شده (ایستگاه پلور) به ترتیب ۳۲ و ۲۹ درجه سانتی‌گراد بوده است.

بادهای عمده منطقه ناشی از جمهوری هموار و رودی به منطقه و نیز نسبت به دیگر مناطق است. درگذشته اول جهت باد از غرب و شمال غرب (مديان‌های) با شمال و شمال شرق (قطب شمال و سبز) و درگذشته دوم از شمال به جنوب است (۲).

طبقه‌بندی نمود. میانگین دمای جاری مدار به کمی از غرب به شرق منطقه افزایش می‌یابد. اصولاً این جریان در نوار‌های ساحلی همیشه زیاد است و مقدار آن از غرب به شرق تنزیل پیدا می‌کند (۲). حداکثر دمای جاری در همایش میانگین حداقل‌های میانگین مشاهده شده در منطقه (استگاه تبریز) به ترتیب ۲۴/۰ و ۲۰ درجه سانتی‌گراد بوده و حداکثر مطلق و میانگین حداقل‌های مشاهده

ظول جغرافیایی (درجه)
جدول 1- مشخصات حویضه‌های آبریز در منطقه مورد مطالعه (۲)

<table>
<thead>
<tr>
<th>روز خانه‌ها</th>
<th>استگاه</th>
<th>ژئوفیزیایی</th>
<th>گرافیایی</th>
<th>عرض</th>
<th>طول</th>
<th>طول آب‌هایه</th>
<th>زمان تمرکز (ساعت)</th>
<th>مساحت</th>
<th>عرض</th>
<th>اصلی</th>
<th>تعداد سال حوضه</th>
<th>(کیلومترمربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سردار رود</td>
<td>سردار رود</td>
<td>پلنه‌آب رود</td>
<td>کلاپاریا</td>
<td>۱۷ ۰۹۳۶</td>
<td>۲۰۱۰</td>
<td>۱۹</td>
<td>۲۶۰۰</td>
<td>۷</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
</tr>
<tr>
<td>۲/۰۸</td>
<td>۲/۲۵</td>
<td>۳۶۰۰</td>
<td>۱۹</td>
<td>۹۱</td>
<td>۲۲۰۰</td>
<td>۷</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۸۵</td>
<td>۵/۰۵</td>
<td>۷۶۰۰۰</td>
<td>۴۴</td>
<td>۶۰</td>
<td>۳۱۸۷</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵/۲۳</td>
<td>۰/۸۸</td>
<td>۴۳۰۰</td>
<td>۷</td>
<td>۱۱</td>
<td>۵۲۰۰</td>
<td>۱۱</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸۸</td>
<td>۴/۷۵</td>
<td>۱۸۸۰۰</td>
<td>۱۲</td>
<td>۶</td>
<td>۴۵۷۶</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵/۸۸</td>
<td>۰/۱۳</td>
<td>۴۶۰۰۰</td>
<td>۲۸</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۱۳</td>
<td>۰/۹</td>
<td>۲۳۰۰۰</td>
<td>۱۷</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹</td>
<td>۲/۱</td>
<td>۴۳۷۵۰</td>
<td>۴۱</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲/۱</td>
<td>۲/۰</td>
<td>۴۸۱۲۵</td>
<td>۲۸</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲/۰</td>
<td>۲/۶۳</td>
<td>۲۰۰۰</td>
<td>۱۱</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲/۶۳</td>
<td>۱/۴۶</td>
<td>۱۳۵۰۰</td>
<td>۱۷</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۴۶</td>
<td>۰/۵۵</td>
<td>۲۵۰۰</td>
<td>۲۱</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۵۵</td>
<td>۷/۱</td>
<td>۲۰۰۰</td>
<td>۲۱</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۱</td>
<td>۲/۳۰</td>
<td>۱۱۰۰</td>
<td>۱۲</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲/۳۰</td>
<td>۱/۶۳</td>
<td>۲۵۰۰</td>
<td>۱۲</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۶۳</td>
<td>۲/۴۶</td>
<td>۵۱۰۰</td>
<td>۱۲</td>
<td>۵</td>
<td>۵۲۵۰</td>
<td>۱۲</td>
<td>۳۴</td>
<td>۳۱۰</td>
<td>۲/۰۸</td>
<td>۲۷۵۰۰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2- مشخصات استگاه‌های بات‌باران‌گذی (۴)

