تخمین ضرایب روابط برای تعدادی از حوضه‌های آب‌زدایی دریاچه‌های مازندران

چکیده

ضمیم مقدار سیلاب‌های رسیدن‌یافته، روش به‌روز جلوگیری از خشکاتری تصاحب را وقوع آنها می‌باشد. این تخمین با به‌واسطه طراحی انواع اینه‌ها و نوین‌ها بررسی شده‌اند. در نهایت، روش‌های تهیه نمودن کریسمت و استادیالی، مقدار در حد ذرای سیلاب‌های ممسنی می‌شود. روش استادیالی - احتمالی نیز روش دیگری برای تخمین مقدار این سیلاب است که به صورت زیر بیان می‌شود:

\[Q(y) = F(C(y), I(t,c,y), A) \]

که در آن \(Q \) - حداکثر دی‌سیلاب (متر مکعب بر ثانیه) 2 - دوره برگشت (سال), \(C \) = ضریب روان‌بندی با دوره برگشت یک‌سال (میلی‌متر بر ساعت) برای دوره برگشت معین و مدتی معادل زمان تمرکز حوضه و \(F \) = ضریب حوضه (کیلو‌متر مربع)، \(A \) = مساحت روان‌بندی با دوره برگشت یک‌سال (متر مربع) از مشکلات این روش است. تبدیل واحدها به صورت کاربردی واحدهای فوق برابر 278/20 می‌باشد. تخمین ضرایب روان‌بندی، \(C(t,y) \) یکی از مشکلات این روش است.

برای تعلیق و تحلیل آمار حداکثر 10 سال 18 ایستگاه آبیاری و 6 ایستگاه بازرسی باران‌گذاری استفاده شده است. این تحقیق در سه‌شصتی از حوضه آب‌زدایی دریاچه مازندران (بخش مرکزی شرقی حوضه آب‌زدایی یک آب‌زدایی) در حوضه رودخانه‌های تظهر اطراف، خالص، زلزله، سرده‌ناورد، سیاه‌آب، گرگان، صفارود، دستانی، کوچک‌رو و انجمن گردید. ضرایب روان‌بندی با دوره برگشت 0/75، 1/25، 1/20، 0/5 و 0/20 سال از ذرای حوضه‌های محاسبه و سپس منحنی‌های هم ضرایب روان‌بندی در محصوله طول جغرافیایی 51 درجه و 13 دقیقه‌های 55 درجه و 2 دقیقه و نیز عرض جغرافیایی 37 درجه و 19 دقیقه تا 37 درجه و 19 دقیقه به استفاده از نرم‌افزار سیرفر رسم گردید.

نتایج نشان داده که 0/2 مقدار ضرایب روان‌بندی به دست آمده کمتر از مقدار داده در جدول تجربی است. 2/7 با این‌جا دو شرط برگشت، ضرایب روان‌بندی افزایش می‌یابد و 3/1 کاربرد مقدار به دست آمده ضرایب روان‌بندی در سه حوضه آب‌زدایی منطقه نشان داده با استفاده از منحنی‌های هم ضرایب روان‌بندی می‌تواند دیگر حداکثر لحظه‌ای را با دقت بهتری تخمین دهد.

واژه‌های کلیدی: حوضه آب‌زدایی دریاچه مازندران، ضرایب روان‌بندی، روش استادیالی - احتمالی

- دانشیار گروه آب‌زدایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
- کارشناس ارشد سازمان کشاورزی منطقه
- استادیار گروه آب‌زدایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
- استادیار دانشکده صنعت آب و برق تهران

1378
مقدمه

با توجه به کمیت منابع آب، رشد جمعیت و ضرورت استفاده بهینه از منابع آب موجود، داده‌های آماری مربوط به طراحی سازه‌های آب از اهمیت راه‌بردی‌های بخشنده است. در صورت وجود آمار کافی از پازنگی، می‌توان یا نوردهبی و تورید آب به سیلیب در مقایسه با روش‌های غیرمسقیم انجم داد. این یا نوردهبی می‌تواند طرح‌های جدید را در زمینه طراحی اورشای مهندسی، در حالی که اورشای مهندسی، محنک و روانه سطحی واقعه‌دار آب است، روشنفکری‌های جدیدی به مقدار روانه‌سی‌ها می‌گردد که یکی از نوآوری‌های اصلی در زمینه سازه‌های آب‌خیز که در دست آورده و در روندهای سیلاب به ناحیه مطلوب تری برد. پدیده آب است، روانه‌سی‌های زمانی تکثیر می‌گردد که شدت پازنگی پیش از میزان نفوذ‌پذیری خاک باشد (11 و 12). مشخصات خاک، خصوصیات خاک، نیز ویژگی‌های سطحی حوضه نقش مهمی در تکثیر روانه‌سی‌ها ایفا می‌کند (11 و 12).

