اثر نتروژن و سایکوسل بر محیط، انتقال مجد و کاراپی مصرف نتروژن گلرگ تحت تراکم‌های مختلف کاشت

مترا مرجاعی یور و محسن موحیدی دهلوی

(تاریخ دریافت: 1399/10/30 تاریخ پذیرش: 1399/11/23)

چکیده

به منظور بررسی اثر سایکوسل، نتروژن و تراکم بر یور و میزان انتقال مجد و کاراپی مصرف نتروژن گلرگ و ۲۴ (صفر) آزمایش به صورت فاکتوریل خرد شده در قالب طرح یک جدول کامل تصادفی با سه تکرار در مزرعه تحیطه‌ای دانشگاه کشاورزی دانشگاه پایتخت در تابستان ۱۳۸۹ انجام شد. عامل اصلی شامل مصرف نتروژن (۰،۰۵، ۱۰۰ و ۱۵۰ کیلوجرم در هکتار) و مصرف تنظیم کننده، رشد سایکوسل در دو سطح (صفر و ۱۰۰ مولار) به صورت فاکتوریل و عامل فرعی شامل تراکم و ۲۰، ۲۵ و ۳۸/۳ بیونه در مرحله میل مورد بررسی قرار گرفت. نتایج نشان داد که بیشترین میزان انتقال مجد نتروژن (۱/۱۱۴) در نیمار کاربرد سایکوسل از مصرف بیشترین میزان نتروژن و تراکم به دست آمد. بیشترین میزان نتروژن مصرفی در تراکم ۲۵ بیونه در متر مربع با بیشترین درصد بروتنی دانه (۱۴٪) و بیشترین مقدار میزان نتروژن اندام هواپی در مرحله گل‌دهی (۱۵/۲/۲۰) همراه بود. از جمله کاربرد سایکوسل، از مصرف کمترین میزان نتروژن و تراکم ۲۰ بیونه در متر مربع، بیشترین عملکرد دانه (۲۱۴ کیلوجرم در هکتار) و کاراپی مصرف نتروژن (۲۴ کیلوجرم در کیلوجرم) به دست آمد. به طور کلی افزایش نتروژن و به مصرفی همراه با کاربرد سایکوسل، میزان نتروژن اندام هواپی و انتقال مجد نتروژن با افزایش کاراپی مصرف نتروژن و عملکرد دانه همراه است.

واژه‌های کلیدی: بروتن، عملکرد دانه، نتروژن اندام هواپی

1. گروه وزارت و اصلاح نباتات، دانشکده کشاورزی دانشگاه پایتخت
movahhedi54@yahoo.com

* مسئول مکاتبات، پست الکترونیکی:
کشت دانه‌های روغنی همیشه به خشکی‌های فعالیت‌های نشاط‌زاوران را تشکیل می‌دهد است. (۲۹) در ایران، برغم وجود اراضی وسیع قابل کشت که برای تولید دانه‌های روغنی وجود دارد، هنوز هیچ بیش از ۸۵٪ از روغن مورد نیاز از خارج وارد می‌شود. (۲) از این‌رو، لزوم برنامه‌ریزی منظم و درآمدهای به هدف تولید خودکفا در تولید روغنی وجود دارد. خوراکی‌های غیرقابل انکار است (۲۹). در این باید، کشت گیاهان روغنی نظیر گل‌گرنگ که از نظر کیفیت روغن دانه و مصرف در نظر یک نیز مهمی دارند، دارای اهمیت است (۲۴). گل‌گرنگ با نام Carthamus tinctorius L. علیکی گونه زراعی گل‌گرنگ یکساله است. اما در این جنس، گونه‌های وحشی، جنگلی و نیز سال دیگر می‌دارند.