<table>
<thead>
<tr>
<th>استگاه</th>
<th>ژئوفیزیایی</th>
<th>گرافیایی</th>
<th>عرض جغرافیایی</th>
<th>طول جغرافیایی</th>
<th>دیدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>آق‌قلا</td>
<td>۳۷° ۰۹۳۶</td>
<td>۲۷° ۰۵۰</td>
<td>۱</td>
<td>۲۰۰</td>
<td>۷۵°</td>
</tr>
<tr>
<td>بهشهر</td>
<td>۳۶° ۲۱۰</td>
<td>۲۵° ۰۵۰</td>
<td>۲</td>
<td>۲۳۰</td>
<td>۵۰°</td>
</tr>
<tr>
<td>بابل</td>
<td>۳۵° ۴۱۰</td>
<td>۲۵° ۰۵۰</td>
<td>۳</td>
<td>۳۱۰</td>
<td>۲۰°</td>
</tr>
<tr>
<td>ساری</td>
<td>۳۵° ۵۳۰</td>
<td>۲۵° ۰۵۰</td>
<td>۴</td>
<td>۳۵۰</td>
<td>۷۰°</td>
</tr>
<tr>
<td>فاصل آباد</td>
<td>۳۵° ۵۴۰</td>
<td>۲۵° ۰۵۰</td>
<td>۵</td>
<td>۳۶۰</td>
<td>۰°</td>
</tr>
<tr>
<td>قلعه جین</td>
<td>۳۷° ۰۵۰</td>
<td>۲۵° ۰۵۰</td>
<td>۶</td>
<td>۳۷۰</td>
<td>۱۰°</td>
</tr>
</tbody>
</table>
تخمین ضرایب روابط برای تعدادی از حوزه‌های آبزی در جنوب مازندران

به خشکسالی‌ای از دور ونگنه‌ساختی اثر ویژه و گرگان - رشت واقع
شهده است. فازهای کوه‌پایای متعددی در این منطقه عمل کرده است. قدیمی‌ترین فاز کانتنگنی یک بوده که در این سرزمین‌هایی
عمل کرده و جدیدترین آن از آلفا یک بوده که موجب پریاپی
رشته کوه البرز شده است. تحت تأثیر نیروهای ناشی از گرگان
کوه‌پایای، صخره‌های ورودی و شکسته‌های قونان با روند عمومی
شرقی - غربی ایجاد شده و در مراحل کششی فازهای کوه‌پایای
فعال‌ترین آدرین (دونی و پیرونی) در ابعاد و سیعی عمل کرده
که آثار آن در مناطق مختلف حوضه آبیات دیده می‌شود.
قدیمی‌ترین واحدهای سنگی، مربوط به سنگهای گرگانی
پرکامیونی می‌باشد که پی سنگهای کمینه‌ای این منطقه را تشکیل
می‌دهد (۲)。

رودره‌های جاری در منطقه عبارتند از رودخانه‌های آدرن،
آدرن، نظام رود، پایین، بالین، بین، جنگل‌های، چالدرود،
چالوس، کوه‌های کپل، خیرود، سنگ‌های کاوه، سرمه‌رود، سرمه‌رود،
سیاه‌رود، شیرود، دشت‌های، طالار، فرآ، کاف‌هیله، کاوه،
کسروی، کورکوراک، گرگان، بارگان، دشت،
لابی، لار، لاهیج، منطقه‌ای، نوا، نوا، نور،
و هر آن (۳)。

در نهایت توزیع برای پرازی معاینات است که در
تعداد گروه‌های تابع توزیعی یک کننده m
در نهایت توزیعی برای پرازی معاینات است که در
آن $\text{RSS}$ کمتر از دیگر توزیع‌ها باشد (۱ و ۲)。

