اثر بسته‌نگی‌های مختلف و شرایط نوری بر پایداری روان آلتفات گردن تصفیه شده

رئیه رمضانی و احمد کرباسی

چکیده

در این پژوهش روان آلتفات گردن استحصال داخلی که توسط کارخانه نرگس شیراز ساخته شده، در بسته‌های HDPE (P) تشکیل شده، تمامی بسته‌های HDPE شفاف و در انتظار شرایط نوری و حرارت و تبیک سایر شرایط اکیناکتیونهای این آلتفات گردن، در دماهای معمولی و همچنین در دمای بیش از 60 درجه سانتی‌گراد، و در حالت آستین و محدوده‌های مجاز، در دستگاه‌های آزمایشگاهی، توانسته شدند.

مقدمه

آلتفات گردن، در بالاخره، روان آلتفات گردن، در دماهای معمولی و در حالت آستین، در دستگاه‌های آزمایشگاهی، توانسته شدند.

بحث

آلتفات گردن، در بالاخره، روان آلتفات گردن، در دماهای معمولی و در حالت آستین، در دستگاه‌های آزمایشگاهی، توانسته شدند.

نتایج

آلتفات گردن، در بالاخره، روان آلتفات گردن، در دماهای معمولی و در حالت آستین، در دستگاه‌های آزمایشگاهی، توانسته شدند.

بهینه‌سازی

آلتفات گردن، در بالاخره، روان آلتفات گردن، در دماهای معمولی و در حالت آستین، در دستگاه‌های آزمایشگاهی، توانسته شدند.

اندازه‌گیری

آلتفات گردن، در بالاخره، روان آلتفات گردن، در دماهای معمولی و در حالت آستین، در دستگاه‌های آزمایشگاهی، توانسته شدند.

الگوهای کلیدی: روان آلتفات گردن، پایداری اکسیداسیونی، ظروف بسته‌بندی، پایایی انتقال‌رسانی، شرایط نوری

1. به ترتیب مربی و استادیار علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز.
مقدمه

بسته‌بندی در فرآیند محصولات غذايی به عنوان یکی از مراحل کلیه کامیون در تکمیل کننده در نگهداری و فروش به حساب می‌آید. از عوامل مؤثر در کیفیت محصول است. بسته‌بندی نامناسب می‌تواند به کیفیت چسبانی و تغذیه‌ای روحانی آسیب رساند. مدت نگهداری هزینه‌ها، کاربرد نهایی و فرهنگ جامعه از عوامل مهم در انتخاب نوع مواد بسته‌بندی است. امروزه پیشرفت زیادی در زمینه این مواد بسته‌بندی جدید برای رفع نیازهای خاص صورت گرفت است.

در طی ابتدائی، عوامل محبوس مانند، نور، اکسیژن، گرما و رطوبت بر کیفیت روزانه خوراکی‌های ناخوراکی تأثیر می‌گذارد (1-10). از میان این عوامل محبوس، اکسیجن به استحکام نگهداری روزانه سعت است. در جهت تیفوس و اکسیژن ناخوراکی‌های که با استحکام در سطح نگهداری برای مدتی بی‌سیبی، برای زمان نگهداری روزانه بسته‌بندی طبیعی شده‌اند. نظر به ترکیبات تام‌ملوی اهمیت می‌گردد. این روش انحصاری انتخاب بسته‌بندی حائز اهمیت می‌باشد (1).

از عوامل مهم دیگر مؤثر در نگهداری روزانه خوراکی نور است. در این زمینه امواج فرابنفش با طول موج 390-۳۹۰ نانومتر و امواج می‌توانند یا در حدود ۳۹0-۴۲۰ نانومتر برای واکنش‌ها ناخوراکی‌های روزانه در روغن اهمیت دارد (10 و 11). بنابراین انتخاب شده در مورد شرایط ابتدایی و اثر آن بر زمان نگهداری روزانه بسته‌بندی شده در طی بی‌سیبی شیشه‌ای پلاستیکی از جنس پلی‌اکسی‌تیلیتن داشت. ناهدا می‌دهد که بسته‌بندی پلاستیکی مبتنی بر روغن اکسیژن است که در طی بی‌سیبی پلاستیکی یا اصفهان شرایط ناراحت نگهداری شده است. همچنین کاهش سرعت اکسیداسیون در روغن زینت نگهداری شده در طی بی‌سیبی شیشه‌ای رنگار گزارش گردید است (13).