برای استفاده به عملکرد کسب در ارقام پایینی عملکرد زیاد یا کود شیمیایی کافی مصرف شود. نیتروژن نقص اساسی در سایه‌پوش به عملکرد زیاد کمی و کافی در مهار درازات ایفا می‌کند. در اثر کشت که نیتروژن در سرتاسر درون پر شده دانه در اختیار گیاه قرار گیرد، بیش از نصف پروردهای دانه از نیتروژن جذب شده در این مرحله به دست می‌آید. با مصرف نیتروژن، میزان نیتروژن طبق در مرحله گردش‌ها، میزان نیتروژن دانه و کل ادمان هواپیما گل‌گرنگ در مرحله گل‌دهی و در زمان برداشت نسبت به تمام مصرف کود به ترتیب ۵۶، ۵۴ و ۸۱ درصد افزایش نشان دادند (۷).

طبق گزارش کوتوریوس و همکاران (۱۸) کارایان انتقال مجدد نیتروژن بین مراحل گل‌دهی تا رسیدگی در گیاه گلرگن می‌تواند باشد. کارایی مصرف نیتروژن به صورت نسبت عملکرد دانه به مقدار نیتروژن مصرفی بیان شده و عامل بسیار مهمی در مدیریت نیتروژن برای تولید طبیعی را چندان نشان نمی‌دهد.

کباهان زراعی محصول می‌شود (۱۳) مدرح و همکاران (۲۰) بیان کرده که بیشترین کارایی مصرف نیتروژن گند مهم‌البیا با مصرف اولین واحدهای کود حاصل می‌شود اما در افزایش میزان کود نیتروژن، واحدهای بعدی افزایش کمتری را موجب می‌شوند.

مقدمه
کشت دانه‌های روغنی همیشه به خشکی‌های فعالیت‌های نشاط‌زاوران را تشکیل می‌دهد است. (۲۹) در ایران، برغم وجود اراضی وسیع قابل کشت که برای تولید دانه‌های روغنی وجود دارد، هنوز هیچ بیش از ۸۵٪ از روغن مورد نیاز از خارج وارد می‌شود. (۲) از این‌رو، لزوم برنامه‌ریزی منظم و درآمدهای به هدف تولید خودکفا در تولید روغنی وجود دارد. خوراکی‌های غیرقابل انکار است (۲۹). در این باید، کشت گیاهان روغنی نظیر گل‌گرنگ که از نظر کیفیت روغن دانه و مصرف در نظر یک نیز مهمی دارند، دارای اهمیت است (۲۴). گل‌گرنگ با نام Carthamus tinctorius L. علیکی گونه زراعی گل‌گرنگ یکساله است. اما در این جنس، گونه‌های وحشی، جنگلی و نیز سال دیگر می‌دارند.

برای استفاده به عملکرد کسب در ارقام پایینی عملکرد زیاد یا کود شیمیایی کافی مصرف شود. نیتروژن نقص اساسی در سایه‌پوش به عملکرد زیاد کمی و کافی در مهار درازات ایفا می‌کند. در اثر کشت که نیتروژن در سرتاسر درون پر شده دانه در اختیار گیاه قرار گیرد، بیش از نصف پروردهای دانه از نیتروژن جذب شده در این مرحله به دست می‌آید. با مصرف نیتروژن، میزان نیتروژن طبق در مرحله گردش‌ها، میزان نیتروژن دانه و کل ادمان هواپیما گل‌گرنگ در مرحله گل‌دهی و در زمان برداشت نسبت به تمام مصرف کود به ترتیب ۵۶، ۵۴ و ۸۱ درصد افزایش نشان دادند (۷).

طبق گزارش کوتوریوس و همکاران (۱۸) کارایان انتقال مجدد نیتروژن بین مراحل گل‌دهی تا رسیدگی در گیاه گلرگن می‌تواند باشد. کارایی مصرف نیتروژن به صورت نسبت عملکرد دانه به مقدار نیتروژن مصرفی بیان شده و عامل بسیار مهمی در مدیریت نیتروژن برای تولید طبیعی را چندان نشان نمی‌دهد.