زیرگ (11) در تحقیق پیرامون تأثیر ویژگی‌های حوضه آب‌خیز بر میزان روانه‌سی، که در پنج حوضه آب‌خیز استان همدان انجام شد، دریافت که عمق روانه‌سی تحت تأثیر میزان ریزهمای جوی بوده، نسبت مستقیم بین آن و رابطه بین عمق روانه‌سی و میزان بهوبردی آرایشی آب‌خیز مستقیم و حاکی از تقلید مقدار روانه‌سی از ایزای کاهش و سمت مراتع طبیعی و گسترش سطحی مراتع آب به وابستگی با بارش می‌باشد.

| شرح زیر می‌باشد (12): |
| Q_D = C A^{*/A} |
| Q_max = Q_D (1 + A / Log T) |
| Q_p = Q_max (1 + T / (4 / A^{*/A})) |

1- Creager 2- Fuller
تخمین ضرایب روابط بازی تعدادی از حوضه‌های آبریز دریای مازندران

که:

\[Q = Q_{\text{max}} \] (مدت‌کاره شرکت)

\[Q_{\text{سیل}} = Q_p \] (سیل شرکت)

از روش جاروس - ما 1 برای تعیین حداکثر دیگر سیلاب در امر مشاوره استفاده می‌گردد (12):

\[Q = 175/6 \sqrt{A} \]

که:

\[Q = Q_p \] (مدت‌کاره شرکت)

\[Q = F.C.I.A \] (سرعت حوضه، کیلومتر مربع)

روش مشابه منحنی 2 توسط سازمان حفاظت حوضه‌های آبی ایران ارائه گردیده است (10 و 11):

\[Q = \left(\frac{P-0.25S}{P+0.25S} \right)^T \quad P > 0.25S \]

که:

\[F = Q_p \] (ارتقای روابط سانسیمت)

\[S = \text{فاکتور مربوط به دخیلی حوضه با پتانسیل نگهدارهای رطوبت سانسیمتیکر (سانسیمتیک)} \]

\[P = \text{مقدار کل بارندگی (سانسیمتیک)} \]

در معادله 2 پارامتر S، که عبارت است از پتانسیل نگهدارهای رطوبت به عنوان چرخش یا افزایش در وضعیت رطوبتی (ان بستگی دارد. مجموعه این عوامل در پارامترهای نام شماره منحنی (CN) خلاصه می‌شود که رابطه آن با S سیستم تحت شباهت به شرایط زیر می‌باشد. در رابطه 7 مقدار S به حساب سانسیمتیکر و CN بدون است (7):

\[S = \frac{250}{4} \frac{\text{CN}}{\text{CN}} \]

روش سیسیمیتیکر 3 برای حوضه‌های مسطح، که شیب آنها کمتر از 1 تا 5 درصد و اندازه حوضه نیز از 5000 هکتار کمتر باشد، به کار می‌رود (12):

\[Q = CA^{2/3} \]

محفظت حاضر در قسمتی از حفظیه آپرازی شيما یوج همگستر گرفته است، که ذکر می‌کند: نماز، نکا و نور در این محدوده قرار دارد. روزانه‌های مانند فرید و رضوان هزار که رؤیم برای دارند، در طرح حفظ و گرددند. از طرفی، ایستگاه‌های آبیستی که در مسیر آنها به کمتر از یک تا سه آمار داشته‌اند نیز حذف شدند. موضوع ۶ ایستگاه بن‌درنگی و ۴ ایستگاه آبیستی با آمار حداکثر ۱۰ سال در نمودار اول آورده شده است. مشخصات حفظیه آپرازی در منطقه مورد مطالعه در جدول ۱ و مسئول جغرافیایی ایستگاه‌های بن‌درنگی به جدول ۲ ارائه گردیده است.

کل حفظیه مورد مطالعه به شکل نوپا در امتداد رشته جال پیوست و در ساحل جنوبی دریای مازندران قرار گرفته و تا غرب استان خراسان ایام بغداد آمده است. حدود جغرافیایی منطقه از طول‌های شرقی ۵۱ درجه و ۱۳ دقیقه تا ۵۵ درجه و ۲۲ دقیقه و عرض‌های شمالی ۳۶ درجه و ۶ دقیقه تا ۳۷ درجه و ۱۳ دقیقه می‌باشد.

مسیر دشت ساحلی دریای مازندران و بخش عمده ارتفاعات این منطقه از رسته‌های متنوعی پوشیده شده که علت آن بندرگی و رطوبت زیاد و درجه حرارت مناسب است. این پوشش در دشت شمال مزارع (بدرت، نیر) با گاه، مرتع و جنگلی ارتفاعات مزارع، باغ‌ها، حراث و جنگل‌هایی مزارع و نیمه‌مطابق می‌باشد.

از دیدگاه پوشش گیاهی و تنوین رسته‌ها، حفاظت مورد مطالعه به سه بخش زیر تقسیم می‌شود:
الف - مناطق جنگلی: موضوع اراضی جنگلی به طور تصویری حدود ۱/۳ میلیون هکتار بوده که معادل ۷۵ درصد و سه کل حفظیه این بخش تهیه انبوه عمداً در نواحی شمال و مرکز جنگل‌های تک در به‌خصوص جنوبی گسترش دارد.
ب - نواحی مرتعی: اراضی مرتعی در سطح حفظه دارای وسعت حدود ۶۰۰ کیلومتر مربع می‌باشند که در کل حفاظت را شامل می‌گردد.
نمودار 1 - موقعیت ایستگاه‌های آب سنگی و نیب‌پذیرگی منطقه مورد مطالعه