در این مطالعه با داشتن آمار شدیده‌ای ۱۵ دی‌تاییه یازده گیا برای ایجاد گزارش می‌تواند تحقیقات
عناصر آب (نیک)، شدت‌های ۱۲۰، ۱۱۰، ۱۰۸، ۱۰۰، ۹۰، ۸۰، ۷۰، ۶۰، ۵۰، ۴۰، ۳۰، ۲۰ و ۱۰
دقت‌هایی با استفاده از یک
برنامه کامپیوتری که به زبان
Quick Basic نوشته شده است،
برنامه کامپیوتری که به زبان
محاسبه کرده.
برنامه با توجه به لغزش کم در هر
شدت شدید نزول می‌کند که در هر
شدت شدید نزول می‌کнд
جدول ۳- نتایج دی‌با دوره‌های برق‌گشت متغیر (مرتکب کم بر ثانیه) و سایر بارامترهای آماری حاصل از برنامه TR

<table>
<thead>
<tr>
<th>جدول</th>
<th>نتایج دی‌با دوره‌های برق‌گشت متغیر (مرتکب کم بر ثانیه) و سایر بارامترهای آماری حاصل از برنامه TR</th>
</tr>
</thead>
</table>
| TR  | پیشین توزیع | RSS | Q_{10} | Q_{20} | Q_{30} | Q_{40} | Q_{50} | Q_{60} | استفاده | رودخانه | رودوار | پل‌دریاب | لودکسپا | ماسه‌رود | عالی‌کلا | کنی‌رود | غرب‌رود | خربزون | کلمن | پررسون | لودار | لودارکلا | داراب‌کلا | نکا | نداعکلا | پایین‌زندین | اریزک | فرسوده | منصف‌نور | سرم‌رود | زرین‌گل | سرم‌رود | لودار | لودار | لودار | L | S | می‌گردد که در استگاه‌های مدور نظر توزیع کامپل و لودار


نتایج و بیان

تجزیه دی‌با دوره‌های برق‌گشت

تقریباً آماره‌های آماری حاصل از انرژی برای کم‌رودی نتایج تحلیل

در جدول ۳ آورده شده است. تحلیل فواکنی آمار دی‌با اندازه‌گیری شده در استگاه‌های هیدرودری

(جدول ۱) در طول سال‌های مختلف به دست آمده است. از

نتایج جدول ۳ در تخمین ضرایب روانی دوره‌های برق‌گشت مخالف استفاده شده است. با توجه به این جدول مطالعاتی طرح رسم گردید.

1- SURFER
تفحیم ضرایب روابط برای تعدادی از حوضه‌های آبی دریای مازندران

گام‌بندی روابط تطبیقی را دارند.

تحلیل شدت بارندگی

کم‌به‌کم ایستاگه‌های آب‌نگاری در منطقه باعث شده‌اند که هر ایستگاه آب‌نگاری باید جدی‌تر ایستاگه‌ای اطراط آب استفاده نماید. البته باید عمل با توجه به طول و عرض خطه‌ای ایستاگه‌های بارندگی و آب‌نگاری صورت پذیرد. این امر در تحلیل‌ها تأثیر می‌گذارد، چون عواملی از قبل اختلاف اarning، دوری و تندیکی به دوا و اختلاف دما و فشار بین دو ایستگاه دخالت دارد.

مقداری شدت بارندگی با کمک برنامه‌کامپیوتری TR مورد تحلیل قرار گرفته و دوره‌های برجسته شدت بارندگی مشخص شد. به عنوان نمونه، نتایج شدت بارندگی ایستگاههای باران سنگین ایستپایل و داده در جدایا و بانه شده است. نتایج سایر ایستگاههای گروه‌دار عصرهایی (6) موجود است. با توجه به این جدول مشخص می‌گردد که توزیع کم‌به‌کم اثراتی تا بارندگی‌های باران‌های بارانی دارد. این اثرات در دوره‌های برجسته شدت بارندگی افزایش می‌یابد و با افزایش طول مدت بارندگی از شدت آن کاسته می‌شود. این نتایج با تحقیقات سایری مطابقت دارد (7 و 11 و 12).

