برهمشکش بقا‌ای نیترÖZن کشت درخت و کود نیترژن بر عملکرد دانه و روغن کلزا

سیف‌الله فلاح

(تاریخ دریافت: ۸/۰۷/۱۳۹۱، پذیرش: ۷/۱۲/۱۳۹۱)

چکیده

به منظور تعیین برهمشکش بقا‌ای نیتروزن کشت قیلی و سطوح مختلف نیتروزن بر عملکرد دانه و روغن کلزا، آزمایش‌ها در دانشگاه شهرکرد در سال زراعی ۸۸-۸۹ انجام گردید. آزمایش‌ها به صورت کرت‌های خرد شده در قالب طرح بلک کامل تصادفی با ۳ نکتار اجرای شد. بقا‌ای فعّال نیتروزن کودی (۳۱۷۵) و ۶۵۵ کیلوگرم در هکتار کود اوره (6/1 و 6/2) و ۸/۳ تن در هکتار کود مرمی و شاهد عضید شامل فراوری گرگال‌های نیتروزن در کرت‌های اصلی و سطوح مختلف نیتروزن خصوصی (صفر، ۶۰، ۱۲۰ و ۱۸۰ کیلوگرم در هکتار) در کرت‌های خرید سورد مقایسه قرار گرفت. نتایج نشان داد که بیشترین تعداد دانه در خورچین و وزن هزارت دانه با بقا‌ای ۶/۲ تن در هکتار کود مرمی کشت قیلی به دست اماده و نیتروزن خصوصی در کشت کلزا باعث افزایش معنادار تعداد دانه در خروچین و کاهش معنادار درصد روغن گردید. برهمشکش معنی‌داری بین بقا‌ای نیتروزن کشت قیلی و سطوح مختلف نیتروزن مصرفی در کلزا بر تعداد خروچین در بوته، عملکرد دانه و عملکرد روغن مشاهده شد. بیشترین عملکرد دانه و روغن با بقا‌ای ۶/۲ تن در هکتار کود مرمی و ۱۲۰ کیلوگرم نیتروزن در هکتار گردید که کلزا را به دست اماده در مجموع به کارگیری مقدار زیاد کود شیمیایی در کشت درخت باعث کاهش یبانسی عملکرد کلزا می‌شود. ولی کود مرمی نه تنها بقا‌ای نیتروزن را برای کشت کلزا به مهار دارد، بلکه هزینه کود‌هایی را نیز کاهش می‌دهد.

واژه‌های کلیدی: کود مرمی، کود شیمیایی، اجزای عملکرد

۱. غروه زراعت: دانشکده کشاورزی، دانشگاه شهرکرد
۲. غروه زراعت: دانشکده کشاورزی، دانشگاه پاسیو
falahl357@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: falahl357@yahoo.com
مقدمه

از آنجا که بخش اعظم روحانی مصرفی کشور از خارج وارد می‌شود، کشت دانه‌های روغنی و مدیریت صحیح آنها در جهت افزایش عملکرد، اهمیت زیادی برخوردار می‌باشد. کلیه به دلیل دارا بودن صفات زراعی نظر مفاخر به سرمای، مفاخر به کم ای، در نتیجه، ارزش تناوبی زیاد، تحصیل محصن و سبکی که در حفاظت زراعتی کشاورزی کلزا، بهبود ساختمان خاک، کاشت رشد علف‌های هرز، داشتن شیب‌های بهاره و پاییزه، استفاده بهینه از رطوبت خاک، هر زمین کشور و عملکرد بهتر روحانی بسته به دیگر دانه‌های زراعی اهمیت اقتصادی بیشتری دارد (20 و 22).

