بررسی فاصله ژنتیکی لایه‌های والدینی بر نریج هیرید بر اساس تجزیه خوش‌های صفات مورفولوژیک

امیریخش بلوجزی، غفار کیانی* و نادعلی باقری

(تاریخ دریافت: ۱۳۹۰/۰۳/۲۶، تاریخ پذیرش: ۱۳۹۲/۰۳/۱۶)

چکیده

ارقام بر نریج هیرید به مقدار ۲۰۰ درصد بیشتر از ارقام معمولی تولید دارند. با اینکه ارقام گذشته نشان می‌دهند که این روند در افرادی مبتنی بر افتزایش عضلانی و گامی مؤثر در جهت مثبت گذارنی باشند. انتخاب لایه‌های والدینی در ایجاد ترکیب‌های ایده‌آل نشان اساسی دارد. با این روند و عدم جهت ارتقاء و تنویع ژنتیکی لایه‌های والدینی بر نریج هیرید ضروری است. در این بررسی، ۱۷ لایه والدینی بر نریج هیرید شامی ۶ لاین برگداندنه پذیره به نام‌های پویا، سپیدرود، پژوهش، R2، IR50، R. R ۵ لاین تا، نمودار، دشت، چپپا و آمل ۲ به همراه ۵ لاین تک‌گل‌دارنده مروده آنها در سال ۱۳۹۰ در مزرعه محققین دانشگاه علوم کشاورزی و منابع طبیعی ساری مورد مطالعه قرار گرفتند. نتایج تجزیه واریانس نشان داد که این ارقام از نظر کلیه صفات تحت بررسی اختلاف بسیار معنی‌دار و وجود دارد که بیانگر تنوع زیاد بین ژنتیکی مورد پرسش است. هم‌اکنون علت تولید با صفات نوعی اعداد نهایی بارور و نسب طول به عرض داشته در جهت مثبت ایجاد صفت عرض دانه در جهت منفی می‌باشد. تجزیه به مؤلفه‌های اصلی پس از دوران و همکاری نشان داد که مهم‌ترین مؤلفه در مجموع ۲۷% درصد از تغییرات کل بین ژنتیک‌ها را توجیه می‌نماید. تجزیه خوش‌های لایه‌های مورد پرسش را در میزان فاصله ژنتیکی ۱۵ در ۴ خوش‌های کلسی گروه‌بندی کرد. با توجه به اینکه برای بهره‌برداری از پدیده هتروژیژن، والدین ناقصی یک‌گروهی دانسته شوند، نتایج این بحث نشان می‌دهد که در هر یک از نهایت بهترین ژنتیک‌ها IR50، R. R2، R و پویا برای تولید آزمایش بر علت هیرید مناسب می‌باشد.