کباهان زراعی محصول می‌شود (۱۳) مدرح و همکاران (۲۰) بیان کرده که بیشترین کارایی مصرف نیتروژن گند مهم‌البیا با مصرف اولین واحدهای کود حاصل می‌شود اما در افزایش میزان کود نیتروژن، واحدهای بعدی افزایش کمتری را موجب می‌شوند.
مصروف نیتروژن در گل‌نگر رقم اصفهان ۱۲ (صفه) در منطقه
پاسیور، آزمایش مزرعه‌ای در سال زراعی ۱۳۸۹ در مزرعه
تحقیقاتی دانشگاه پاسیور (طول جغرافیایی ۱۳۹۲ و
عرض جغرافیایی ۹۶۰۰ شمالی و ارتفاع ۱۸۰۰ متر از سطح
دریا) انجام شد. آزمایش به صورت فاکتوریل خرد شده در قالب
طرح پایکمی کامل تصادفی با سه تکرار پیاده شد. عامل
اصلی شامل فاکتوریل سطح جود نیتروژن (۰/۲۰ و
۲۰ و ۱۵۰ کیلوگرم در هکتار)، هورمون سایکوکسال در سطح (صفر و
۴۰ هکتار) و عمل فری شامل تراکم کشت (۰/۲۵، ۰/۲۷ و
۲۰ متر) مورد بررسی قرار گرفت. نتایج نشان داد: نیتروژن
بودن در مزرعه پاسیور، آزمایش از نوع لوم، با
با هدایت الکتریکی برای ۴۲ دسی‌زمین بر متر و اسیدیت
معدل ۷/۷ بودند. نیتروژن کل خاک ۱۹/۵ درصد و
مقاوم قابل جابجایی خاک به ترتیب ۸/۶ و ۳۶/۵ میلی‌گرم بر
کیلوگرم بر اساس وزن خاک خشک محاسبه شدند. میانگین
سالهای دیم‌ها در پاسیور ۱۵ درجه سلسیوس می‌باشد. در
طول ۲۵ سال گذشته حداقل مطلق دما و حداقل مطلق دما
ثبت شده در پاسیور ۱۹/۳ درجه سلسیوس زیر صفر
و ۲۷/۷ درجه سلسیوس و حداقل رطوبت نسبی
سالهای به ترتیب ۲۹/۹ و ۵۶/۹ درصد بوده است. میانگین بارش
سالهای این شهر ۴/۸ میلی‌متر است.
با یک تایج نتایج هدف‌مند آزمایش علی‌نپاسی زده (1)
که تاریخ کاشت یک نیروئن (صفه) را به عنوان
تاریخ کاشت مناسب و رقم سازگار با شرایط باینیح معرفی
کردی. به بنده، کاشت رقم اصفهان ۱۴ در تاریخ ۱۱ نیروئن
به صورت جوی و پشت در عمق ۳۰ سانتی‌متری صورت
گرفت. رقم اصفهان ۱۴ رفیق یک لام، دیر، پروپوزوزول
و دارای گل‌نگر به رنگ قرمز که فاکتور به
سانتی‌متر انتخاب شد. بر اساس نتایج آزمایش خاک، تمام کود
فسفر از منبع سیروی و فسفات تریل (۱۰۰ کیلوگرم در هکتار) و
یک دوم کود نیتروژن از منبع اگر، قبل از کاشت و یک دوم
پایه‌شناسی به صورت سرک در مرحله رشد سریع ساقه به زمین
داده شد. همچنین به پخش کود نیتروژن در مرحله رشد سریع