نیتروژن یکی از مهم‌ترین عناصر غذایی کشاورزی کشور که در تولید گیاهان بوده و عملکرد گیاهان روغنی به وسیله فیلیپی دسترسی به آن تعیین می‌شود (3). کلزا غالباً به عنوان گیاهی‌های نیاز زیادی به نیتروژن عفونی می‌گردد. دیگر نیتروژن صورت طبیعی از افرادی است که از روش‌های رشد، ارتقاء ساقه، شاخه‌های مختلف به‌گمان، کل ماده خشک و عملکرد کلزا مؤثر می‌باشد. هر تپ نیاز کلزا حذف از برابر نیتروژن وارد نخواهد کرد، بنابراین نگهداری با دوباره نیتروژن مورد نیاز کشاورزی در کشور با گیاهان به شکل که در مکانی‌های دائم تعیین شده باشد (3).

نیتروژن به دلیل اثر تحصیل در کشاورزی و محل فوستیز مرغ، عناصری کلیدی در تغذیه گیاهان به شمار می‌آید (31). بررسی ها نشان می‌دهد که نیتروژن از طریق افزایش تعداد خورچین در بونه و وزن هزار دانه عملکرد دانه کلزا را افزایش می‌دهد. افزایش نیتروژن به دلیل کاشت ریشه‌دار، افزایش سطح سبب گیاهی موجب افزایش پوشیدن مواد فتوسنتزی، افزایش طول دوره گلدهی و باوری گل‌ها باعث افزایش تعداد خورچین و وزن هزار دانه می‌شود که این عوامل معنی‌دار بیش از افزایش عملکرد دانه می‌گردد (3).

نورالخان و همکاران (35) مشاهده کرده‌اند که با افزایش کود نیتروژن برای کلزا، عملکرد دانه افزایش، ولی محصول روحانی زیادی و عملکرد نیتروژن قطعی زیادی به کلزا کاشته شده و مواد در سرمایه‌سازی تولید کود نیتروژن‌دار بیشتر شده و
مواد و روش‌ها

این پژوهش در سال‌های 1387–88 در مزرعه تحقیقاتی دانشگاه شهید در ارتفاع 2050 متر از سطح دریا به صورت کرت‌های خرد سرد در قالب طرح بلوک کامل تصادفی به 3 تکرار انجام شد. کرت‌های اصلی شامل بقا 7 نمونه کود در کرت ذرت (شاهد) 1387 و 1388 و 1387 و 1383 کوتا مرغی در هکاری و کرت‌های فرعی شامل چهار سطح نیتروژن (صفر، 50، 100 و 150 کیلوگرم در هکاری از منبع اوره) در کرت کازا نیتروژن مصرفی در کرت‌های اصلی در بهار قبل از کرت ذرت در بهار 1387 به کار برده شد و نیتروژن خاصی سطح متوسط کوت مرغی ماده سطح متوسط کوت شیمیایی اوره به ترتیب 100 و 300 کیلوگرم در هکاری کوت نیتروژن مصرفی در کرت‌های فرعی پس از برداشت ذرت و هم‌مانند با کشت کازا به کار برده شد.

زمین در سال قبل زیر کشت ذرت بود و خاک آن از نوع لایوم رسی با pH برابر 8/2 و هدایت الکتریکی 0/250، دسی‌زیمیکس بر متر بود. هم‌چنین میزان کربن آلی، نیتروژن، فسف و یتیسآم آن به ترتیب 34 گرم در کیلوگرم، 22 گرم در کیلوگرم، 11 گرم در کیلوگرم و 244 گرم در کیلوگرم بود. به کار برده 1387 گرم یک گیاه ذرت نیتروژن کوت در کیلوگرم بود.