واژه‌های کلیدی: فاصله ژنتیکی، تجزیه به مؤلفه‌های اصلی

1. گروه پیونتکولوزی و اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری

ghkiani@gmail.com

*: مسئول مطالعات، پست الکترونیکی:
مقدمه

در برنامه‌های دورکاری گیاهان خودکشین برای بهرهوری بهتر از تفکیکی میان اکثرمی و بدون این استفاده از آنها ماهاللونی و تجربه به موفقیت‌های اصلی در گروه قرار داده. تناژ حاصل از تجربه به موفقیت‌های اصلی توسط باقی‌مانده بردن نتایج در محققان (6) در بررسی تعریف زنیکی دخاین توابعلی بردن ایران بر اساس صفات مورفولوژیک حاکی از نقص ۶ مؤلفه در توجیهی (۷/۴٪) از توان کلی بهبود تجربه خوش‌علت زنیکی‌ها با روش واریانس حداکثر و معیار فاصله اقیانیستی، زنیکی‌های مورد مطالعه را در چهار گروه طبقه بندی مورد تعیین زده و همکاران (۱۰) با بررسی تعریف زنیکی و جغرافیایی ۴۱۹ رقم برنج با استفاده از آزمون‌های دورکاری و زراعی، آنها را در فصل سه تابع زنیکی ۱۵۰ در شش کلاستر قرار دادند. رحیم سروش و همکاران (۱۵) خصوصیات کمی و کیفی ۳۶ لاین و رقم برنج را به منظور بررسی تعریف زنیکی مورد مطالعه قرار دادند و با انجام تجربه خوش‌علت، زنیکی‌ها را در خوشه گروه‌بندی نمودند. ایسوزی گزارش‌رود و همکاران (۱) در مطالعه خود روز ۲۹ رقم برنج ایرانی و خارجی، با انجام تجربه خوش‌علت‌زونیکی‌های مورد مطالعه را در چهار گروه قرار دادند. متأمل الرحمن و همکاران (۱۳۷) ۲۱ رقم برنج را به هدف انتخاب والدین برای برنامه‌های اصلاحی مطالعه زنیکی و با انجام تجربه خوش‌علت زنیکی‌های برای برنامه‌های اصلاحی در آبنده پیش‌بینی کردند. وانگ و همکاران (۱۸) تنویز زنیکی ۴۱ لاین والدین برنج پیش‌بینی را از طریق تجربه خوش‌علت اسکناس مورفولوژیک و نشانگر بررسی کرده و بر اساس صفات مورفولوژیک از نظر رسیدگی در دو خوشه زودرس تا متوسط رس تا متوسط طبیعی بندی کردند. هدف از این مطالعه، بررسی تنویز زنیکی لاین‌های والدین برنج بهبود برای انتخاب والدین مناسب برای انجام تلاقی و پره‌بر از تلاقی‌های بی‌ثنی می‌باشد.

13 در اصلاح نیان، همبستگی بین صفات از اهمیت ویژه‌ای برخوردار است زیرا برای انتخاب و نوع رابطه زنیکی‌یا غیرزنیکی بین دور یا چند صفت را انتخاب‌گرده کرده (۹). بهره و همکاران (۷) با بررسی ضرایب همبستگی صفات زراعی نشان داده که بین عامل‌کرد دانه با صفات تعداد دانه در خوشه و وزن دانه و تعادل باروری که به‌سه از اجرای عملکرد همبستگی بین عاملی و معنی‌داری وجود دارد. نتایج بررسی تنویز زنیکی بین زنیکی‌های مختلف برنج توسط حسین زاده فشمالی و همکاران (۱۲) نشان داد که صفات کل تعداد پنج، تعداد پنج بارور، تعداد دانه پر در خوشه و وزن تک بونه و درصد امپلوزه همبستگی معنی‌دار و صفات قابل ارتباط بوده، نسبت طول به عرض برگ پرچم، طول خروجی خوشه از غلاف و طول شدن دانه همبستگی مشاهده و معنی‌داری با عملکرد دارد.

19 گونالس (۱۱) با توجه به مؤلفه‌ها و گروه‌بندی
جدول 1. مشخصات لایه‌ها والدینی برنج هیرید مورد بررسی

<table>
<thead>
<tr>
<th>شماره لاین</th>
<th>نام لاین</th>
<th>وزن هزار دانه (g)</th>
<th>عرض طول دانه (mm)</th>
<th>طول دانه (mm)</th>
<th>عرض کل دانه (nm)</th>
<th>ارتفاع پنجه (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ندا</td>
<td>1</td>
<td>0.9</td>
<td>7</td>
<td>15</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>تعمیم</td>
<td>2</td>
<td>0.9</td>
<td>7</td>
<td>15</td>
<td>0.87</td>
</tr>
<tr>
<td>B</td>
<td>چمیا</td>
<td>3</td>
<td>0.9</td>
<td>7</td>
<td>15</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>مال 6</td>
<td>4</td>
<td>0.9</td>
<td>7</td>
<td>15</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>تعمیم</td>
<td>5</td>
<td>0.9</td>
<td>7</td>
<td>15</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>ندا</td>
<td>6</td>
<td>0.9</td>
<td>7</td>
<td>15</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>تعمیم</td>
<td>7</td>
<td>0.9</td>
<td>7</td>
<td>15</td>
<td>0.89</td>
</tr>
</tbody>
</table>