شده (ایستگاه پلور) به ترتیب 32 و 9 درجه سانتیگراد بوده است. بادهای عمده منطقه ناشی از جهات هوا ورودی به منطقه و نیز نسبت بین دریا و کوهستان است. درگویه مرکز باد از غرب و شمال غرب (میدیناتان) با شمال و شمال شرق (قطب شمال و سپری) و درگویه دور از شمال به جنوب است. مشخصه اصلی پشتی و بلندی در این حوضه آبی‌زی، ارتفاعات الیز در جنوب منطقه و دریای مازندان در شمال آن می‌باشد. حداکثر ارتفاع منطقه 575 متر و مرز دماوند در حوضه آبی‌زی رودخانه هرات بوده و در نواحی غرب آن یک سری قلل دیگری با ارتفاع بین 2800 تا 2800 متر قرار دارند (3).

از نظر زمین‌شناسی، حوضه آبی‌زی رودخانه‌های مازندان در ج - باغات و اراضی کشاورزی؛ اراضی کشاورزی بطور عمده در دشت ساحلی دریای مازندان گستریده است. وسعت اراضی کشاورزی و باغات در حوضه رودخانه‌های مازندان بیش از 6000 کیلومتر مربع است (2). آب و هوا و اقلیم منطقه را به‌طور کلی می‌توان در درگروه‌های اقلیمی معادل سرد تا معادل گرم در مجموع معادل طبقه‌بندی نمود. میانگین دمای حرارت سالانه هوای غرب به شرق منطقه افزایش می‌یابد. اصولاً رطوبت در نواحی ساحلی همیشه زیاد است و مقدار آن از غرب به شرق نزول پیدا می‌کند (2). حداکثر درجه حرارت مطلق و میانگین حداکثری ماسه‌های شده در منطقه (ایستگاه پلور) به ترتیب 36/5 و 30 درجه سانتی‌گراد بوده و حداقل مطلق و میانگین حداکثری مسی‌های مختلط
جدول 1 - مشخصات حوضه‌های آبی در منطقه مورد مطالعه (2)

<table>
<thead>
<tr>
<th>زمان تمرکز طول آبراهه (ساعت)</th>
<th>طول استغafa</th>
<th>طول جغرافیایی</th>
<th>عرض جغرافیایی</th>
<th>اصلی (کیلومتری)</th>
<th>مساحت</th>
<th>مساحت</th>
<th>زمان تمرکز</th>
<th>استخوان</th>
<th>رودخانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/08</td>
<td>75000</td>
<td>310</td>
<td>51°13'</td>
<td>37°30''</td>
<td>17</td>
<td>0</td>
<td>1/08</td>
<td>سرداب رود</td>
<td>واند</td>
</tr>
<tr>
<td>2/35</td>
<td>2000</td>
<td>19</td>
<td>51°14'</td>
<td>36°43''</td>
<td>19</td>
<td>0</td>
<td>1/35</td>
<td>پلنگ آبی رود</td>
<td>گزارش</td>
</tr>
<tr>
<td>1/85</td>
<td>2000</td>
<td>9</td>
<td>51°15'</td>
<td>36°47''</td>
<td>14</td>
<td>0</td>
<td>1/85</td>
<td>اسحاب رود</td>
<td>گزارش</td>
</tr>
<tr>
<td>5/52</td>
<td>75000</td>
<td>433</td>
<td>51°24'</td>
<td>36°40''</td>
<td>33</td>
<td>0</td>
<td>5/52</td>
<td>سرداب رود</td>
<td>گزارش</td>
</tr>
<tr>
<td>5/88</td>
<td>2300</td>
<td>73</td>
<td>51°28'</td>
<td>36°40''</td>
<td>21</td>
<td>0</td>
<td>5/88</td>
<td>کورکور</td>
<td>گزارش</td>
</tr>
<tr>
<td>2/75</td>
<td>18800</td>
<td>216/1</td>
<td>51°35'</td>
<td>36°28''</td>
<td>12</td>
<td>0</td>
<td>2/75</td>
<td>خبرورد</td>
<td>گزارش</td>
</tr>
<tr>
<td>5/116</td>
<td>19000</td>
<td>490</td>
<td>51°37'</td>
<td>36°30''</td>
<td>11</td>
<td>0</td>
<td>5/116</td>
<td>کنس رود</td>
<td>گزارش</td>
</tr>
<tr>
<td>5/9</td>
<td>2300</td>
<td>315</td>
<td>52°16'</td>
<td>35°00''</td>
<td>17</td>
<td>0</td>
<td>5/9</td>
<td>نامسا نشاق</td>
<td>گزارش</td>
</tr>
<tr>
<td>2/041</td>
<td>23750</td>
<td>733</td>
<td>50°47'</td>
<td>36°16''</td>
<td>41</td>
<td>0</td>
<td>2/041</td>
<td>بابل رود</td>
<td>گزارش</td>
</tr>
<tr>
<td>2/0</td>
<td>48125</td>
<td>333</td>
<td>50°53'</td>
<td>36°22''</td>
<td>38</td>
<td>0</td>
<td>2/0</td>
<td>خیارگاه</td>
<td>گزارش</td>
</tr>
<tr>
<td>1/63</td>
<td>2000</td>
<td>137/8</td>
<td>50°33'</td>
<td>36°07''</td>
<td>11</td>
<td>0</td>
<td>1/63</td>
<td>واسان</td>
<td>گزارش</td>
</tr>
<tr>
<td>1/44</td>
<td>10500</td>
<td>55</td>
<td>50°34'</td>
<td>35°36''</td>
<td>17</td>
<td>0</td>
<td>1/44</td>
<td>دارابکلا</td>
<td>گزارش</td>
</tr>
<tr>
<td>2/45</td>
<td>22500</td>
<td>759</td>
<td>50°20'</td>
<td>35°37''</td>
<td>12</td>
<td>0</td>
<td>2/45</td>
<td>نکا</td>
<td>گزارش</td>
</tr>
<tr>
<td>0/55</td>
<td>7500</td>
<td>18</td>
<td>50°44'</td>
<td>35°20''</td>
<td>21</td>
<td>0</td>
<td>0/55</td>
<td>گوگرد</td>
<td>گزارش</td>
</tr>
<tr>
<td>1/210</td>
<td>2100</td>
<td>311</td>
<td>50°39'</td>
<td>35°36''</td>
<td>13</td>
<td>0</td>
<td>1/210</td>
<td>سلگورش</td>
<td>گزارش</td>
</tr>
<tr>
<td>1/63</td>
<td>22500</td>
<td>191</td>
<td>50°53'</td>
<td>37°07''</td>
<td>13</td>
<td>0</td>
<td>1/63</td>
<td>سرموره</td>
<td>گزارش</td>
</tr>
<tr>
<td>2/26</td>
<td>53000</td>
<td>281</td>
<td>50°33'</td>
<td>37°13''</td>
<td>26</td>
<td>0</td>
<td>2/26</td>
<td>چهل چای</td>
<td>گزارش</td>
</tr>
</tbody>
</table>

