وضعیت کادمیم در زمین‌های تحت کشت نیشکر در خوزستان

عیدالرحمن برزگر و احمد کوچکزاده

چکیده
کاربرد کادمیم در زه‌کشی نیشکر، شیمیایی بی‌گهی و لجن فاضلاب از جمله موادی است که باعث تجمیع کادمیم در خاک و گیاه می‌گردد. در استان خوزستان و در اراضی زیر کشت نیشکر، میزان کورد مصرفی شامل ۴۲۰ کیلوگرم در آمونیوم فسفات و همین میزان اوره می‌باشد. از جهات کشت و صنعت فله‌تی، کارون، شیمیایی و غزلی، با سایر کشت‌های ۲۰۰۲ و ۱۳۷۳ تعداد ۱۲۱۴ نمونه خاک از سطح صفر تا ۳۰ سانتی‌متری برش و نواهد گردید. نمونه‌های خاک از این استراحت‌ها به تلاشی از کادر چوبی ظرفیت و به فاصله ۲۵ کیلومتری شده به خاک اوره و گیاهی کشت نشده و پژوهش به فاصله ۲۵۰ متر برداشت و غلظت کادمیم، کلر، قابلیت هنری الکتریکی، درصد رس و مواد آلی انتزاعی گردید.

نتایج به دست‌آمده نشان می‌دهد که در دامنه کیلوگرم در کیلوگرام کادمیم در خاک افزایش می‌یابد. میزان این عنصر در جریان حیدرالیک و در کنتلر (کشت نشده) حداقل می‌باشد. همچنین، نتایج نشان داد که غلظت این عنصر در خاک منتقلته تا ۳/۴ میلی‌گرم در کیلوگرام و در کارون ۵/۲ میلی‌گرم در کیلوگرام کاهش داشته است.

واژه‌های کلیدی: رس، ماده آلی، قابلیت هنری الکتریکی، کودهای نسفه

مقدمه
کادمیم یک از فلزات سنتی است که باعث آلودگی منابع آب و خاک می‌شود. افزایش این عنصر در خاک و ورود آن به زنگرهای غذایی انسان باعث بروز اختلالات به لوله‌ها موجب می‌گردد و تورم غشاء مخاطی بینی، یک نوع بیماری مزمن ریوی، تخیله مواد معنی‌دار از اسکلت‌بان و شکم‌دهی است. کادمیم در خاک باعث بهره‌برداری کودهای فسفره (۱۲ و ۱۳)، بقا گیاهی و سنگهای مادره‌ای می‌گردد.

۱. دانش‌یار جاک‌دنوه، دانشگاه کشاورزی، دانشگاه شهید چمران اهواز
۲. کارشناس ارشد جاک‌دنوه، مجمع عالی آموزشی و پژوهشی کشاورزی رامین، دانشگاه شهید چمران اهواز
هدف این پژوهش برسی مرزی میزان کادمیم قابل جذب در خاک‌های تحت کشت نیشکر، با سابقه کشت مصرف‌گران، و خاک‌های کشت شده در حالی، هم‌زمان روابط بین کادمیم قابل جذب با سایر ویژگی‌های خاک، از جمله درصد رس، مواد آلی و غیره بوده است. نتایج به دست آمده از این پژوهش می‌تواند راهکارهای مفیدی برای کاهش آلودگی زیست محیطی به برنامه‌ریزی ایراده دهد.

مواد و روش‌ها

به منظور مقایسه میزان کادمیم در خاک‌های تحت کشت نیشکر و اراضی بکر هم‌جز، چهار منطقه با سابقه کشت متفاوت به شرح زیر انتخاب گردید:
- کشت و صنعت غذایی با یک سال سابقه کشت نیشکر
- کشت و صنعت شعیبیه با یک سال سابقه کشت نیشکر
- کشت و صنعت کاروان با ۵۰ سال سابقه کشت نیشکر
- کشت و صنعت هفت ها با ۴۶ سال سابقه کشت نیشکر

نمونه برداری از خاک در بهمن ماه سال ۱۳۸۵ (به مدت یک ماه)، به طور کاملاً تصادفی در تحقیق ۱۰۰ متری از همدیگر، به تفکیک از کاف جوی، روی پهنه اراضی تحت کشت، و خاک کشت نشده مجاور (کنترل) از عمل صفر ۳۰ سانتیمتری صورت گرفت. لازم به توضیح است که هیچ گونه کشت در اراضی کنترل صورت نمی‌گیرد، و نباید نیز کنسانتراتور در دیدگاه بی‌ارزش و مجموعاً ۳۰، ۳۵، ۴۰ و ۴۵ نمونه‌های خاک به ترتیب از کشت و صنعت‌های غذایی، شعیبیه، کاروان و هفت نیشکر برداشت گردید. خاک‌ها پس از انتقال به آزمایشگاه، در هوا آمیخته شده و در هوا به مرحله سایه‌گیری، و از لحیچه به میلهیه و در ۶ سانتی‌متری، کشت و صنعت هفت ها، از اراضی زیر کشت، و خاک کشت نشده مجاور (کنترل) در بزرگ باغ، به ابعاد ۱۰۰×۱۰۰×۵۰ سانتی‌متری و در دو متری به دامنه تغییر در نسبت‌های زیست محیطی و آلودگی‌های ناشی از آن در آب، خاک و گیاه حاصل به‌همراه است.