جدول 2. تجزیه و ارتباط صفات مورد بررسی لایه‌ها والدینی برنج هیرید

<table>
<thead>
<tr>
<th>ارتفاع پنجه (cm)</th>
<th>تعداد پنجه (تکرار)</th>
<th>تعداد پنجه (تیمار)</th>
<th>تعداد پنجه (اشباه)</th>
<th>ضریب تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/22</td>
<td>2</td>
<td>15</td>
<td>30</td>
<td>2/88</td>
</tr>
</tbody>
</table>

توجه می‌کنیم که عبارت "%" به ترتیب معنی‌دار در سطح احتمال 1% و 5% است.

زنوتیپ‌های برتر مستلزم توجه به همبستگی صفات می‌باشند (9)، از همبستگی ماده برای به دست آوردن اطلاعات در مورد ارتباط بین صفات و ارتباط آنها با عملکرد استفاده می‌گردد. محاسبه ضرایب همبستگی (جدول 2) نشان داد که همبستگی عملکرد با صفات تعداد پنجه بارور (R=0.5) و نسبت طول به عرض دانه (R=0.6) ضعیف و در جهت مثبت و برای صفات عرض دانه (R=0.9) متوسط و در جهت منفی معنی‌دار می‌باشد. همبستگی صفات ارتفاع با طول خوشی، طول خوشی با وزن هزار دانه و طول دانه با وزن هزار دانه به ترتیب متوسط، ضعیف و متوسط و در جهت مثبت و همبستگی می‌باشد.
جردل 3: متوسط وضعت لایه‌های والدینی برای صفات مورد مطالعه

<table>
<thead>
<tr>
<th>علی‌کدام</th>
<th>وزن</th>
<th>عرض/طول</th>
<th>طول</th>
<th>عرض دانه</th>
<th>طول دانه</th>
<th>تعداد پنجه</th>
<th>ارتفاع</th>
<th>بارور</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t/ha)</td>
<td>(g)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47/74</td>
<td>2/47/4</td>
<td>4/95</td>
<td>1/0/3</td>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>140/179</td>
<td>پریا</td>
</tr>
<tr>
<td>1/0/3</td>
<td>2/47/4</td>
<td>4/95</td>
<td>1/0/3</td>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>140/179</td>
<td>پریا</td>
</tr>
<tr>
<td>2/47/4</td>
<td>1/0/3</td>
<td>4/95</td>
<td>1/0/3</td>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>140/179</td>
<td>پریا</td>
</tr>
<tr>
<td>3/131</td>
<td>8/333</td>
<td>1/0/3</td>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>140/179</td>
<td>پریا</td>
<td></td>
</tr>
<tr>
<td>8/333</td>
<td>1/0/3</td>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>140/179</td>
<td>پریا</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>1/0/3</td>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>140/179</td>
<td>پریا</td>
</tr>
<tr>
<td>3/131</td>
<td>8/333</td>
<td>1/0/3</td>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>140/179</td>
<td>پریا</td>
<td></td>
</tr>
<tr>
<td>8/333</td>
<td>1/0/3</td>
<td>1/0/3</td>
<td>3/131</td>
<td>8/333</td>
<td>140/179</td>
<td>پریا</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌هایی که حداقل دارای یک حرف مشترک هستند از نظر آماری در سطح احتمال 5% با هم اختلاف معنی‌دار ندارند.