جدول 2 - مشخصات استگاه‌های اولت ساری (4)

<table>
<thead>
<tr>
<th>عرض جغرافیایی</th>
<th>طول جغرافیایی</th>
<th>استخوان</th>
<th>روز</th>
<th>روز</th>
<th>استغafa</th>
<th>دیف</th>
<th>یکسالی</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°</td>
<td>55°</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37°</td>
<td>50°</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35°</td>
<td>50°</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33°</td>
<td>45°</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32°</td>
<td>25°</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21°</td>
<td>10°</td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
به خشراهی از دو زون، زمین‌ساختی، رزی و گرگان - رست واقع شده است. فاصله کوه‌هایی متعددی در این منطقه عمل کرده است. قدمی ترین فاز کاتالاژی ی رو به کرده در این تراکم‌کننده‌های عمل رده و جدیدترین آن فاز آلیاژی ی رو به کرده موجب برپایی رشته کوه‌های بزرگ شده است. تحت تأثیر تناول‌های نمکی فاصله کوه‌هایی، چنین گروه‌هایی و شکستگی‌های قرار با روند عمومی شرگی - قصیر ایجاد شده و در مراحل کششی فاصله کوه‌هایی فعالیت ی‌های آدرین (درونی و بیننی) در ایندی و سیسمی عمل کرده که آثار آن در مناطق مختلف حوزه آبخیر دیده می‌شود.

قدمی ترین و احکامین سنگی، مربوط به سنگهای دیگری که پرکامپرسی‌های می‌باشد که پر سنگ زمین‌های این منطقه را تشکیل می‌دهد (۳).

روش‌هایی جایی در منطقه عبارتند از: رو به در آذر، نیمه و بانی روود، پلودر، پلودر تکه دهنده سازنده، سیال‌ها، چال‌کاک‌زد، چالباد، چال‌باد، چال‌باد.

در این سیلاب حوضه‌های آبی‌زی مورد مطالعه، بالاترین رقم دی این رسال به عنوان تغییر در مداکره‌هایی این نظر گرفته شد و با کمک برنامه‌کاری‌های TR دی این رسال به دو روش ۲۵/۷۵، ۱۸۰/۷۵ و ۲۵۰/۱۴۰ قابل بررسی و تحلیل فراوانی‌های سازنده می‌باشد. تحلیل توزیع آماری تابع گرگان، بررسی و تحلیل فراوانی‌های سازنده می‌باشد. تحلیل توزیع آماری تابع گرگان، اتصال و بیشتری از پارامترهای آماری میانگین، تغییر میزان و ضریب چولگی

\[T_c = \frac{\sum_{i=1}^{n} (Q_i - Q_r)^2}{n-m} \]

1- Zone 2- Katangan 3- Infra-cambrian 4- Alpine 5- Residual sum of squares 6- Kirpich
جدول ۳- تاپی دی کا دوره‌های گرگشت متفاوت (مترمکعب بر ثانیه) و سایر پارامترهای آماری حاصل از برنامه TR