نتایج و بحث
الف) عملکرد دانه
برهمکنش سایکوکسال، نیتروژن و تراکم در سطح اختلاف
۱/۷ بر
عملکرد دانه علی‌نپاسی زده (صفه) بر اساس نتایج
(۳۱۶ کیلوگرم در هکتار) در تاریخ کاشت مناسب، از
مصروف کمترین میزان نیتروژن و تراکم (۴ پونده در متر مربع به
دست آمد. کمترین عملکرد دانه (۱۴۶ کیلوگرم در هکتار) نیز

Downloaded from ijcponline.ir at 23:43 IRST on Wednesday February 10th 2021
جدول 1: میانگین مربوطات حاصل از تجربه واربینت صفات مورد ارزیابی

<table>
<thead>
<tr>
<th>درصد بروزتین دانه</th>
<th>کارایی مصرف نیتروژن ادامه</th>
<th>انتقال مجدد نیتروژن ادامه</th>
<th>هوای در محدوده رسیدگی</th>
<th>درجه علفن تغییر</th>
<th>منبع تغییر</th>
<th>آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/12</td>
<td>11/75**</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006**</td>
<td>2</td>
<td>تکرار</td>
</tr>
<tr>
<td>0/23</td>
<td>69/45**</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017**</td>
<td>2</td>
<td>تکرار</td>
</tr>
<tr>
<td>0/34</td>
<td>92/91**</td>
<td>0/059</td>
<td>0/059</td>
<td>0/059**</td>
<td>1</td>
<td>سایکوسل</td>
</tr>
<tr>
<td>0/45</td>
<td>32/01**</td>
<td>0/040</td>
<td>0/040</td>
<td>0/040**</td>
<td>2</td>
<td>نیتروژن</td>
</tr>
<tr>
<td>0/56</td>
<td>57/05**</td>
<td>0/024</td>
<td>0/024</td>
<td>0/024**</td>
<td>1</td>
<td>نیتروژن</td>
</tr>
<tr>
<td>0/67</td>
<td>27/04**</td>
<td>0/006</td>
<td>0/006</td>
<td>0/006**</td>
<td>1</td>
<td>خطای عامل</td>
</tr>
<tr>
<td>0/78</td>
<td>22/08**</td>
<td>0/077</td>
<td>0/077</td>
<td>0/077**</td>
<td>1</td>
<td>اصلی</td>
</tr>
<tr>
<td>0/89</td>
<td>129/82**</td>
<td>0/123</td>
<td>0/123</td>
<td>0/123**</td>
<td>2</td>
<td>تراکم</td>
</tr>
<tr>
<td>0/99</td>
<td>50/53**</td>
<td>0/130</td>
<td>0/130</td>
<td>0/130**</td>
<td>2</td>
<td>نیتروژن - تراکم</td>
</tr>
<tr>
<td>0/11</td>
<td>120/51**</td>
<td>0/132</td>
<td>0/132</td>
<td>0/132**</td>
<td>2</td>
<td>سایکوسل - تراکم</td>
</tr>
<tr>
<td>0/12</td>
<td>171/69**</td>
<td>0/184</td>
<td>0/184</td>
<td>0/184**</td>
<td>2</td>
<td>نیتروژن - نیتروژن</td>
</tr>
<tr>
<td>0/13</td>
<td>105/39</td>
<td>0/044</td>
<td>0/044</td>
<td>0/044**</td>
<td>2</td>
<td>خطای عامل</td>
</tr>
<tr>
<td>0/14</td>
<td>102/39</td>
<td>0/039</td>
<td>0/039</td>
<td>0/039**</td>
<td>2</td>
<td>فرعي</td>
</tr>
</tbody>
</table>

ضریب تغییرات: **، *** به ترتیب نشان دهنده معنی‌دار بودن در سطح احتمال 1% و 0.5% و بدون اختلاف معنی‌دار است.