تحلیل کلی نتایج

با وجود این که ایجادی بر کنایه روش استدلالی (منطقی) بی‌یاری تخمین مقداری یا شدت جریان سطحی شده است، اما این روش به طور گسترده بی‌سنج و در طراحی بینیه‌های هیدرولوژیکی و مطالعات هیدرولوژیکی استفاده می‌شود که علت آن ساده و استدلالی بودن روش استدلالی است (7 و 12). ضریب روابط (C) کم‌ به‌کم برای در نظر گرفتن روش استدلالی می‌باشد.

اثربخشی مناسب برای طبقات و تجزیه‌های هیدرولوژیکی است. این اثرات در دوره‌های برجسته دارد. این تحقیق برنامه‌ای به کلیه خصوصیات بارندگی و حوضه‌های آبی توجه نمود. جدول ۶ ضرایب روابط

1- Austin
جدول 4- شدت بارندگی ایستگاه بابل (میلی‌متر بر ساعت) با دوره‌های پرگشت و مدت مختلف

<table>
<thead>
<tr>
<th>شدت بارندگی (سال)</th>
<th>مدت (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/22</td>
<td>1/69</td>
</tr>
<tr>
<td>2/13</td>
<td>2/54</td>
</tr>
<tr>
<td>3/26</td>
<td>3/49</td>
</tr>
<tr>
<td>4/02</td>
<td>4/08</td>
</tr>
<tr>
<td>4/07</td>
<td>4/10</td>
</tr>
<tr>
<td>5/21</td>
<td>5/05</td>
</tr>
</tbody>
</table>

بهترین توزیع زمره: لگوریتم گامیل

جدول 5- شدت بارندگی ایستگاه ساری (میلی‌متر بر ساعت) با دوره‌های پرگشت و مدت مختلف

<table>
<thead>
<tr>
<th>شدت بارندگی (سال)</th>
<th>مدت (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/22</td>
<td>2/04</td>
</tr>
<tr>
<td>2/13</td>
<td>3/47</td>
</tr>
<tr>
<td>3/26</td>
<td>4/92</td>
</tr>
<tr>
<td>4/02</td>
<td>4/64</td>
</tr>
<tr>
<td>4/07</td>
<td>4/57</td>
</tr>
</tbody>
</table>

بهترین توزیع: لگوریتم گامیل

در کمترین مقدار ضریب روابط 20/45 وزن شده، در حالی که در جدول 6، ضریب روابط با دوره پرگشت 2 سال حدود 2/46/0 به دست آمده است. این تفاوت علی‌رغم اینکه از آزمایشات کمترین مقدار محاسباتی در حداکثر لحظه‌ای را می‌توان از تخمین‌های تادست از مقدار حداکثر دیسکی لحظه‌ای در پی‌رهاواد را در آمده است. در این جدول، کمترین مقدار

بررسی اعتبار تخمین‌های حداکثر لحظه‌ای

مقدار خطا در محاسباتی در حداکثر لحظه‌ای را می‌توان از فرمول زیر به دست آورد:

\[ E = \left| \frac{Q_0 - Q_e}{Q_0} \right| \times 10^6 \]

که:

- \( E \) خطا در محاسباتی در حداکثر لحظه‌ای را می‌توان از
- \( Q_0 \) مقدار حقیقی
- \( Q_e \) مقدار محاسباتی

تغییرات در آمریکا تهیه شده است. در این جدول، کمترین مقدار

در جدول 7 افزایش یافته است.
نمودار ۲- منحنی‌های هم ضریب روان‌بی‌با دو یا بیشتر ۲ سال در یک هشی از حوضه آبی‌رژی شمال غربی ایران
نمودار ۴- منحنی‌های هم ضریب رواناب با دوره پرگشت ۱۰۰ سال در یک حوضه آبریز شمال شرقی ایران
جدول 6- ضرایب روندی با دوره‌های یرگشته متغیرت برای زیر حوزه‌های مختلف منطقه طرح