نتایج و بحث

میزان پیوستگی نیتروژن کودی پیش از شاهد و در تیمارهای کود مرغی بیشتر از تیمارهای کود شیمیایی بود. با این حال در پیشرین سطح کود مرغی در هکاری، اختلاف معنی‌داری بین بقا 7 نمونه کود مصرفی در کوت مرغی و اوره وجود نداشت (شکل 1). در پیک از آزمایش مزرعه‌های پس از برداشت محصول ذرت دانه مشخص بود که میزان پیوستگی نیتروژن کود در کرت‌های که کود مرغی پیش‌تر دریافت کرده بودند به میزان معمولی درازا یافته بود (13). میزان نبودن در آزمایش‌های دیگر، به کارکردن کود دامی در سال‌های 2016 و 2017 این پژوهش نشان داد که تیمارهای کود شیمیایی که کود مرغی پیش‌تر دریافت کرده بودند به میزان معنی‌داری درازا یافته بودند (13).
شکل 1. تأثیر منع و مقدار نیترژن بر نیترای افزایش میزان نتایج در فصل صوفه (نیترژن قابل دسترس برای ضرورات کشت) پس از برداشت محصول ذرت. F0: F2 و F0 به ترتیب

باقای‌های 217, 375 و 575 کیلوگرم در هکتار کود اوره در کشت قبلی: F2, F3 و F0 به ترتیب باقای‌های 1/2, 1 و 0/3

18.3

تعداد محصول کود در کشت قبلی افزایش سفر قول دسترس برای کیا اول و همچنین افزایش میزان نتایج در فصل صوفه (نیترژن قابل دسترس برای ضرورات کشت) پس از برداشت کشت. به استعداد کلی این مقدار به کود کود می‌باشد که بیشترین میزان کود شیمیایی با مقدار دریافت کرده بودند. نسبت به

دبی نیترازا متفاوت بود. بطور مجموعه دیده بود که نیترژن افزایش در

تعداد 652 کیلوگرم اوره در هکتار باعث تشدید رشد گیاهی کلزا

شدت و آبخیزی مازاد آن موجب شده که میزان شبیه‌ی این

تیمار نتایج در پایان زایش را حمایت نماید. این در حالت

است که این بیشترین سطح کودی از منع کود می‌باشد احتمالاً به

دبل تشدید رشد رویش میانگین کمتری نسبت به 0/171 تعداد کود

می‌باشد که یک اثر در داده سایه است. محققین نشان داده‌اند که به ازای هر

تن کود می‌باشد ضرورتی حداکثر 7/6 کیلوگرم نیترژن در سال بعدی قابل

دسترس خواهد بود (29). نیترژن باعث افزایش سطح برگ در

مرحله گذشته می‌شود و برای این فراهم می‌تواند از دریافت

دوره افزایش بی‌پایان و تثبیت ایجاد شده خوراکی‌های بارور

بیشتری می‌شود (32).

بیشترین تعداد دانه در خوراکی‌های بی‌پایان 87/0/1 تعداد کود

می‌باشد در هکتار به دست آمده و اختلاف آن با کوتی، شاهد
برهمکش پیچیای نیتروژن کشت درت و کود نیتروژن بر...

جدول 1. تجربه واریانس عملکرد کلزا و اجزای آن تحت تأثیر کود نیتروژن و پیچیای نیتروژن مصرفی در کشت قلی

<table>
<thead>
<tr>
<th>عاملکرد</th>
<th>درصد عملکرد</th>
<th>وزن هزار</th>
<th>درجه تعداد خورچین</th>
<th>تعداد دامه</th>
<th>آزادی</th>
<th>تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکرد</td>
<td>76.02 %</td>
<td>0.23</td>
<td>0.00</td>
<td>0.0</td>
<td>2.94</td>
<td>1.50</td>
</tr>
<tr>
<td>روغن</td>
<td>77.49 %</td>
<td>0.27</td>
<td>0.00</td>
<td>0.0</td>
<td>2.94</td>
<td>1.50</td>
</tr>
</tbody>
</table>

نکات

- پیچیای کود مصرفی در کشت قلی (A) خطا a
- میزان کود نیتروژن در کشا (B) خطا b
- a X B

ظرفیت تغییرات (%)

![نمودار]

شکل 2. برهمکش نیتروژن مصرفی در کشت قلی با کود نیتروژن در کشت کلزا بر تعداد خورچین در پوته.