در تیمار کاردی سایکوسل از مصرف 100 کیلوگرم نیتروژن در هکتار و کمترین تراکم به دست آمد، که نسبت به پیشینه مقدار 1/5.07 کاهش نشان داد (جدول 2). کاهش عملکرد دانه در تیمار کاردی سایکوسل از مصرف 100 کیلوگرم نیتروژن در هکتار و تراکم 20 بیوت در متر مربع به دلیل افزایش نسبت تعداد طبیعی تناور و کاهش تعداد دانه در طبقه و زون ورژ دانه در چینی شرایط می‌باشد. نتایج بررسی‌های (جدول 3) نشان داد که در تیمار کاردی سایکوسل و مصرف 50 و 100 کیلوگرم نیتروژن در هکتار، تراکم اثر معنی‌داری بر عملکرد دانه داشت. به این صورت با کاربرد سایکوسل، در اولین و دومین سطح نیتروژن، تراکم 25 بیوت در متر مربع پیشین 1/2 عملکرد دانه را اجباری کرد (جدول 2). طبق نتایج به دست آمده در تیمار کاردی سایکوسل

*42
جدول 2: مقایسه میانگین برهمکنش سایکوس، نیتروژن و تراکم برای صفات مورد ارزیابی

| کارایی مصرف نیتروژن (کیلوگرم در کیلوگرم در هکتار) | عملکرد گیاهی (کیلوگرم در هکتار) | عملکرد دانه | نیتروژن تراکم (بیوت) | سایکوس (بیوت) | عدد کاربرد وارد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/19 (b)</td>
<td>0/89 (de)</td>
<td>0/16 (i j)</td>
<td>25/2 (ab)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/2 (c)</td>
<td>0/89 (de)</td>
<td>0/16 (i j)</td>
<td>23/1 (c h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/5 (b)</td>
<td>0/75 (f)</td>
<td>0/18 (h i j)</td>
<td>27/8 (abcd)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/38 (c f)</td>
<td>1/07 (b)</td>
<td>1/18 (gh)</td>
<td>23/7 (def)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/4 (c f)</td>
<td>1/12 (ab)</td>
<td>1/18 (gh)</td>
<td>27/1 (abc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8 (ghi)</td>
<td>0/75 (f)</td>
<td>0/18 (h i j)</td>
<td>18/3 (gh i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 (j)</td>
<td>1/10 (ab)</td>
<td>1/45 (bed)</td>
<td>15/6 (j i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 (ghi)</td>
<td>0/91 (cd)</td>
<td>0/12 (ef g)</td>
<td>24/9 (bc def)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/31 (ij)</td>
<td>0/91 (cd)</td>
<td>0/12 (ef g)</td>
<td>15/9 (bc def)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/5 (b)</td>
<td>1/12 (ab)</td>
<td>1/45 (bed)</td>
<td>23/3 (def)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/8 (a)</td>
<td>0/77 (c f)</td>
<td>0/15 (j b)</td>
<td>25/1 (a bc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/8 (b)</td>
<td>0/77 (c f)</td>
<td>0/15 (j b)</td>
<td>25/1 (a bc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/19 (ghi)</td>
<td>1/12 (ab)</td>
<td>1/45 (bed)</td>
<td>15/1 (j b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/8 (a)</td>
<td>0/77 (c f)</td>
<td>0/15 (j b)</td>
<td>25/1 (a bc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 (ghi)</td>
<td>1/10 (ab)</td>
<td>1/25 (c d e f)</td>
<td>25/1 (a bc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 (ghi)</td>
<td>1/10 (ab)</td>
<td>1/25 (c d e f)</td>
<td>25/1 (a bc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/19 (ghi)</td>
<td>1/10 (ab)</td>
<td>1/25 (c d e f)</td>
<td>25/1 (a bc)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، اعداد با حروف مشابه تقاطع معنی‌داری در سطح 5% بر اساس آزمون LSD تداوید. حروف بیرون پرانتز مقایسه میانگین ار تقابل
کلی و حروف درون پرانتز مقایسه میانگین به روش بریده‌ئی را نشان می‌دهند.