پیشین تویزیئ	RSS	Q₁	Q₂	Q₃	Q₄	استگانه	روش‌ها	گاز	
سردار برود	۷۹/۸۸	۷۹/۸۸	۷۹/۸۸	۷۹/۸۸	۷۹/۸۸	۸۱/۲۴	۱۵/۰۴	۱۵/۰۴	۱۵/۰۴
لوجه کامل	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶
پلکان آب	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵
کلر آباد	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴
اسپرود	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵
سردار برود	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱
لوجه کامل	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲
پلکان آب	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵
کلر آباد	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴
اسپرود	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵
سردار برود	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱	۳۷/۲۱
لوجه کامل	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲	۹۶/۲۲
پلکان آب	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵	۱۹/۶۵
کلر آباد	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴	۹/۲۴
اسپرود	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵	۲/۵۵
تاپی دی	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶	۴۷/۶۶

Yahoo! دو دی‌های نیوز (مترمکعب بر ثانیه) و سایر پارامترهای آماری حاصل از برنامه کامپیوتری TR در جدول ۳ آورده است. این دو جدول ۲ از تحلیل فراوانی آمار دی‌های کاره‌گیری شده در استگانه‌های هیدرودیمتری (جدول ۱) در طول سال­های مختلف به دست آمده است. این تحلیل جدول ۳ در تخمین ضرایب روابط با دوره‌های گرگشت مختلف استفاده شده است. با توجه به این جدول مشاهده می‌گردد که در استگانه‌های صعودی نظیر توزیع کامل و لوجه

که: زمان تمرکز (ساعت) = Tc
طولانی‌ترین مسیر حرکت آب در حوضه (متر) = L
شیب متوسط آب‌های اصلی (متر بر متر) = S
منحنی‌های ضریب روابط با کمک نرم‌افزار سومرف و با داشتن سی‌تی چنگ طول و عرض جغرافیایی استگانه‌ها آبسنتی و ضریب روابط برای دوره‌های گرگشت مختلف در محدوده مطالعاتی طرح رسم گردید.

1- SURFER
تحلیل شدت بازتابگی
کم‌بود ایستگاه‌های باران‌گذار در منطقه باعث شده که در هر
ایستگاه باران‌گذار برای جند ایستگاه‌های اطراف آن
استفاده شود. البته این عمل با توجه به طول و عرض جغرافیایی
ایستگاه‌های باران‌گذار و آیستگاه‌های مصرف تبادل می‌شود. این امر در
تحلیل‌ها تأثیر معنی‌داری دارد، بنابراین از قبل اخلاق ارتفاع
دوري و توزیعی در هر دو جهت و نیز در دو ایستگاه
دکلار دارد.

مقادیر شدت بازتابگی با کمک برنامه کامپیوتری TR
مولود
تحلیل قرار گرفت و دوره‌های برجسته شدت بازتابگی مشخص
شد. به عنوان نمونه، نتایج شدت بازتابگی ایستگاه‌های باران
سنگین نتایج بالا و سایر در جدول 4 و 5 آورده شده است.
نتایج سایر ایستگاه‌ها در گزارش جمع‌بندی‌کننده علمی (5)
موجود است. با توجه به این امر، می‌توان گفته کرد که توزیع
گامبیل بر اثر نشانه‌های باران‌گذار برازش دارد. با افزایش دوره
برجسته، شدت بازتابگی افزایش می‌یابد. با افزایش طول مستقیم
باران‌گذار از شدت آن کاسته می‌شود. این نتایج با تحقیقات
سابقه مطابقت دارد (6، 11 و 12).

تحلیل کلی نتایج
با وجود این که اتفاقات برنگی روش استنادی (منطقه‌ای)
برای تخمین مقدار و شدت حریان سطحی شده است، اما این
روش به طور گسترده‌تر در سطح جهان در طراحی ابزار
هایی هیدرولوژیکی و مطالعات هیدرولوژیک استفاده می‌شود که علت
آن ساده و استنادی بودن روش استنادی می‌باشد.

اتخیاب مسائل ابزار برای تحقیق تجزیه‌ی تحلیل
نتایج بازتابی در جدول 6 ضرایب روان‌های

1 - Austin
جدول 2- شدت بارندگی ایستگاه بابل (میلیمتر بر ساعت) با دوره‌های برفگشت و مدت مختلف

<table>
<thead>
<tr>
<th>مدت (ساعت)</th>
<th>5/05</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوره برفگشت (سال)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/22</td>
<td>2/78</td>
<td>3/48</td>
<td>2/64</td>
<td>3/18</td>
<td>2/78</td>
</tr>
<tr>
<td>2/14</td>
<td>2/74</td>
<td>3/48</td>
<td>2/64</td>
<td>3/18</td>
<td>2/78</td>
</tr>
<tr>
<td>2/01</td>
<td>2/99</td>
<td>6/72</td>
<td>5/74</td>
<td>3/18</td>
<td>3/18</td>
</tr>
<tr>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
</tr>
<tr>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
</tr>
<tr>
<td>0/57</td>
<td>0/57</td>
<td>0/57</td>
<td>0/57</td>
<td>0/57</td>
<td>0/57</td>
</tr>
</tbody>
</table>

بهترین توزیع نرمال لگاریزنو گامیل نرمال گامیل گامیل

جدول 5- شدت بارندگی ایستگاه ساری (میلیمتر بر ساعت) با دوره‌های برفگشت و مدت مختلف

<table>
<thead>
<tr>
<th>مدت (ساعت)</th>
<th>5/05</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوره برفگشت (سال)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/12</td>
<td>2/04</td>
<td>3/18</td>
<td>3/18</td>
<td>3/18</td>
<td>3/18</td>
</tr>
<tr>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
</tr>
</tbody>
</table>

بهترین توزیع گامیل لگاریزنو گامیل گامیل

تخمین‌های نادرست از مقدار حداکثر دیب لحظه‌ای در بی خواهد داشت.