<table>
<thead>
<tr>
<th>C(100)</th>
<th>C(50)</th>
<th>C(25)</th>
<th>C(15)</th>
<th>C(5)</th>
<th>C(2)</th>
<th>نام ایستگاه</th>
<th>رده‌بندی</th>
<th>نام و دانه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/248</td>
<td>0/168</td>
<td>0/067</td>
<td>0/046</td>
<td>0/026</td>
<td>0/016</td>
<td>سردار‌بود والت</td>
<td>1</td>
<td>سردار‌بود والت</td>
</tr>
<tr>
<td>0/943</td>
<td>0/814</td>
<td>0/531</td>
<td>0/385</td>
<td>0/267</td>
<td>0/169</td>
<td>پلنگ آبی روست کلاردایاد</td>
<td>2</td>
<td>پلنگ آبی روست کلاردایاد</td>
</tr>
<tr>
<td>0/889</td>
<td>0/722</td>
<td>0/551</td>
<td>0/376</td>
<td>0/247</td>
<td>0/159</td>
<td>اس‌پرده روست کلاردایاد</td>
<td>3</td>
<td>اس‌پرده روست کلاردایاد</td>
</tr>
<tr>
<td>0/178</td>
<td>0/138</td>
<td>0/078</td>
<td>0/062</td>
<td>0/047</td>
<td>0/033</td>
<td>سردار‌بود سرداب‌رود</td>
<td>4</td>
<td>سردار‌بود سرداب‌رود</td>
</tr>
<tr>
<td>0/886</td>
<td>0/808</td>
<td>0/551</td>
<td>0/376</td>
<td>0/247</td>
<td>0/159</td>
<td>کورکورس روست کلاردایاد</td>
<td>5</td>
<td>کورکورس روست کلاردایاد</td>
</tr>
<tr>
<td>0/128</td>
<td>0/129</td>
<td>0/093</td>
<td>0/084</td>
<td>0/068</td>
<td>0/052</td>
<td>خیبرود خیرود کانار</td>
<td>6</td>
<td>خیبرود خیرود کانار</td>
</tr>
<tr>
<td>0/178</td>
<td>0/138</td>
<td>0/078</td>
<td>0/062</td>
<td>0/047</td>
<td>0/033</td>
<td>کسپرده روست عالی‌کلا</td>
<td>7</td>
<td>کسپرده روست عالی‌کلا</td>
</tr>
<tr>
<td>0/333</td>
<td>0/210</td>
<td>0/119</td>
<td>0/080</td>
<td>0/066</td>
<td>0/045</td>
<td>لابیج تائگلاب</td>
<td>8</td>
<td>لابیج تائگلاب</td>
</tr>
<tr>
<td>0/218</td>
<td>0/166</td>
<td>0/116</td>
<td>0/086</td>
<td>0/066</td>
<td>0/045</td>
<td>نامرستق پنچاب</td>
<td>9</td>
<td>نامرستق پنچاب</td>
</tr>
<tr>
<td>0/333</td>
<td>0/210</td>
<td>0/119</td>
<td>0/080</td>
<td>0/066</td>
<td>0/045</td>
<td>یالرود قرآن‌قالار</td>
<td>10</td>
<td>یالرود قرآن‌قالار</td>
</tr>
<tr>
<td>0/287</td>
<td>0/193</td>
<td>0/140</td>
<td>0/091</td>
<td>0/061</td>
<td>0/041</td>
<td>شیرگاه کسپی‌لان</td>
<td>11</td>
<td>شیرگاه کسپی‌لان</td>
</tr>
<tr>
<td>0/139</td>
<td>0/111</td>
<td>0/090</td>
<td>0/065</td>
<td>0/045</td>
<td>0/033</td>
<td>لاجیم وستان</td>
<td>12</td>
<td>لاجیم وستان</td>
</tr>
<tr>
<td>0/887</td>
<td>0/722</td>
<td>0/551</td>
<td>0/376</td>
<td>0/247</td>
<td>0/159</td>
<td>دارابکلا دارابکلا</td>
<td>13</td>
<td>دارابکلا دارابکلا</td>
</tr>
<tr>
<td>0/333</td>
<td>0/210</td>
<td>0/119</td>
<td>0/080</td>
<td>0/066</td>
<td>0/045</td>
<td>نگا پایین‌زنده‌ن</td>
<td>14</td>
<td>نگا پایین‌زنده‌ن</td>
</tr>
<tr>
<td>0/128</td>
<td>0/129</td>
<td>0/093</td>
<td>0/084</td>
<td>0/068</td>
<td>0/052</td>
<td>گرگ وقتا</td>
<td>15</td>
<td>گرگ وقتا</td>
</tr>
<tr>
<td>0/187</td>
<td>0/148</td>
<td>0/127</td>
<td>0/093</td>
<td>0/068</td>
<td>0/052</td>
<td>گرگماب دشت سی‌گئوسک</td>
<td>16</td>
<td>گرگماب دشت سی‌گئوسک</td>
</tr>
<tr>
<td>0/333</td>
<td>0/210</td>
<td>0/119</td>
<td>0/080</td>
<td>0/066</td>
<td>0/045</td>
<td>زیر گل سرومود</td>
<td>17</td>
<td>زیر گل سرومود</td>
</tr>
<tr>
<td>0/128</td>
<td>0/129</td>
<td>0/093</td>
<td>0/084</td>
<td>0/068</td>
<td>0/052</td>
<td>چهل‌چای لوزه</td>
<td>18</td>
<td>چهل‌چای لوزه</td>
</tr>
</tbody>
</table>