شده با سایکوس به خاطر تمایل خاصی، افزایش مقاومت روزنهای و توان آب بیشتری برگ خیاطی افزایش در بهبود
بازده مصرف آب از طریق افزایش در فعالیت ریشه و کاهش در
تعرق گیاه می‌باشد (5). و اسرعیت (19) اظهار داشته که به
نظر می‌رسد تیمار بونه‌های جو سایکوس که با نگهداری
برگ‌ها و پنجه‌ها و بهبود توسعه نور به داخل سایکوس‌دادگی
گیاهی همراه است. پیش از گل‌دهی اندازه مقدار گیاه خیاطی داده
و بعد از گل‌دهی به دلیل تأثیر یافته‌ی مثبت افزایش اندازه مقیاس بر
سرعت فتوسنتز بوته‌ها، سبب افزایش میزان مواد پرورده تولیدی
برای پر ازدی اضافه‌ی گذشته‌های و در نتیجه افزایش
عملکرد به مهار دانه‌های کاهش بدون طرفی در تراکم های کم
(تراکم 23 بیوت در متر مربع)، عملکرد دانه به دلیل کاهش تعادل
بوتنه در این حد مقدار در حد کمی قرار دارد و افزایش نیتروژن به
دلیل محدودیت طویل‌مدت هر گیاه در استفاده از نیتروژن تا حد

15
ب) میزان نیتروژن اندام هواپی در مرحله گل دهی پرهمکنش سایکوس، نیتروژن و تراکم در سطح احتمال 1/ بر میزان نیتروژن اندام هواپی در مرحله گل دهی معنی‌دار ندارد. (جدول 1). در تیمار کاربرد سایکوس، میزان نیتروژن مصرفی و تراکم 25 بونه در متر مربع باعث شد که میزان نیتروژن اندام هواپی در مرحله گل دهی (15/20)
به دست آید. کمترین میزان نیتروژن اندام هواپی مرحله گل دهی (15/20) نیز در تیمار کاربرد سایکوس از مصرف کمترین میزان نیتروژن و تراکم 25 بونه در متر مربع به دست آمد (جدول 2). کمترین و میزان نیتروژن اندام هواپی در این مرحله 27/49 اختلاف داشتند. در این بستگی به دست آمد. میزان نیتروژن در مرحله اولیه سایکوس نسبت به مصرف 215 کیلوگرم نیتروژن کاهش نشان داد (جدول 3). طبق نتایج دست آمد، بیشترین میزان نیتروژن مصرفی باعث شد که بیشترین میزان نیتروژن اندام هواپی در مرحله گل دهی (15/215) و همینطور در مرحله سیگدنی (18/75) به دست آمد. اما همان طور که مشاهده می‌شد میزان نیتروژن اندام هواپی در مرحله سیگدنی نسبت به مرحله گل دهی تقریباً 25 کمتر بود. از آنجا که روي کلاسه انجم گردید، غلظت نیتروژن در مراحل مختلف محصولات زراعی و باغی / سال سوم / شماره هفتم / 1392
تیتریون و ساکوسل بر محیط، انتقال مجدد و کارایی مصرف...

جدول 3: میانگین مربوط به تیتریون و ساکوسل بر اساس در سطوح شاخص نسبت به کاربرد ساکوسل برای صفات مورد ارزیابی

| کارایی مصرف | نیترولن اندام هواپی | درجه آزادی | عملکرد دانه | مراجع گلدهی | منابع نگی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ساکوسل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترولن 50 (N1)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترولن 100 (N2)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترولن 150 (N3)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترولن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاربرد ساکوسل</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترولن 50 (N1)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترولن 100 (N2)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترولن 150 (N3)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 4: مقیاس میانگین برهمکشی نیترولن و تراکم برای صفات مورد ارزیابی