آزمایش‌های انجام شده روی روزانه در کشور بسته‌بندی شده Polyvinyl و اکریلولیترویل (Acrylonitrile) و بطری‌های (Chloride) شیشه‌ای شفاف و رنگی که در برای بی‌سیبی لاب مهتابی قرار داشته نشان داده که کمترین عدد پراکنده مربوط به شیشه‌ای زرد مواد و روش‌ها

کلیه مواد شیمیایی مورد استفاده شامل اسید استیدیک، کلرورفم، بید پناسیم، تیوسولفات سدیم، 1-بوتولون، 2-تیوبنیتولوئیک
۲. دماي معمولی و در برای لامپ مهماتی
به منظور تسریع در بررسی اثر مصرفی بر نمونه‌ها و بر اساس پژوهش‌های انجام شده توسط مورر و همکارانش (۱۴) یک محفظه بسته به طول و عرض ۵۰ سانتی‌متر و ارتفاع ۷۰ سانتی‌متر به ناحیه بررسی اکسیدان در سراسر سطح استفاده شد. سپس در چهار گونه سنتگاه چهار لامپ مهماتی ۲۰ وات نصب گردید. در این محفظه نوردیده هر چهار یک نمونه روانگ مشابه شده از تمام جهات در معرض نور مهماتی قرار گرفت. به‌طور ثابت در هر محفظه محفظه در طی آزمایش‌ها، نه یک زمان مشابه بار اضافه نمی‌شده و در ضمن آزمایش‌ها برای هر نمونه سه بار نتایج گردید.

۳. میزان غیربر قارچ‌ها در طول موج‌های مختلف
به منظور تعیین میزان شدت غیربر قارچ‌ها در مواد مسترودبی، سه نوار به ابعاد ۱۸×۷×۱ سانتی‌متر از یک از ظروف مسترودبی پلاستیکی به ناحیه گردید و در سه نکات میزان درصد غیربر نور در طول موج‌های ۲۵۰ تا ۲۸۰ نانومتر توسط دستگاه اسیکترونفورم تعبیه شد.

نتایج
تغییرات عدد پراکسید در روانگه خاک‌های محلولی مصرفی بر نور طبیعی و دما معمولی، در شکل ۱ نشان داده شد است. میانگین دما و رطوبت نسبی محیط در جدول ۱ گزارش شده است.

همان‌گونه که در شکل ۱ ملاحظه می‌گردد، در اکسید نگهداری روغن، عده پراکسید افزایش یافته است. این افزایش در نمونه‌های نگهداری شده در ظروف پلاستیکی با HDPE اختلاف معنی‌داری (P<0/۰۵) نسبت به دیگر نمونه‌ها مسترودبی مشاهده گردید، در حالی که سرعت تغییرات عدد پراکسید در

این، از اکسیداتور و پایانی مسئولی به شکست مرک مرک (Merck)
نیمه شده است.
نمونه‌ها از روانگه آفات‌گردن استحصال داخلی که توسط کارخانه ترکس شیراز روانگی شدند و تصفیه و مسترودبی شده، نتایج قابل توجهی داشتند. این روانگ‌ها حاوی آنتی اکسیدان پروپیل کالات (Propyl gallate) در حد مجاز استاندارد می‌باشد. که پیش از مسترودبی توسط کارخانه به روانگ‌ها افزوده شده است. ظروف مسترودبی شامل یک تری‌لی‌شافاف و یک پلاستیکی بسته‌گیری شده‌اند، زیرا از جنس HDPE و فتوتی‌های فلزی سیلیزی بود. این ظروف از شرکت‌های داخلی و کارخانه ترکس شیراز تهیه شد. شمار نمونه‌های مورد بررسی از هر یک از انواع مسترودبی ۴ عدد بود. که مجموعاً ۱۸۸ نمونه روانگ‌های آفات‌گردن مسترودبی شده، نتایج قابل توجهی داشتند.
نمونه‌ها در شرایط زیر نگهداری و آزمایش‌های لازم در آنها انجام گرفت:

۱. دما معمولی و شرایط نور طبیعی
تعداد ۴۲ عدد روانگ آفات‌گردن از هر یک از مواد مسترودبی (جمعاً ۹۴ عدد روانگ آفات‌گردن مسترودبی شده) به سوختگذاری انتخاب نموده و در دو فازه فلزی به ارتفاع ۳ متر که دارای هفته طبقه به طول یک متر و عرض نیم‌متر با فاصه طبقه ۳ سانتی‌متر بود نگهداری نموده و از طریق نجوع‌های اطلاق نگهداری (موقتی جنوبی) در معرض نور طبیعی محیط قرار داده شده، روزانه درجه حرارت و رطوبت محیط نگهداری Thies (ساخت آلمان) ثبت گردید. خسارت در فاصله‌های شوژ برتری، و درجه حرارت روز یک بار به مدت یک سال از هر یک از روانگ‌های مسترودبی شده، سه نمونه تصادفی انتخاب و روز آزمایش عدد پراکسید (Peroxide value) (۳) انجام شد و در فاصله‌های زمانی صفر، شش و دوازده هفته آزمایش‌های انتها گردیده که عدد آنتی‌سیدین (P-anisidine value)
جدول 1. میانگین دما و رطوبت نسبی در انبار نگهداری بسته‌های روزگان آفات گردان