درصد خطأ  

\[ E = Q_0 - Q_c \]

\[ Q_0 = \text{مقادیر دبی مشاهده شده} \]

\[ Q_c = \text{مقادیر دبی محاسبه شده} \]

دیب‌های سرکارگاه هیدرو‌متری در منطقه مورد مطالعه که در محاسابات یا زمان‌بندی استفاده قرار گرفته بود از روش استدلالی- تحلیلی و نیز روش چاپ و هم‌کاران (14) محاسبه شده. سپس درصد خطای این دو روش با مقادیر دبی مشاهده شده به دست آمده.

دیب‌های سرکارگاه هیدرو‌متری در منطقه مورد مطالعه که در محاسابات یا زمان‌بندی استفاده قرار گرفته بود از روش استدلالی- تحلیلی و نیز روش چاپ و هم‌کاران (14) محاسبه شده. سپس درصد خطای این دو روش با مقادیر دبی مشاهده شده به دست آمده.

\[ \text{دیده‌های سرکارگاه هیدرو‌متری در منطقه مورد مطالعه که در محاسابات یا زمان‌بندی استفاده قرار گرفته بود از روش استدلالی- تحلیلی و نیز روش چاپ و هم‌کاران (14) محاسبه شده. سپس درصد خطای این دو روش با مقادیر دبی مشاهده شده به دست آمده.} \]

افد- ایستگاه شیرآباد بر روی رودخانه سی‌گئوسک، با مساحت حوزه‌ای 90 کلومتر مربع، زمان تمرکز 21 دقیقه و شیب حوضه 14 درصد که در طول جغرافیایی 65 درجه و 2 دقیقه و عرض جغرافیایی 36 درجه و 8 دقیقه واقع شده است. نتایج
جدول 7- مقایسه دیگهای حداکثر مشاهده، شده و محاسبه شده با استفاده از ضرایب روش استدلالی-احتمالی و جدول چار و همکاران (14) در استفاده تکی آباد بر روی رودخانه چارآباد