بررسی اعتماد تخمین دینی حداکثر لحظه‌ای مقدار حداکثر محاسباتی دیب حداکثر لحظه‌ای را می‌توان از فرمول زیر به دست آورد:

\[
E = \left(\frac{Q_0 - Q_c}{Q_0} \right) \times 100
\]

که:

معادل در آمریکا به‌نیه شده است. در این جدول، کمترین مقدار ضریب رواناب 21/009 گزارش شده، در حالی که در جدول 6 ضریب رواناب با دوره برفگشت 2 سال حداکثر 242/0 به دست آمده است. این نتایج عادی بیانگر این نکته می‌باشد که در هر منطقه باید ضریب رواناب خاص آن منطقه و با سطح احتمال مورد استخراج روش و مورد استفاده طراحان پروژه‌ها قرار گیرد.

استفاده از جدول چار و همکاران (12) و یا سایر محققین قطعاً خطاهایی را در برخواهد داشت که هزینه پرداخته را چندین برابر افزایش می‌دهد و با خطراتی را در مورد...
نمودار ۴- منحنی‌های هم ضربی روانه‌پای دورة بروگشت ۱۰۰ سال در خشکی از حوضه آبریز شمالی یک ایران
جدول 6 - ضرایب روابط با دوره‌های برجست گشته متغیرات برای زیر حضورهای مختلف منطقه طرح

<table>
<thead>
<tr>
<th>C(100)</th>
<th>C(50)</th>
<th>C(25)</th>
<th>C(10)</th>
<th>C(5)</th>
<th>C(2)</th>
<th>نام یکسانی</th>
<th>نام یکسانی</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/282</td>
<td>0/268</td>
<td>0/098</td>
<td>0/036</td>
<td>0/018</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0/271</td>
<td>0/265</td>
<td>0/091</td>
<td>0/034</td>
<td>0/017</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>0/286</td>
<td>0/270</td>
<td>0/087</td>
<td>0/033</td>
<td>0/016</td>
<td>0/008</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>0/281</td>
<td>0/265</td>
<td>0/090</td>
<td>0/034</td>
<td>0/017</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>0/279</td>
<td>0/263</td>
<td>0/087</td>
<td>0/032</td>
<td>0/016</td>
<td>0/008</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>0/281</td>
<td>0/265</td>
<td>0/088</td>
<td>0/034</td>
<td>0/017</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>0/279</td>
<td>0/263</td>
<td>0/085</td>
<td>0/031</td>
<td>0/016</td>
<td>0/007</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>0/277</td>
<td>0/261</td>
<td>0/081</td>
<td>0/028</td>
<td>0/014</td>
<td>0/007</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>0/275</td>
<td>0/260</td>
<td>0/077</td>
<td>0/025</td>
<td>0/012</td>
<td>0/006</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>0/273</td>
<td>0/257</td>
<td>0/072</td>
<td>0/022</td>
<td>0/011</td>
<td>0/005</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>0/274</td>
<td>0/259</td>
<td>0/069</td>
<td>0/020</td>
<td>0/010</td>
<td>0/005</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>0/274</td>
<td>0/259</td>
<td>0/069</td>
<td>0/020</td>
<td>0/010</td>
<td>0/005</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>0/274</td>
<td>0/259</td>
<td>0/069</td>
<td>0/020</td>
<td>0/010</td>
<td>0/005</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>0/274</td>
<td>0/259</td>
<td>0/069</td>
<td>0/020</td>
<td>0/010</td>
<td>0/005</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>0/274</td>
<td>0/259</td>
<td>0/069</td>
<td>0/020</td>
<td>0/010</td>
<td>0/005</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>0/274</td>
<td>0/259</td>
<td>0/069</td>
<td>0/020</td>
<td>0/010</td>
<td>0/005</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>0/274</td>
<td>0/259</td>
<td>0/069</td>
<td>0/020</td>
<td>0/010</td>
<td>0/005</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>0/274</td>
<td>0/259</td>
<td>0/069</td>
<td>0/020</td>
<td>0/010</td>
<td>0/005</td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

عکس جغرافیایی 26 درجه و 5 دقیقه قرار دارد. محاصرات
دبی این یکسانی در جدول 7 آورده شده است.

ب - استیگمه امامزاده (گرگان) بر روی رخدادن قرن آباد، با
مساحت حوضه 23 کیلومتر مربع، زمین همکار 51 دقیقه و
شب حوضه 19 درصد که در طول جغرافیایی 34 درجه و
40 دقیقه و عکس جغرافیایی 23 درجه و 48 دقیقه قرار دارد. تنایج
در جدول 8 آورده شده است.