<table>
<thead>
<tr>
<th>برهمکشی نیترولن در (درصد)</th>
<th>مرحله رسیدگی (درصد)</th>
<th>تراکم (بوته در مترمربع)</th>
<th>نتایج LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 (a)</td>
<td>14.7 (b)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>12.7 (cd)</td>
<td>12.7 (d)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>13 (b)</td>
<td>13 (a)</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>13.3 (c)</td>
<td>13 (b)</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>13.4 (d)</td>
<td>13 (a)</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>13 (b)</td>
<td>13 (a)</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>13 (bc)</td>
<td>13 (a)</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>13 (b)</td>
<td>13 (a)</td>
<td>23.5</td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، اعداد با حروف مشابه تفاوت معنی‌داری در سطح 5% براساس آزمون نی‌دانارد. حروف بین برانگیز مقیاس میانگین اثر متفاوت گکل و حروف درون برانگیز مقیاس میانگین به روش برده‌های رسان می‌دهند.

د) انتقال مجدد نیترولن
برهمکشی ساکوسل، نیترولن و تراکم در سطح احتمال 5% بر انتقال مجدد نیترولن معنی‌دار شد (جدول 1). بیشترین میزان انتقال نیترولن از ساکوسل از مرحله 13/4 (جدول 4) در انتقال مجدد نیترولن بین بیشترین نیترولن و بیشترین تراکم به دست آمد. کمترین

عصر به ریشه‌ها، برزش پارک و گل‌دهی بود. هواولگین و همکاران (14) کاهش میزان نیترولن اندام هواپی در زمان رسیدگی را به دلیل انتقال مجدد نیترولن از ساکوسل به دانه‌ها و همچنین تولید ماده خشک بیشتر، نسبت به جذب نیترولن در طی دوره رسیدگی دانستند.
دسترس بودن نیتروژن به مواد کامپی در خاک و جذب آن توسط ریشه گیاه‌ها در دوره قبل از غله و تجمع آن در اندام ریشه و افزایش انتقال مجدد و تجمع نیتروژن در دانه می‌شود. معمولاً راد و طهماسی سروستان (32) به تیغه مشابه در گیاه پلاکه رسیده‌اند.

(ه) کارایی مصرف نیتروژن برهمکنش سایکوسل، نیتروژن و تراکم در سطح احتمال 7/4 بر کارایی مصرف نیتروژن معنی‌دار شد (جدول 1). در تیمار کاربرد سایکوسل از کمترین میزان نیتروژن مصرفی و تراکم 25 بحث و در مهر میزان نیتروژن مصرفی و تراکم 6/7 (کیلوگرم بر کیلوگرم) به دست آمد که کمترین کارایی مصرف نیتروژن (7/4) در میزان نیتروژن مصرفی و بیشترین تراکم به دست آمد (جدول 1). در کاربرد سایکوسل، 5/7 کیلوگرم نیتروژن در هکتار و بیشترین تراکم، شناسایی‌نشده‌که می‌توان باعث افزایش تراکم نیتروژن در چنین شرایطی بوده است. نتایج بررسی دهی (جدول 3) نشان داد که در تیمار کاربرد سایکوسل 50 و 100 کیلوگرم نیتروژن در هکتار، تراکم اثر معنی‌دار بر کارایی مصرف نیتروژن داشت. به این صورت که در این تیمار سایکوسل، در اولین و دویم سطح نیتروژن، تراکم 25 بحث و در مهر میزان بیشترین کارایی مصرف را ایجاد کرد (جدول 2). نتایج در دست آمده نشان داد که در تیمار کاربرد سایکوسل از کمترین میزان نیتروژن مصرفی و تراکم 25 بحث و در مهر میزان هم بیشترین کارایی مصرف نیتروژن به دست می‌آید. برزیک، افزایش نیتروژن با کاهش دو هم‌مانه است. زنده پنجم و آماری (32) که 64 درصدی کارایی مصرف نیتروژن در تراکمی نتیجه را در هنگام افزایش سطح کود نیتروژن گزارش کردند. این پژوهشگران بر افزایش کارایی مصرف نیتروژن در
جدول 5. میانگین مربوطه حاصل از تجزیه واریانس برای تراکم در سطوح تیتروژن برای صفات مورد ارزیابی