<table>
<thead>
<tr>
<th>دوره ضرایب</th>
<th>دی</th>
<th>دی مباسه</th>
<th>صدخت</th>
<th>دی مباسه</th>
<th>روانب</th>
<th>بارنکی</th>
<th>مشاهده</th>
<th>شده از روش</th>
<th>استدلالی</th>
<th>روش استدلالی</th>
<th>محاسبه</th>
<th>مکعب بر</th>
<th>بر ناحیه (متر مکعب بر ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/27</td>
<td>2/47</td>
<td>2/49</td>
<td>5/56</td>
<td>1/90</td>
<td>0/35</td>
<td>0/90</td>
<td>0/55</td>
<td>0/20</td>
<td>0/30</td>
<td>0/45</td>
<td>0/41</td>
<td>1/10</td>
</tr>
<tr>
<td>2</td>
<td>1/76</td>
<td>3/43</td>
<td>4/05</td>
<td>4/14</td>
<td>4/57</td>
<td>0/63</td>
<td>0/80</td>
<td>0/78</td>
<td>0/73</td>
<td>0/73</td>
<td>0/67</td>
<td>0/73</td>
<td>0/67</td>
</tr>
<tr>
<td>3</td>
<td>1/27</td>
<td>2/47</td>
<td>2/49</td>
<td>5/56</td>
<td>1/90</td>
<td>0/35</td>
<td>0/90</td>
<td>0/55</td>
<td>0/20</td>
<td>0/30</td>
<td>0/45</td>
<td>0/41</td>
<td>1/10</td>
</tr>
<tr>
<td>3</td>
<td>1/76</td>
<td>3/43</td>
<td>4/05</td>
<td>4/14</td>
<td>4/57</td>
<td>0/63</td>
<td>0/80</td>
<td>0/78</td>
<td>0/73</td>
<td>0/73</td>
<td>0/67</td>
<td>0/73</td>
<td>0/67</td>
</tr>
</tbody>
</table>

جدول 8- مقایسه دیگهای حداکثر مشاهده، شده و محاسبه شده با استفاده از ضرایب روش استدلالی-احتمالی و جدول چار و همکاران (14) در استفاده امامزاده بر روی رودخانه چارآباد

<table>
<thead>
<tr>
<th>دوره ضرایب</th>
<th>دی</th>
<th>دی مباسه</th>
<th>صدخت</th>
<th>دی مباسه</th>
<th>روانب</th>
<th>بارنکی</th>
<th>مشاهده</th>
<th>شده از روش</th>
<th>استدلالی</th>
<th>روش استدلالی</th>
<th>محاسبه</th>
<th>مکعب بر</th>
<th>بر ناحیه (متر مکعب بر ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5/49</td>
<td>6/22</td>
<td>6/27</td>
<td>5/75</td>
<td>0/55</td>
<td>0/35</td>
<td>0/90</td>
<td>0/55</td>
<td>0/20</td>
<td>0/30</td>
<td>0/45</td>
<td>0/41</td>
<td>1/10</td>
</tr>
<tr>
<td>2</td>
<td>5/49</td>
<td>6/22</td>
<td>6/27</td>
<td>5/75</td>
<td>0/55</td>
<td>0/35</td>
<td>0/90</td>
<td>0/55</td>
<td>0/20</td>
<td>0/30</td>
<td>0/45</td>
<td>0/41</td>
<td>1/10</td>
</tr>
<tr>
<td>3</td>
<td>5/49</td>
<td>6/22</td>
<td>6/27</td>
<td>5/75</td>
<td>0/55</td>
<td>0/35</td>
<td>0/90</td>
<td>0/55</td>
<td>0/20</td>
<td>0/30</td>
<td>0/45</td>
<td>0/41</td>
<td>1/10</td>
</tr>
<tr>
<td>3</td>
<td>5/49</td>
<td>6/22</td>
<td>6/27</td>
<td>5/75</td>
<td>0/55</td>
<td>0/35</td>
<td>0/90</td>
<td>0/55</td>
<td>0/20</td>
<td>0/30</td>
<td>0/45</td>
<td>0/41</td>
<td>1/10</td>
</tr>
</tbody>
</table>
جدول 6- مقایسه دیگر حداکثر مشاهده شده و محاسبه شده با استفاده از ضریب روش استدلالی-احتمالی و جدول چار و همکاران (14) در استیگی شیرآدان بر روی رودخانه میاربود

<table>
<thead>
<tr>
<th>دوره</th>
<th>ضریب</th>
<th>ذره</th>
<th>دیگر حداکثر مشاهده</th>
<th>محاسبه شده</th>
<th>محاسبه شده بر روی روش استدلالی-احتمالی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0/68</td>
<td>2/7</td>
<td>0/77</td>
<td>0/12</td>
<td>0/24</td>
</tr>
<tr>
<td>5</td>
<td>0/19</td>
<td>0/71</td>
<td>0/15</td>
<td>0/14</td>
<td>0/13</td>
</tr>
<tr>
<td>10</td>
<td>0/42</td>
<td>0/89</td>
<td>0/77</td>
<td>0/52</td>
<td>0/64</td>
</tr>
<tr>
<td>25</td>
<td>0/21</td>
<td>0/86</td>
<td>0/18</td>
<td>0/81</td>
<td>0/80</td>
</tr>
<tr>
<td>50</td>
<td>0/60</td>
<td>0/96</td>
<td>0/95</td>
<td>0/95</td>
<td>0/95</td>
</tr>
<tr>
<td>100</td>
<td>0/58</td>
<td>0/71</td>
<td>0/87</td>
<td>0/87</td>
<td>0/87</td>
</tr>
</tbody>
</table>