ج - استیگمه شهرآباد بر روی رخدادن سیبادوک، با مساحت
حوضه 0/95 کیلومتر مربع، زمین همکار 21 دقیقه و
شب حوضه 16 درصد که در طول جغرافیایی 55 درجه و
4 دقیقه و

درباره حضورهای مختلف منطقه طرح

درصد خطا = E

= مقصد دبی مشاهده شده

= مقصد دبی محاسبه شده

دبی های سه استیگمه هیدرومتری در منطقه مورد مطالعه
در محاسبات ضرایب روابط مورد استفاده قرار گرفته بود از
روش استدلیلی - احتمالی و نیز روش چارو و همکاران (1)
محاسبه شد. سپس درصد خطا این دو روش با مقادیر دبی

مشاوه شده بند دست آمد. این سه استیگمه غیر از
الف - استیگمه تپه آباد بر روی رخدادن قرن آباد، با مساحت
حوضه 0/8 کیلومتر مربع، زمین همکار 15 ساعت و
شب حوضه 12 درصد که در طول جغرافیایی 54 درجه و
38 دقیقه و
جدول 7- مقایسه دی‌های حداکثر مشاهده شده و محاسبه شده با استفاده از ضرایب روش استدلالی-احتمالی و جدول چار و همکاران (14) در استپان‌نگاه تی آباد بر روی رودخانه جمیر آباد

<table>
<thead>
<tr>
<th>دوره ضرایب</th>
<th>دی‌های حداکثر مشاهده شده</th>
<th>محاسبه شده از روش</th>
<th>مکعب متر (متر ثانیه)</th>
<th>مکعب پر ثانیه</th>
<th>مکعب پر (متر ثانیه)</th>
<th>مکعب (متر ثانیه)</th>
<th>مکعب پر (متر ثانیه)</th>
<th>مکعب پر ثانیه</th>
<th>مکعب پر (متر ثانیه)</th>
<th>مکعب پر (متر ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>172/27</td>
<td>20/72</td>
<td>5/17</td>
<td>7/52</td>
<td>1/95</td>
<td>2/35</td>
<td>0/90</td>
<td>0/90</td>
<td>0/90</td>
<td>0/90</td>
<td>0/90</td>
</tr>
<tr>
<td>121/67</td>
<td>32/73</td>
<td>4/0/16</td>
<td>10/11</td>
<td>3/29</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
</tr>
<tr>
<td>173/34</td>
<td>62/71</td>
<td>31/24</td>
<td>14/34</td>
<td>3/41</td>
<td>0/110</td>
<td>0/110</td>
<td>0/110</td>
<td>0/110</td>
<td>0/110</td>
<td>0/110</td>
</tr>
<tr>
<td>22/56</td>
<td>94/68</td>
<td>76/33</td>
<td>30/53</td>
<td>0/55</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
</tr>
<tr>
<td>12/38</td>
<td>93/68</td>
<td>43/60</td>
<td>96/00</td>
<td>0/60</td>
<td>0/155</td>
<td>0/155</td>
<td>0/155</td>
<td>0/155</td>
<td>0/155</td>
<td>0/155</td>
</tr>
<tr>
<td>22/18</td>
<td>71/67</td>
<td>116/57</td>
<td>42/26</td>
<td>0/52</td>
<td>0/190</td>
<td>0/190</td>
<td>0/190</td>
<td>0/190</td>
<td>0/190</td>
<td>0/190</td>
</tr>
</tbody>
</table>

جدول 8- مقایسه دی‌های حداکثر مشاهده شده و محاسبه شده با استفاده از ضرایب روش استدلالی-احتمالی و جدول چار و همکاران (14) در استپان‌نگاه تی آباد

<table>
<thead>
<tr>
<th>دوره ضرایب</th>
<th>دی‌های حداکثر مشاهده شده</th>
<th>محاسبه شده</th>
<th>مکعب متر (متر ثانیه)</th>
<th>مکعب پر ثانیه</th>
<th>مکعب پر (متر ثانیه)</th>
<th>مکعب پر (متر ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949/49</td>
<td>18/11</td>
<td>5/17</td>
<td>0/59</td>
<td>0/35</td>
<td>0/100</td>
<td>0/100</td>
</tr>
<tr>
<td>1250/96</td>
<td>8/11/14</td>
<td>32/14</td>
<td>9/91</td>
<td>0/35</td>
<td>0/110</td>
<td>0/110</td>
</tr>
<tr>
<td>1931/69</td>
<td>24/23</td>
<td>13/51</td>
<td>2/33</td>
<td>0/56</td>
<td>0/117</td>
<td>0/117</td>
</tr>
<tr>
<td>1345/2</td>
<td>31/24</td>
<td>14/50</td>
<td>0/42</td>
<td>0/25</td>
<td>0/125</td>
<td>0/125</td>
</tr>
<tr>
<td>1938/5</td>
<td>24/23</td>
<td>26/31</td>
<td>8/42</td>
<td>0/28</td>
<td>0/154</td>
<td>0/154</td>
</tr>
<tr>
<td>807/64</td>
<td>185/56</td>
<td>101/52</td>
<td>35/92</td>
<td>9/64</td>
<td>0/184</td>
<td>0/184</td>
</tr>
</tbody>
</table>
جدول 9. مقایسه دیه‌های حداکثر مشاهده شده و محاسبه شده با استفاده از ضرایب روش استدلالی-احتمالی