به ترتیب پیچیای 217، 216، 215 و 214 کیلوگرم در هکتار کود اوره در کشت قلی: F1, F2, F3 و F4 به ترتیب نمایش دادند.

مآزاد بر نیاز ذرت در طی زمستان باعث شده که تولید در پیچیای 65 کیلوگرم اوره در هکتار مشابه شده و دیگر سطوح این نوع کود باشد. این در حالی است که منبع آلی نیتروژن به لحاظ داشتن عناصر دیگر و تدریجی آزاد کردن نیتروژن موجب

![نمودار]

در آمارهای از جمله نیتروژن نوام با احتمال آشوبی نیتروژن معدنی

<table>
<thead>
<tr>
<th>F0</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>125</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

![نمودار]

"**" و "***" به ترتیب معنی دار در سطوح احتمال 1% و 5% بدون اختلاف معنی دار.
حاصل حاصل از تجربه واریانس (جدول 1) نشان داد که اثر نوع و میزان کود مصرفی در کشت قیلی، میزان کود نیتروژنی به ترتیب یافته‌ای 217، 215 و 212 کیلوگرم در هفتار کود اوره در کشت قیلی: F_1, F_2 و F_3 به ترتیب یافته‌ای 0/5 12/2 و 18/3 تن در هفتار کود مرغی در کشت قیلی.

پیشنهاد رشد بهره‌وری نیز شده است. تعداد دانه در خورخورنی با افزایش مصرف نیتروژن در کشت کلازا از صفر تا 180 کیلوگرم در هفتار بسیاری یک تابع درجه دو (R2, 0.98، $\gamma=0.725x^2+6.311x+12.035$) به میزان 2/34 افزایش یافته (شکل 3). نیتروژن بیشتر به تولید چسب‌شده بیشتر شده، میزان فتوستانتی را در گیاه افزایش داده و گیاه قادر به تولید و حفظ هر چه بیشتر دانه‌ها در خورخورنی‌ها شده است. افزایش نیتروژن به دلیل کاهش زیرشکل گل‌ها و افزایش سطح سیر گیاهی موجب افزایش تولید مواد فتوستانتی، دوره گل‌دهی و باروری گل‌ها می‌شود (4).

峨 یک کود و نوع کود مصرفی در کشت قیلی بر وزن هزار دانه در سطح احتمال 5% معنی‌دار نشده (جدول 1). بیشترین وزن دانه با قیلی 27/50 تن کود مرغی در هفتار به دست آمد و اختلاف آن

شکل 3 مقایسه میانگین تعداد دانه در خورخورنی (افغ)، وزن هزار دانه (ب) و درصد روزن (ج) کلزا تحت تأثیر قیلی نیتروژن کشت قیلی. F_1, F_2 و F_3 به ترتیب یافته‌ای 217، 215 و 212 کیلوگرم در هفتار کود اوره در کشت قیلی: F_1, F_2 و F_3 به ترتیب یافته‌ای 0/5 12/2 و 18/3 تن در هفتار کود مرغی در کشت قیلی.

با کلیه نیازها، به استناد 0/45 تن منبع کود مرغی در هفتار، معیار بر اساس (شکل 3). از آنجا که بخشی از نیتروژن کود مرغی در سالهای بعد از مصرف برای گیاهان قابل دسترس است (5). و بایاها در زمان پرندان دانه‌ها آزاد سایر تدریجی نیتروژن این کود در مقایسه با کود شیمیایی (24، 22 و 28)، بهره‌وری سطح بالایی، باعث بهبود شاراپت فتوستانتی و در نتیجه افزایش وزن دانه‌ها شده است.