<table>
<thead>
<tr>
<th>درصد پروتون ماده</th>
<th>منبع تغییر</th>
<th>تراکم 50 (N1)</th>
<th>تراکم 100 (N2)</th>
<th>تراکم 150 (N3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 6. مقایسه میانگین برهمکنش سایکولس و تیتروژن برای صفات مورد ارزیابی

<table>
<thead>
<tr>
<th>پروتون (درصد)</th>
<th>عامه‌ای آزمایش</th>
<th>سایکولس</th>
<th>تیتروژن (کیلوگرم در هکتار)</th>
<th>عدم کاربرد سایکولس (H1)</th>
<th>کاربرد سایکولس (H2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/1 b (a)</td>
<td>150</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/2 b (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/2 a (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/4 a (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/5 a (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* و ** به ترتیب نشان دهنده معنی‌دار بودن در سطح احتمال 1% و 5% و بدون اختلاف معنی‌دار

در هر ستون، اعداد با حروف معنوی داری در سطح 5% بر اساس آزمون LSD ندارند. جدول برای مقایسه میانگین اثر منفی کلی و حروف دو بار مقایسه میانگین به روش بر دهه را نشان می‌دهند.

همگام تقسیم کود اشاره و تأکید کردن عوامل که موجب تسهیل در جذب تیتروژن شونده کارا مصرف آن را نیاز افزایش می‌دهد. با افزایش تراکم پولف و کارا مصرف تیتروژن آن افزایش یافته که به شکل تراکم تیتروژن افزایش می‌یابد. این افزایش تراکم در سطح کم تیتروژن که محدود می‌گردد و رقابت برای جذب آن محتمل است برتر می‌شود (3).

و درصد پروتون ماده‌زدی در جذب تیتروژن که به رهمکنش سایکولس و تیتروژن و همین‌طور به رهمکنش تیتروژن و تراکم در سطح احتمال 1% بر درصد پروتون ماده‌زدی در جذب تیتروژن (جدول 6) با افزایش درصد پروتون ماده‌زدی می‌کند که موضوع این عوامل با افزایش درصد پروتون ماده‌زدی همراهانه. طبق نتایج محقق و امام (21) برهمکنش سایکولس و تیتروژن تأثیر معنی‌داری بر درصد
جدول ۷. میزان کربن در محصولات زراعی و پایایی سال سوم / شماره ۱۳۹۲

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>درجه آزادی</th>
<th>عدم گذاره سایکوسل</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₁</td>
<td>۳</td>
<td>۶/۸۸**</td>
</tr>
<tr>
<td>H₂</td>
<td>۲</td>
<td>۰/۲۴**</td>
</tr>
</tbody>
</table>

پرتوئین دانه کنار داشته. به طوری که تller سایکوسل
صرف (۱۰۰ کیلوگرم نیتروژن در هکتار) و
بعضی از تأثیرات ۱۵ و ۲۰ بسیار در حالت
در میان درصد پرتوئین دانه به دست آمده.

نتیجه گیری
و در هر دو تیمار سایکوسل، افزایش نیتروژن و ترارک با افزایش
بین این‌ها به دلیل هم‌اکنون مصرف زیاده نیتروژن در
در میان درصد پرتوئین دانه به دست آمده. لی افزایش
و افزایش نیتروژن به دیگر عامل مصرف نیتروژن در
زاویه مصرف نیتروژن در هکتار، که در دو میزان نیتروژن
در میان درصد پرتوئین دانه به دلیل هم‌اکنون
و ترارک با افزایش نیتروژن و ترارک با افزایش