در ایران تاکنون پژوهشی در مورد میزان کادمیم خاک در ارتباط با ویژگی‌های دیگر خاک، در زمین‌های که مقادیر زیادی کود فسفر دریافت می‌کنند، و نیز جذب عناصر سنگین موجود در کودها به خصوص کادمیم توسط گیاهان، صورت نگرفته است.

میزان رس خاک با روش هیدرومت (۸)، شوری و اسیدیت‌ه
وضعیت کادمیم در زمین‌های تحت کشت یافک در خوزستان

گل اشبع با استفاده از روش محافظه‌سوزی شوری آمریکا (19)، کلر خاک به روش کرومات پنستیم و نتایج قنوت در عصاره اشبع خاک، کربن آلی به واسطه اکسایس با بیکرومات پنستیم و اسیدسولفوریک و سپس تیتر کردن بیکرومات پنستیم باقیمانده با فرآوری سلفات سیتروئید و کربن کادمیم خاک و کود فسفر به روش عصاره‌گیری با DTPA-TEA با شد (3). غلظت کادمیم موجه در عصاره توسط دستگاه جذب اتمی 1 UNICAM 939 و با درباره دقت کادمیم 0.02 میکروگرم در KBr گرم‌انداز گردید. غلظت کادمیم در عصاره DTPA میلی‌گرم در KBr گرم‌انداز گردید. نتایج به دست آمده توسط پرداخت کامپیوتر SAS (21) مورد بررسی و تجزیه و تحلیل قرار گرفت.

نتایج
برخی از ویژگی‌های خاک در ایستگاه‌های مختلف در جدول 1 نشان داده شده است. نتایج نشان می‌دهد که قابلیت هدایت الکتریکی خاک در شعبه‌های هفت تا کارون از خیلی زیاد در اراضی کنترل، تا برون شوری در اراضی آتش‌نشانی شده تجربه شده که این کیفیت مناسبی به دلیل بالا بودن سطح سه‌گانه آب‌زیروینی، شوری از خیلی زیاد در کنترل، تا کم در اراضی تحقیق کرده است. به‌همان‌ویژه خاک ایستگاه‌های مختلف از 7/2 تا 8/7 متوسط بوده است. میزان رس در شعبه‌های هفت به‌زیادی از هفت تا کارون بوده و حداکثر کربن آلی در ایستگاه‌های کارون به 1/4 میلی‌گرم در KBr گرم‌انداز گردید. سبب افزایش بودن شوری در خوزستان، روند تغییرات میزان کلر خاک نیز همانند شوری خاک می‌باشد.

مقایسه میانگین غلظت کادمیم قابل چسب در اراضی کشت شده و کشت نشده هم‌جوار (شکل 3) نشان می‌دهد که غلظت کادمیم در کشت و صريف‌های مختلف متفاوت است، ولی به رغم افزایش کود فسفر در سالانه متوسط شکست نشکنی، مقدار کادمیم قابل چسب خاک افزایش یافته است. هنگام بسته‌گیری 1. Atomic absorption

57
جدول 1. نتایج حداکثر، حداقل و میانگین برخی ویژگی‌های خاک در استگاه‌های مختلف

<table>
<thead>
<tr>
<th>استگاه‌های مطالعاتی</th>
<th>حداکثر حداکثر</th>
<th>حداقل حداکثر</th>
<th>میانگین حداکثر</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزنی عضلانی (dS/m)</td>
<td>۲/۳ /۹ /۶ /۲</td>
<td>۱/۳ /۹ /۶ /۲</td>
<td>۱/۳ /۹ /۶ /۲</td>
</tr>
<tr>
<td>ب - حاشی</td>
<td>۹ /۴ /۹ /۶ /۲</td>
<td>۹ /۴ /۹ /۶ /۲</td>
<td>۹ /۴ /۹ /۶ /۲</td>
</tr>
<tr>
<td>رس (%)</td>
<td>۹ /۴ /۹ /۶ /۲</td>
<td>۹ /۴ /۹ /۶ /۲</td>
<td>۹ /۴ /۹ /۶ /۲</td>
</tr>
<tr>
<td>کربن آلی (%)</td>
<td>۲ /۴ /۹ /۶ /۲</td>
<td>۲ /۴ /۹ /۶ /۲</td>
<td>۲ /۴ /۹ /۶ /۲</td>
</tr>
<tr>
<td>(mg/l)</td>
<td>۱۸۸ /۶ /۲</td>
<td>۱۸۸ /۶ /۲</td>
<td>۱۸۸ /۶ /۲</td>
</tr>
<tr>
<td>کادمیم قابل جذب (mg/kg)</td>
<td>۱۵۶ /۶ /۲</td>
<td>۱۵۶ /۶ /۲</td>
<td>۱۵۶ /۶ /۲</td>
</tr>
</tbody>
</table>

جدول 2. نتایج حداکثر، حداقل و میانگین برخی ویژگی‌های خاک در محل‌های مختلف نمونه‌برداری

<table>
<thead>
<tr>
<th>محل‌های نمونه‌برداری</th>
<th>حداکثر حداکثر</th>
<th>حداقل حداکثر</th>
<th>میانگین حداکثر</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزنی عضلانی (dS/m)</td>
<td>۲/۳ /۹ /۶ /۲</td>
<td>۱/۳ /۹ /۶ /۲</td>
<td>۱/۳ /۹ /۶ /۲</td>
</tr>
<tr>
<td>ب - حاشی</td>
<td>۹ /۴ /۹ /۶ /۲</td>
<td>۹ /۴ /۹ /۶ /۲</td>
<td>۹ /۴ /۹ /۶ /۲</td>
</tr>
<tr>
<td>رس (%)</td>
<td>۹ /۴ /۹ /۶ /۲</td>
<td>۹ /۴ /۹ /۶ /۲</td>
<td>۹ /۴ /۹ /۶ /۲</td>
</tr>
<tr>
<td>کربن آلی (%)</td>
<td>۲ /۴ /۹ /۶ /۲</td>
<td>۲ /۴ /۹ /۶ /۲</td>
<td>۲ /۴ /۹ /۶ /۲</td>
</tr>
<tr>
<td>(mg/l)</td>
<td>۱۸۸ /۶ /۲</td>
<td>۱۸۸ /۶ /۲</td>
<td>۱۸۸ /۶ /۲</td>
</tr>
<tr>
<td>کادمیم قابل جذب (mg/kg)</td>
<td>۱۵۶ /۶ /۲</td>
<td>۱۵۶ /۶ /۲</td>
<td>۱۵۶ /۶ /۲</td>
</tr>
</tbody>
</table>

مorton و همکاران (13 و 14) با برگرداندن بقاهاگی گیاهان درنگه و گندم به زمینی که بیش از ۱۵ سال کر سایر فسفات حاصل دریافت و کربن اضافه شده و با اکسید نیترات نیترات کربن آلی به شکل وارد نشود، با این حال نتایج نشان می‌دهد که به طور کلی غلظت کادمیم در اراضی کنترل بیش از اراضی تحت کشت است. علم این پایه‌ها می‌تواند جذب کادمیم نشود که اراضی تحت کشت باشد. همچنین نتایج تجزیه‌بندی نشان می‌دهد که غلظت این عنصر در این خاک‌ها نیز نازی است (شکل 1). مقایسه میزان کادمیم در اراضی تحت کشت نیکرک و کنترل در کشت و محصولات به نشان می‌دهد که کادمیم به میزان ۲۳/۵ میلی‌گرم در کیلوگرم کاشش پاته است. از این جهت در
شکل ۱. مقایسه مقداری مقادیر قابلیت هدایت الکتریکی کلر و کادمیمقابل جذب در اراضی کنترل، جوی و پشت. در این هیستوگرام ستون‌هایی که دارای حروف X و Y بوده از نظر نور سیاه می‌باشند.
شکل ۱: رابطه بین غلظت کادمیم قابل جذب و درصد رس خاک در تمام ایستگاه‌های مطالعاتی

شکل ۲: کادمیم قابل جذب در اراضی کشت شده و کشت نشده در ایستگاه‌های مختلف مورد مطالعه.
جمله ۳: مقایسه میانگین‌های غلظت کادمیم در استفاده‌های مطالعاتی (به روش دانکن)

<table>
<thead>
<tr>
<th>محیط</th>
<th>شیمیایی غلظت کادمیم (mg/kg)</th>
<th>استفاده‌های مطالعاتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارون</td>
<td>0/10</td>
<td>A</td>
</tr>
<tr>
<td>شیپری</td>
<td>0/06</td>
<td>A</td>
</tr>
<tr>
<td>غزالی</td>
<td>0/15</td>
<td>A</td>
</tr>
</tbody>
</table>

سطح احتمال ۰/۰۵

میانگین‌های که خروش پکس‌داندار از نظر اماری فاقد تفاوت معنی‌دار هستند.

شکل ۲: تغییرات بعضی از ویژگی‌های خاک‌های تحت کشت نیشکر و اراضی گرمسیر در اعماق مختلف
الف) تغییرات بافت اردهای سطحی
ب) تغییرات بافت اردهای زیر سطحی
ج) تغییرات بافت اردهای سطحی در دمای بالا
و) تغییرات بافت اردهای زیر سطحی در دمای بالا
نتایج به دست آمده از یک پژوهش نشان می‌دهد که احتمالاً کادمیم خطری برای آلودگی خاک در سال‌های آینده در هفت شرکت کشت و صنعت جدیدانوادگان ندارد.

سیاسگزاری
از آن‌ها دکتر ایبراهیم پذیران سرزنش موسسه تحقیقات فنی وزارت کشاورزی و خانم دکتر محمودی دانشگاه دانشگاه تهران به خاطر بی‌شناسی و نظرات ارزندی، آقایان مهندس فیاضی و

منابع مورد استفاده

1. سالاردویش، ع. 1373. نگهداری گیاه، انتشارات دانشگاه تهران.