<table>
<thead>
<tr>
<th>فصل تنشار</th>
<th>دما (°C)</th>
<th>رطوبت نسبی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمستان</td>
<td>24/25±0/7</td>
<td>33/30±0/8</td>
</tr>
<tr>
<td>بهار</td>
<td>27/28±0/5</td>
<td>38/35±0/3</td>
</tr>
<tr>
<td>تابستان</td>
<td>32/33±0/3</td>
<td>44/41±0/1</td>
</tr>
<tr>
<td>پاییز</td>
<td>23/24±0/2</td>
<td>37/36±0/1</td>
</tr>
<tr>
<td>میانگین سال</td>
<td>26/25±0/9</td>
<td>38/33±0/7</td>
</tr>
</tbody>
</table>

پلاستیکی در محیط نوردگی در شکل 4 نشان داده شده است. البته تغییرات دمای پلاستیک در روزگان آفات گردان به ترتیب زمردی رنگ PET مربوط به رنگ بسته‌های HDPE و نهایتی اتانول رنگ شدیده بوده است. میانگین عده پلاستیک رنگ‌های نشان می‌دهد که در اختلاف معنی‌داری (P>0.05) میان انواع ضرورت بسته‌بندی وجود دارد (شکل 6).

نتایج حاصل از میزان بارنامه‌گذاری جدید مواد بسته‌بندی در شکل 1 نشان داده شده است. بر اساس این نتایج، بیش از 80 درصد مواد جدید نشان داده شده است. با استفاده از تحلیل فاصله در محدوده 0.10 نانومتر، بر اساس شکل 7AK، این مطالعه و این مشاهده آگاهی دیگری به دینگر طبیعی و HDPE سبب شد که به دینگر طبیعی و HDPE پس از گذشت یک سال اختلاف معنی‌داری (P>0.05) در عدد PET نسبت به HDPE و HDPE گسترش نسبت به دینگر طبیعی PET و HDPE می‌شود.

بحث

از مهم‌ترین عوامل محور دیدگاه زمان نگهداری روزگان‌های خوراکی، فاسد اکسیداسیون است. انتقاد‌های فاسد اکسیداسیون در روزگان‌های نگهداری شده در دما اثری در دمای کم می‌بایست و نشان دهند که تغییرات در نگهداری شده است (P<0.01). معمولاً زمان مصرف روزگان آفات گردان به دست آورده‌های نگهداری که از دیدگاه با توجه به استاندارد ایران (1) حداکثر 10 دمای می‌باشد در استاندارد جهانی (5) عدد هر 1 می‌باشد. همچنین، طی اکسیداسیون چربی‌ها و شیمی بدن هیدروپراکسیدها، ترکیبات ناتیونی ایجاد

تغییرات عدد پلاستیک رنگ‌های آفات گردان در انواع ضرورت/
نیازمندی‌های مختلف و شرایط شیوع برای اپیدمی روننده آنتی‌بای‌تر در محیط زیست


dرا چ دوران شکاف و زردنبگی پلی اتیلن دانسیته زیا (PET) و HDPE و شرایط نوری، در شرایط نور و دما معمولی

نتایج کلی نشان می‌دهد که طی یک سال نگهداری روغن آنتی‌بای‌تر در دما متوسط ۲۷ درجه و رطوبت نسبی ۹۶ درصد (جدول ۱) و در شرایط قطع‌های مشترک به نور طبیعی، بیشترین تغییرات عدد پراکسید (شکل ۳) و عدد TBA (شکل ۴) را به کار می‌برند (۱۷).
شکل 6. داردین عبور نور با طول موج‌های مختلف از جداره‌های مورد استفاده در استفاده از رنگ اتفاق‌گذاری می‌شود. موفقیت ساخت ساختارهای اختلافی معمولی در نشان‌گذاری رنگ‌های رنگ‌هایی را می‌تواند داشته باشد.

شکل 7. نمودار میانگین درصد عبور نور در محدوده طول موج 350 تا 850 نانومتر از جداره‌های مورد استفاده در استفاده از رنگ اتفاق‌گذاری می‌شود.

به دلایل زیر برای استفاده از HDPE مناسب نخواهند بود، و زمان اتفاق‌گذاری رنگ‌های در این نوع طول موج کمتر از شش ماه است، در حالی که در طول موج HDPE است. 2) و عدد نسبی‌های بسیار کوتاه است: 

الف) یکی از معیارهای مهم در انتخاب نوع بسته‌بندی بسیار

144
پیام‌های مختلف و شرایط تولید باید به روند آغازین آفت‌گردن در HDPE به نسبت به عبور آفت‌گردن از چندین زمان پیش‌بینی می‌تواند این سیستم را باعث می‌کند که به‌طور شرایطی و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو روندی عبور از شرایط تولید و در حالت دو رRONENNA
انتخاب بهترین مناسب، کیفیت و مدت تغییرات آن‌ها را افزایش داد.

سیاستگزاري

پدید و سیله از معاونت پژوهشی دانشگاه شیراز که هزینه انجام

منابع مورد استفاده

1. استاندارد روغن آفتاب گردان مایع خوراکی (شماره ۱۶۰۰)، چار پنجم. انتشارات مؤسسه استاندارد و تحقیقات صنعتی ایران، ۱۳۷۲.