وزن هزار دانه از نظر آماری تحت تأثیر مصرف نیتروژن مصرفی در کشت کلزا قرار گرفت (جدول 1) و تغییرات بین وزن هزار دانه تحت تأثیر افزایش سطح نیتروژن کمتر از 5/ بود (شکل 4).
برهمشکش یافت‌کنی نیتروژن کشت دذر و کود نیتروژن بر گرانش

شکل 2 میانگین تعداد دانه در خورجین (الف)، وزن هزار دانه (ب) و درصد روند (ب) کازا تحت تأثیر کود نیتروژن. 0، 3، 6، 9 و 12 و به ترتیب یافت‌کنی 217، 235 و 652 کیلوگرم در هکتار کود اوره در کشت قبیلی F0، F1، F2، F3 و F4 به ترتیب یافت‌کنی 12/3 و 183/2

در هکتار کود مرغی در کشت قبیلی مصرفی در کازا و برهمشکش آنها بر عملکرد دانه معنی‌دار بود.

بنابراین عملکرد دانه با یافتهای 52/0 تن کود مرغی در هکتار کشت قبیلی همراد با 120 کیلوگرم نیتروژن از منبع اوره در کشت کازا بهای آمد (شکل 5). همچنین کمترین عملکرد دانه به تیمار شاهد بدون مصرف کود اختصاص داشت (شکل 3). با توجه به معنی‌دار شدن اثر مقابل مشخص شد که واکنش عملکرد دانه به مقدار نیتروژن مصرفی در کازا به سطوح عامل اصلی وابسته است.

به گونه‌ای که واکنش عملکرد دانه به یافتهای تیمارهای شیمیایی محدودتر از تیمارهای با مدل‌های دیگر و حداکثر یک محدودیت در یافتهای 652 کیلوگرم کود اوره در هکتار مشاهده شد. سایر پژوهشگران نیز با تلاش کاربرد کود در ذرت بهبود عملکرد این گیاه را با کود مرغی و عدم تغییر عملکرد آن را با کود شیمیایی گزارش کردند (1 و 9).

برهمشکش یافت‌کنی نیتروژن کشت دذر و کود نیتروژن بر گرانش 1/0 تن
فهرست نتایج:

1. آماری از کاهش درصد ریش گلها و در نتیجه افزایش تعداد خوراکی در واحد سطح و نیز افزایش وزن هزار دانه موجب افزایش استفاده کلی از کُرم و کاهش درصد ریشه نشان داده شد. این افزایش درصد ریشه نشان می‌دهد که کرم در کاهش وزن هزار دانه نسبت به کمک‌کننده‌های کامل کپی کرده‌است.

2. نتایج نشان داد که استفاده از کرم در کاهش وزن هزار دانه و کاهش درصد ریشه مهم‌ترین تاثیراتی است که بر روی پیشرفت گل و نشانه‌های آزمایشگاهی باعث می‌شوند.

3. درصد ریشه کرم به درصد ریشه کرم در کاهش وزن هزار دانه نسبت به کمک‌کننده‌های کامل کپی کرده‌است. این افزایش درصد ریشه نشان می‌دهد که کرم در کاهش وزن هزار دانه نسبت به کمک‌کننده‌های کامل کپی کرده‌است.

4. نتایج نشان داد که استفاده از کرم در کاهش وزن هزار دانه و کاهش درصد ریشه مهم‌ترین تاثیراتی است که بر روی پیشرفت گل و نشانه‌های آزمایشگاهی باعث می‌شوند.

5. شکل ۵: برهمکنش نیتروژن مصرفی در کشت قیلی با کود نیتروژن در کشت کلزا بر عملکرد دانه.

6. شکل ۶: برهمکنش نیتروژن مصرفی در کشت قیلی با کود نیتروژن در کشت کلزا بر عملکرد روغن.

7. به ترتیب بهایی ۱۷۱، ۱۷۲، ۱۷۳ و ۱۷۴ کیلوگرم در هكتار کود اوره در کشت قیلی: P1، P2، P3، P4، P5، P6.

8. به ترتیب بهایی ۱۷۱، ۱۷۲، ۱۷۳ و ۱۷۴ تن در هکتار کود مرغی در کشت قیلی.