دوره	ضریب	ضرایب	شدت دیه محاسبه	دیه درصدخاطئ	درصد	دیه محاسبه	دیه روش حد	دیه محاسبه	روش	شدت	دیه محاسبه	دیه روش حد												
20/58	24/77	35/94	65/118	94/71	3/72	30/87	58/96	0/14	0/21	0/43	0/24	0/98	0/32	0/06	0/16	0/43	0/24	0/98	0/32	0/06	0/16			
50/60	31/92	14/38	47/43	69/55	0/06	0/16	0/43	0/24	0/98	0/32	0/06	0/16	0/43	0/24	0/98	0/32	0/06	0/16	0/43	0/24	0/98	0/32	0/06	0/16
123/22	15/78	45/36	68/40	136/66	0/06	0/16	0/43	0/24	0/98	0/32	0/06	0/16	0/43	0/24	0/98	0/32	0/06	0/16	0/43	0/24	0/98	0/32	0/06	0/16

این استفاده به جدول 9 ارائه شده است.

پاتوجه به جدول 9 درصد خطای روش استدلالي-احتمالی نسبت به روش چاو در دیه گرفته و کاهش کوشک گوارشی روش استدلالی-احتمالی محاسبه شده دریافتی توجه می‌گردد. در صورتی که غربالگری برخوردار بود که در حوزه اپیمتریا نسبت به روش استدلالی-احتمالی و چاو درصد خطای زیادی دارند اما روش استدلالی-احتمالی، دیسک رابطه بین دو حسب 2/5 دربررسی می‌گردد. در صورتی که غربالگری برخوردار بود که در حوزه اپیمتریا نسبت به روش چاو است. بهره‌برداری از استفاده از ۶ روش در این مطالعه از حوزه آبی‌زر جنوب اصفهان نشان داد که ضرایب رواناب به دست آمده از روش منظم نسبت به ضرایب تجربی چاو و همکاران (۱۴) است. مقایسه کمتری برخوردارند.

نتیجه‌گیری

ممولال از طریقی اینشی و سازه‌های هیدرولوگیکی که برای جلوگیری از خسارات ناشی از سیل اجرا می‌گردد، از حداکثر دیب.
تخمین ضرایب روابط تعداد از حوضه‌های آب‌زای دریا مازندران

در دفتر طرح‌ها یا ایجاد استخراج به تأسیس نمود و
سپس تحقیقات هن شدند. بهنام فهیمیان کردند.

۲- این طرح برای دوره‌های برگشت ۲ تا ۱۰۰ سال انجام گردیده
که می‌توان در صورت این ذهن با این دوره‌های برگشت بیشتر
از ۱۰۰ سال هم انجام داد. برای این عمل به آمار طولانی مدت
اختیار است. با گذشته زمان و افزایش تعداد سالهای آماری،
دقت تخمین‌ها در ضرایب روابط ترسیمی افزایش می‌یابد.

حداکثر لحظاتی را بر آورد می‌کنند.

پیش‌نماهای با

۱- این تحقیق برای قسمتی از حوضه‌های آب‌زای و خاکه‌های ساحلی
شمال ایران (بخش شرقی و مرکزی حوضه‌های آب‌زای اصلی شماره
پک) انجام گرفته است. پیش‌نماهای میدانی که این کار برای کل
ایران به صورت یک طرح پژوهشی انجام گردد.

۲- با توجه به کمبود تعداد استخراج‌های باران‌گیری برای بالا

منابع مورد استفاده

۱- فشار، ع. ۱۳۶۹. هیدرولوژی مهندسی، چاپ دوم، مركز تحقیقات‌های مهندسی. ص ۴۵۰.
۲- ژاپن، ژاپن. ۱۳۶۹. هیدرولوژی مهندسی، چاپ اول، آستان قدس.
۳- تعبیر، م. ۱۳۷۰. گزارش تابع مطالب منابع آب و باران‌های مازندران، ج ۱، قم.
۴- تعبیر، م. ۱۳۷۲. گزارش تابع مطالب منابع آب و باران‌های چهارم، اصفهان.
۵- جمکرانی، ع. ۱۳۷۵. تخمین ضرایب روابط در حوضه‌های آب‌زای دریای خزر. پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر.
۶- رستم‌زاده، د. ۱۳۷۵. مهندسی منابع آب. چاپ اول، وزارت فرهنگ و ارشاد اسلامی، ص ۲۹۶.
۷- رستم‌زاده، د. ۱۳۷۴. انرژی الکتریکی برای حوضه جنوب اصفهان. پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر.
۸- رستم‌زاده، د. ۱۳۷۴. انرژی الکتریکی برای حوضه جنوب اصفهان. پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر.
۹- رستم‌زاده، د. ۱۳۷۴. انرژی الکتریکی برای حوضه جنوب اصفهان. پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر.
۱۰- رستم‌زاده، د. ۱۳۷۴. انرژی الکتریکی برای حوضه جنوب اصفهان. پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر.
۱۱- رستم‌زاده، د. ۱۳۷۴. انرژی الکتریکی برای حوضه جنوب اصفهان. پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر.
۱۲- رستم‌زاده، د. ۱۳۷۴. انرژی الکتریکی برای حوضه جنوب اصفهان. پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر.
۱۳- رستم‌زاده، د. ۱۳۷۴. انرژی الکتریکی برای حوضه جنوب اصفهان. پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر.