مقایسه روش‌های مختلف جداسازی بذر طالبی و تأثیر آنها بر ویژگی‌های جوانه‌زنی

کریم عرب سلمانی، امیرهوشنگ جلالی و پیمان جعفری

(تاریخ دریافت: 1390/8/21؛ تاریخ پذیرش: 1391/1/14)

چکیده

به منظور بررسی روش‌های مختلف جداسازی بذر طالبی (Cucumis melo L. var. reticulatus) از بالاترین گوشته اطراف آن (پلاستیک) و همچنین تأثیر این روش‌ها بر ویژگی‌های مختلف جوانه‌زنی بذر، یک پژوهش در سال 1387 در مرکز تحقیقات کشاورزی و منابع طبیعی ورامین انجام شد. در این پژوهش، یک با استفاده از طرح بلوک‌های کامل تصادفی به سه تکرار صورت پذیرفت، از سه روش جداسازی بذر همچون تخمیر (به مدت 44 و 48 ساعت)، اسید سولفوریک (به مدت 4، 12، 24 و 48 ساعت) و اسید کلریدریک (به مدت 0/1، 2، 4 و 8/8 ساعت) استفاده گردید. نتایج نشان داد که تیمار اسید سولفوریک 98% ظرف مدت 5 دقیقه فراپید جداسازی بذر را به خوبی انجام داد و با داشتن سرعت جوانه‌زنی 85/0% بذر جوانه زده در روز از تیمارهای برتر آزمایش محسوب گردید. در تیمار اسید کلریدریک، به ویژه در غلظت‌های زیاد (80 و 98 درصد)، اگرچه جداسازی بذر با سرعت قابل قبولی انجام شد و از تیمارهای مثبت نیز بر سرعت و میزان جوانه‌زنی بذر داشت، اما آزمون هدایت الکتریکی محول بذر نشان داد که این تیمارها باعث افزایش نتیجه مشترکی شده و همچنین کاهش میانگین طول ریشه و وزن جفت به دلیل خواهند داشت. تیمارهای تخمیر بجی طولانی کردن مدت زمان لازم برای جداسازی بذر (44 و 48 ساعت)، از مناسب تر بوده و بزرگ‌ترین تفاوت در زمان کمتر و هم به دلیل این میثکه بر ویژگی‌های جوانه‌زنی تیمارهای بزرگ‌تری داشت.

واژه‌های کلیدی: اسید سولفوریک، اسید کلریدریک، تخمیر، سرعت جوانه‌زنی

1. مرکز تحقیقات کشاورزی و منابع طبیعی ورامین
2. مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان

peimanjafari@yahoo.com

* مسئول مکاتبات: پست الکترونیکی: *
مقدمه
با توجه به سطح زیر کشت قابل توجه حاصله در کشور (35 هزار هکتار) (31)، تأمین بذر مورد نیاز برای کشت این محصول از اهمیت زیادی برخوردار است. از آنجایی که صنعت و فناوری تولید بذر نسیم و صوفی در داخل چندین کشور کناره گیری ندارد، لذا هنوز روشهای سنی یا بذرکشی استفاده می‌شود. این موضوع ضمن افزایش هزینه تولید، باعث می‌شود تا فراپرد استخراج بذر از میوه به کننده صورت گیرد. از سوی دیگر، تخمیر ناهمگن محلول بذر و متعاقباً تستشودی ناقص بذرها منجر به کاهش قوه نامه و در نهایت کاهش شدید کیفیت بذر تولیدی می‌گردد. این موضوع باعث می‌شود میزان بذر محصول در هر هکتار به دو برابر میزان بذر مورد نیاز بررسد. تستشویی، بذری با آب جداسازی آن از قسمت‌های گوشته میوه نیز تأثیرات متافوق و حیثی متغیر ویژگی‌های جوانزی‌نی بذر داشته است (32). شرایطی که می‌تواند بر ویژگی‌های جوانزی‌نی بذر تأثیر گذار باشد از یافتن، همکاری حاکم بر گیاه مادری در طول هموار تر (16)، موقعیت بذر روی گیاه مادری و میوه (20)، دما، طول روز و طول موج دریافتی در حین تکامل بذر (15) و کمبود عناصر غذایی (13) و... ب. عوامل مربوط به فراپرد استخراج بذر از میوه و تأثیر تیمارهای بعدی بر برداده بذر.

فاوانی خشکشند بذر در پیکر از میوه‌ها پیش گرفته
لایه بیرونی جوانزی محصول می‌شود (17). اما برکه‌های خواندان کدونیان عمداً در یک محیط آبی مراحل توسعه خود را لایه کدونی و نیاز به فراپرد خشکشند بذر درون میوه برای ورود به فراپرد جوانزی‌نی را ندارند. معمولاً و همچنین ستایش جوانزی‌نی بذر درون میوه خواندان کدونیان مورد توجه قرار گرفته است. می‌توان ایجاد فشار اسپری به راحتی و جلوگیری از جوانزی‌نی بذر درون میوه خواندان کدونیان مورد توجه قرار گرفته است. برای ایجاد فشار اسپری به راحتی و جلوگیری از جوانزی‌نی بذر درون میوه خواندان کدونیان مورد عبور می‌کند. این امر به مدت 3 گیاه مادری، تخمیر ناهمگن محلول بذر و به شکلی ناقص بذرها می‌باشد.

2
مواد و روش‌ها

به منظور ارزیابی تأثیر روش‌های مختلف جداسازی پذیر بر کیفیت بذر طالبی، از روش‌های مختلفی در سال 1387 در مرکز تحقیقات صخورزی و منابع طبیعی ورامین انجام شد. در این آزمایش، ابتدا موهایی که در محله رسیدگی کامل قرار داشتند از بونه جدا شده و به سیله یک بذر طولی، بذر به همراه گوشت اطراف آن (بلاستیک) از میوه خارج شد. پس از بذرگیری، تیمارهای زیر، به صورت طراحی آماری بلوک‌های کامل تصادفی و در سه تکرار، روی آنها اعمال شد:

1. تیمار تخمیر: در این روش بذرگیری که با استفاده از چهار میوه برای تیمار انجماد شد. بذر همراه گوشت آن در ظروف پلاستیکی به فاصله 20 سانتی‌متر و حجم 3 لیتر ریخته شد به طوری که 9/5% از حجم آنها به‌گردید. گروه‌های حمایتی با محتوای آنها در محیطی با دمای 27 درجه سلسیوس قرار داده شدند (22). در فاصله زمانی 4 و 28 ساعت به منظور تخمیر پکنیخت، مخلوط بذرها زیر و رو گردید. در برخی از پژوهش‌ها زمان‌های تخمیر بیش از 28 ساعت باعث نیروگاه بزرگ‌تر گردیده است. (22). بعد از تخمیر، با استفاده از نرم‌افزار تخمیر در فاصله زمانی تعیین شده، نسبت به شستشو آنها به وسیله آب چکی جدا سازی گوشت تخمیر شده از بذر اقدام گردید. بعد از شستشو، بذرها تحت شرایط طبیعی و در معرض آب و هویه در دمای 27 درجه سلسیوس و در سه‌ستهی نیروگاه گردیده است. (USA Mini Gac Plus – Dickey John، استفاده گردید.

2. تیمار استفاده از اسید کلرید‌هیدروکسی‌کربناتی: ابتدا محلول‌های 0/5، 1، 2، 3 و 4 میلی‌متری از اسید کلرید‌هیدروکسی‌کربناتی در کمترین مقدار ممکن به بذرها همراه گوشت آنها مطابق آنچه که در مرحله اول توصیف داده شد، از میوه خارج و در ظروف پلاستیکی

آزمون‌های کیفیت بذر عبارت بودند از:

1. آزمون هدایت الکتریکی (EC) برای انجماد آزمونی، از همان تیمار در دمای 05 تا یاد به‌نی، و پس از توزیع در داخل بزرگ‌های که حاوی 250 تا یک لیتر آب مจำبای دمای 20 درجه سلسیوس بود قرار داده و سپس به‌سهرای به مدت 24 ساعت در داخل اکو سامپل‌های 20 درجه سانتی‌گراد گردیده‌اند. در پایان آزمایش محلول EC توسط هدایت سنج (Model Twin Cod B-173، Australia) اندازه‌گیری گردید.

آزمون جوانی‌سازی استاندارد بذر و آزمون گیاه‌های عادی و غیر عادی

گیاه‌هایی که دارای نشانه‌های مرزی مربوط به کیفیت گیاه‌های طبیعی (منجمد ریشه‌ه، به شکل یا به طور متفاوت) بودند، به عنوان گیاه‌های عادی در نظر گرفته شدند. برای انجماد آزمونی از کاغذ‌های صافی به‌ساله اینجا گرفت (Whatman No. 1) و در لایه‌ای از مجسمه صافی به‌ساله و تعداد 25 بذر که به طور تصادفی از همان تیمار براشنت شده بود به فاصله 2 میلی‌متر می‌گرفتند.
جدول 1. تجزیه و ارتباط صفات جوانه‌زی بذر طالبی تحت تأثیر تیمارهای مختلف جداسازی بذر

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نتیجه‌گیری</th>
<th>تعداد جوانه‌زی</th>
<th>نرخ جوانه‌زی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>تیمار سطح 1</td>
<td>12/3</td>
<td>0/87</td>
</tr>
<tr>
<td>2</td>
<td>تیمار سطح 2</td>
<td>12/3</td>
<td>0/90</td>
</tr>
<tr>
<td>3</td>
<td>تیمار سطح 3</td>
<td>12/3</td>
<td>0/92</td>
</tr>
<tr>
<td>4</td>
<td>تیمار سطح 4</td>
<td>12/3</td>
<td>0/95</td>
</tr>
</tbody>
</table>

محاسبه و به عنوان جوانه‌زی در همان روز با داده‌گر گردید. شمارش تعداد بذرها جوانه زده تا روز هشتم ادامه کرد. سرعت جوانه‌زی (معکس میانگین مدت جوانه‌زی) با استفاده از فرمول زیر محاسبه شد (12):

$$ G_V = \frac{\sum n_g \times d_j}{\sum n_g} $$

که $G_V$ ضریب تغییرات (%)، $n_g$ تعداد بذرها جوانه‌زی، $d_j$ مدت بذرها جوانه‌زی است.

نتاژ و بحث

نتایج حاصل از تجزیه و ارتباط صفات در جدول 1 نشان داد شده است. بر اساس اطلاعات موجود در جدول 1، بهترین گونه مختلف بذرگری شامل مدت جوانه‌زی بذر، سرعت جوانه‌زی بذر و قابلیت هیداتوزکالکی محلول بذر به معنی داری در سطح احتمال 1% تحت تأثیر تیمارهای بذر گرفته شده سرگرمی است. در حالی که تأثیر تیمارها بر صفات درصد جوانه‌زی، طول ساقی‌های جوانه‌زی و طول پوش‌چه طرح ریشه به انتخاب 40 سانتی‌متر به عنوان معیاری برای جوانه‌زی بذرها در نظر گرفته شد. تعادلات بذرها جوانه‌زی در هر روز از کسر تعداد بذرها جوانه‌زی به روزهای قبل

آزمون سرعت جوانه‌زی

این آزمون در ادامه آزمون جوانه‌زی استاندارد، برای هر نمونه و در سه تکرار انجام گردید. بهترین کالی نمونه‌ها به طور مربوط به 24 ساعت نشان از نظر جوانه‌زی مورد ارزیابی قرار گرفته. ظهور ریشه‌چه به انتخاب 20 سانتی‌متر به عنوان معیاری برای جوانه‌زی بذرها در نظر گرفته شد. تعادلات بذرها جوانه‌زی در هر روز از کسر تعداد بذرها جوانه‌زی به روزهای قبل

2
Seed priming — به عنوان یکی از روش‌های جدید برای کاهش استرس هیدرولیک و کاهش استرس گازی، به خصوص در صورت عدم امکان تمایل سایر روش‌های بهبودی‌گذاری ...
جدول 2. مقایسه میانگین‌های مدت زمان جوانه‌زنی، سرعت جوانه‌زنی، طول ریشه‌چه و مدت زمان پذیرازی، تحت تأثیر تیمارهای مختلف جداسازی بذر

<table>
<thead>
<tr>
<th>درصد جوانه‌زنی</th>
<th>مدت زمان پذیرازی (ساعت)</th>
<th>سرعت جوانه‌زنی (سانتی‌متر)</th>
<th>طول ریشه‌چه (سانتی‌متر)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>93/500^a</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/88bc</td>
<td>اسید سولفوریک 98%</td>
</tr>
<tr>
<td>92/089^a</td>
<td>0/05d</td>
<td>9/98cd</td>
<td>5/98cd</td>
<td>اسید سولفوریک 94%</td>
</tr>
<tr>
<td>91/783^a</td>
<td>0/073d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید سولفوریک 89%</td>
</tr>
<tr>
<td>91/111^a</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید سولفوریک 84%</td>
</tr>
<tr>
<td>92/133^a</td>
<td>0/01d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید سولفوریک 79%</td>
</tr>
<tr>
<td>89/878^b</td>
<td>0/35b</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید سولفوریک 74%</td>
</tr>
<tr>
<td>90/015^a</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید سولفوریک 69%</td>
</tr>
<tr>
<td>92/549^c</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید کارپریدیک 98%</td>
</tr>
<tr>
<td>91/057^d</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید کارپریدیک 94%</td>
</tr>
<tr>
<td>77/686^b</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید کارپریدیک 89%</td>
</tr>
<tr>
<td>75/783^b</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید کارپریدیک 84%</td>
</tr>
<tr>
<td>74/734^b</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید کارپریدیک 79%</td>
</tr>
<tr>
<td>90/021^a</td>
<td>0/083d</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید کارپریدیک 74%</td>
</tr>
<tr>
<td>91/352^b</td>
<td>0/23b</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید کارپریدیک 69%</td>
</tr>
<tr>
<td>95/354^a</td>
<td>0/23b</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>اسید کارپریدیک 64%</td>
</tr>
<tr>
<td>96/114^a</td>
<td>0/28^a</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>تخمیر 24 ساعت</td>
</tr>
<tr>
<td>97/213^a</td>
<td>0/50^a</td>
<td>9/84bc</td>
<td>5/98cd</td>
<td>تخمیر 28 ساعت</td>
</tr>
</tbody>
</table>

*منتشر از مدت زمان پذیرازی، زمان لازم برای جداسازی بذر از سایر باغ‌های معمول آن از طریق تیمارهاهای مورد مطالعه است.

اعدا دارای حروف مشترک در هر ستون از نظر آماری تفاوت معنی داری ندارند (انکنگ 5%).
نتیجه‌گیری
نتایج آن پژوهش نشان داد که برای سرعت بخشیدن به فرایند جداسازی بذر طالبی از قسمت‌های گوشته آن (پاسیفول) می‌توان از تیمارهای اسیدی استفاده نمود. تیمار اسید سولفوریک 98، طرف مدت 5 دقیقه توانست فرایند جداسازی بذر را به خوبی انجام دهد. عناوین به‌این ایین تیمار تأثیرات مثبت بر سرعت گوانه‌گری و توسعه ساک‌شی به‌یاداده‌ای 38 ساعت تخمیر تفاوت معنی‌داری داشتند. اما طول ریشه به طور معنی‌داری کمتر بود. در پژوهش ماین‌دزا و همکاران (19) استفاده از تیمار اسید سولفوریک 98 در مدت 5 دقیقه و همچنین تخمیر (با مخلوط سوکرآز 10٪ روی بذر) اثر افزایش معنی‌دار (Passiflora edulis) بذرها گل ساقیتی (بذرها) نیز جداکر طول و وزن خشک ریشه به تیمار تخمیر به دست آمد. به طور مشابه در پژوهش ترون و پارس (22) تأثیر تیمار تخمیر بر چهار‌بیه خیار، طالبی، رندهوان و کدو بررسی گردید. بجز بذرها نارس کدو، تأثیر تیمارهای تخمیر بر وزن‌گاهی جوانه‌زی نشان داد و ریشه‌های مثبت بود.

نتایج حاصل از تأثیر تیمارهای مختلف جداسازی بذر بر هدایت الکتریکی محلول بذر در شکل 1 نشان داد که تیمار بذر با اسید کاردیین را هدایت الکتریکی محلول بذر به طور چشمگیری و معنی‌دار نسبت به سایر تیمارها افزایش داد. مقدار هدایت الکتریکی محلول بذر در این تیمار نسبت به بذر بیشتر از تیمار اسید سولفوریک 98٪ است، حتی تیمارهای اسید کاردیین با غلظت‌های 18 و 9/5 درصد نیز هدایت الکتریکی محلول بذر بیشتری نسبت به تیمار اسید سولفوریک