9. میزان و نوع کود مصرفی در کشت قیلی بر درصد روغن دانه کلزا تأثیر معناداری نداشت. ولی کود نیتروژن در کشت کلزا تأثیر معناداری بر این صفت داشت (جدول ۱). آزمایش بیانگر کاهش درصد روغن با افزایش نیتروژن مصرفی می‌باشد. به گونه‌ای که

که یاد می‌کند (۱۷).
کلولوگ نیتریژن در کلار احتمالاً به دلیل شرایط رطوبتی و یا کاهش درصد رونو ثانویه تولید روغن فرازی دهد.

اگرچه مصرف زیاد آنزیم نیتریژن موجب کاهش درصد روغن می‌گردد، اما این تاثیر روغن نیتروژن موجب کاهش درصد روغن می‌گردد. به طوری که افزایش عملکرد دانه را خاتم نمی‌نماید. به طوری که افزایش عملکرد دانه از طریق افزایش تعداد خرچنگ در واحد سطح و تعداد دانه خرچنگ که ناشی از مصرف نیتریژن است، موجب افزایش عملکرد روغن در واحد سطح دشت است. این نتایج با پایه‌های گذشته دیگر پژوهشگران نیز مطابقت دارد (18).

نتیجه گیری

پایگاه کود اوره مورد استفاده در زراعت ذرت به ویژه سطوح بایستد آن در زراعت باید یکیمصوب است. به نمایه موجب کاهش نیاز به مصرف نیتریژن در کلار این می‌شود به دلیل تولید زیست‌نرازه زیاد در کیفی قلت و در نتیجه نخالی săب عنصر غذایی، مقدار تولید دانه و روغن کلارا به شدت کاهش می‌دهد. باعث مصرف کود در گیاه کلار افزایش تخمین به تلقیات این نتایج نشان می‌دهد که افزایش مصرف کود در گیاه کلار افزایش مصرفی در کشت قلیل به ویژه تخمین متوالی آن (20/0‌تن در هektار) علاوه بر افزایش عملکرد دانه و روغن کلارا در کاهش نیاز این گیاه به نیتروژن نقش اساسی خواهد داشت.

سطح کودی 180 کیلوگرم نیتریژن در هکتار با میانگین 38/67 درصد دارای کمترین میزان روغن دانه و اختلاف آن با سیار تیمارها معنی‌دار بود (شکل 3). نتایج سیار بررسی‌ها نیز نشان می‌دهد که با افزایش مصرف نیتریژن، درصد روغن کاهش می‌یابد (18). با افزایش مقدار نیتریژن بیشتر به‌عنوان تهیه مواد فتوسنتزی افزایش یافته و مواد در دسترس برای استفاده در جریه کاهش می‌یابد و این عامل موجب کاهش درصد روغن شده است (21).

پاسخ عملکرد روغن به کلیه عوامل آزمایشی معنی‌دار بود (جدول 1). با افزایش مصرف نیتروژن از منبع کود مرغی در کشت قلیل به همراه مصرف 120 کیلوگرم کود نیتریژن در هکتار کشت گزارا به دست آورد (شکل 4). همانطور که در شکل 4 مشاهده می‌شود، میانگین پایدار تولید روغن در تیمارهای با سابقه کود مرغی بیشتر از کود اوره است. این نتیجه بیانگر ارزش افزایش کود مرغی بر تأمین عناصر غذایی محصول نیتریژن رشد گیاه (33) و کاهش هزینه‌های کوددهی در دستیابی نیتریژن را به عنوان است. (20). تأمین نیتریژن مراحلی رشد روغنی گروه تولیدی عملکرد متغیر ضروری است. به گونه‌ای که در این پایگاه کودی کشت قلیل به استفاده 100 کیلوگرم نیتریژن در هکتار از منبع کود مرغی افزایش مصرف کود نیتریژن در کشت کلارا 140 کیلوگرم در هکتار باعث افزایش تولید روغن شده است. نباید مصرف بیش از 120

مباحث مورد استفاده