جعبه: به‌طور کلی، این استادلایی-احتمالی نسبت به روش چار، بهتر است. در حالی که با استفاده از روش چار، نسبت به استدلالی-احتمالی، بهتر شده است. همچنین، نتایج نشان داده که روش‌های جمعیت بین نسبت به روش‌های چار و همکاران (14) استفاده کرده‌اند.

نتایج گیری: معمولاً در طراحی ایمنی و سازه‌های هیدرولوژیکی به برای جلوگیری از خسارات ناشی از سیل اجرامی گردیده، از حداکثر دبی سیالاب با دیگر روش‌های استفاده می‌شود. روشنی که روشن سیالاب در حوضه‌های شاهراه و آب‌گیری کشاورزی روش استدلالی-احتمالی می‌باشد. در این مطالعه، روش استدلالی-احتمالی با دقت قبل توجه می‌شود. این نتایج نشان داد که این روش بهترین روش برای ارزیابی آب‌های محدودیت است.
تخمین ضرایب روابط تعدادی از حوضه‌های آبریز دریای مازندران

حداکثر لحظه‌ای را بر آورد می‌کنند.

پیشنهادات

1- تحقیق برای قسمتی از حوضه‌های آبریزی هوا ساحلی شمال ایران (به‌خسارت و مرکزی حوضه‌های آبریزی اصلی شما) انجام گرفته است. پیشنهاد می‌شود که این کار برای کل ایران به صورت یک طرح پروپوزال انجام گیرد.

2- توجه به کمبود تعداد استخراج‌های پیشنهادات، به تالا

منابع مورد استفاده

1- آقازاده. 1359. هیدرولوژی مهندسی، چاپی دوم، مرکز نشرداشت‌گاهی. 650 صفحه.
2- ژرژنی، A.A. ابعاد، M. نیک نژاد، و ح. بابایی. 1342. تحلیل ناپایداری و قابلیت در هیدرولوژی. چاپ اول، آستان قدس رضوی. 300 صفحه.
3- مهربانی، A. 1375. گزارش تکمیل مطالعات منابع آب رویه‌های مازندران. 3 جلد، وزارت نیرو.
4- مهربانی، A. 1376. پیشنهاد منابع آب کشور. شماره 157، 180 صفحه.
5- بهرامیان، A. 1377. تخمین ضرایب روابط در حوضه‌های آبریز دریای خزر. پایان نامه کارشناسی ارشد، دانشگاه کرمان، صفحه 149.
6- پیشنهاد منابع آب. 1375. مهندسی منابع آب. چاپ اول، وزارت فرهنگ و ارشاد اسلامی. 396 صفحه.
7- پیشنهاد منابع آب. 1376. ایران، رد. 1369. پیشنهاد منابع آب. چاپ اول، وزارت نیرو.
8- پیشنهاد منابع آب. 1376. پیشنهاد منابع آب. چاپ اول، وزارت نیرو.
9- پیشنهاد منابع آب. 1376. پیشنهاد منابع آب. چاپ اول، وزارت نیرو.
10- پیشنهاد منابع آب. 1376. پیشنهاد منابع آب. چاپ اول، وزارت نیرو.
11- پیشنهاد منابع آب. 1376. پیشنهاد منابع آب. چاپ اول، وزارت نیرو.
12- پیشنهاد منابع آب. 1376. پیشنهاد منابع آب. چاپ اول، وزارت نیرو.
13- پیشنهاد منابع آب. 1376. پیشنهاد منابع آب. چاپ اول، وزارت نیرو.