بتو، ابتدا، برای انتخاب زنگنه‌های دارای علی‌کدام مورد توجه جزییات عمکرد زیاد با پایستی زنگنه‌های انتخاب شود که عرض دانه کمتری دارند. در مولفه سوم، صفات طول خوشه و ارتفاع بیشترین تصویب در جهت منفی این مقدار را داشته و صفات اصلی جهت منفی بارور بیشترین نقش را در جهت منفی این مقدار داشته. نتایج حاصل از تجربیه به عمل آوردن روش تجزیه به مولفه‌های اصلی توسط رشته و همکاران (16) به مظاهر شناسایی ارکام و دورگاه برک برد و دانه داد که مولفه اصلی و مستقل بی‌معنی خصوصیات مرور شده در عمکرد دانه‌های ابعاد دانه، زمان رسیدگی و زاویه بزرگ برای تعیین از کلی تغییرات بین زنگنه‌ها را توجه نمی‌نماید. تجربه به مولفه‌های اصلی توسط بقایی و همکاران (6) رؤی زنگنه‌های به جهت منفی بارور، از 27/34/75 درصد از تغییرات کل می‌باشد (جدول 3). این این بررسی‌ها صفات با ضرایب عمیق بیش از 5/5 به عنوان ضرایب معنی‌دار و مؤثر در نظر گرفته شده‌اند. در مولفه اول، صفات طول دانه و وزن هزار دانه در جهت منفی و صفت میثبت را در جهت منفی تأثیرگذار بودند. به همین ترتیب، نتایج حاصل از ضرایب همبستگی که در آنها همبستگی وزن هزار دانه با طول دانه و با تعداد کل دانه در خوشه منفی به دست آمده و تأثیر سیستم. در مولفه دوم، بزرگترین ضرایب عمیق منفی و منفی بارورهای بارور منفی به ترتیب طول به عرض دانه و عمکرد می‌باشد و عرض دانه در جهت منفی مؤثر بوده است. این مؤلفه منفی ممکن که عرض دانه روا نسبت طول به عرض دانه و عمکرد در جهت منفی تأثیرگذار
جدول 4: ضرایب همبستگی بین صفات مختلف

<table>
<thead>
<tr>
<th>ارتقای پنجه</th>
<th>تعداد پنجه</th>
<th>ارتفاع</th>
<th>طول خوشه</th>
<th>طول خوشه در خوشه</th>
<th>وزن هزار دانه</th>
<th>وزن هزار دانه</th>
<th>عرض دانه</th>
<th>عرض دانه در خوشه</th>
<th>عملکرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتقای 1</td>
<td>تعداد پنجه: 0/100 - 1</td>
<td>بارور</td>
<td>2/68</td>
<td>0/198</td>
<td>0/078</td>
<td>0/084</td>
<td>0/435</td>
<td>0/394</td>
<td>0/018</td>
</tr>
<tr>
<td>طول</td>
<td>0/124</td>
<td>0/369</td>
<td>0/204</td>
<td>0/312</td>
<td>0/114</td>
<td>0/419</td>
<td>0/363</td>
<td>0/267</td>
<td>0/085</td>
</tr>
<tr>
<td>خوشه</td>
<td>0/171</td>
<td>0/328</td>
<td>0/258</td>
<td>0/486</td>
<td>0/119</td>
<td>0/486</td>
<td>0/359</td>
<td>0/267</td>
<td>0/139</td>
</tr>
<tr>
<td>تعداد دانه در خوشه</td>
<td>0/108</td>
<td>0/277</td>
<td>0/328</td>
<td>0/486</td>
<td>0/108</td>
<td>0/328</td>
<td>0/328</td>
<td>0/267</td>
<td>0/277</td>
</tr>
<tr>
<td>وزن هزار دانه</td>
<td>0/345</td>
<td>0/394</td>
<td>0/394</td>
<td>0/363</td>
<td>0/345</td>
<td>0/363</td>
<td>0/363</td>
<td>0/363</td>
<td>0/139</td>
</tr>
<tr>
<td>عملکرد</td>
<td>0/328</td>
<td>0/394</td>
<td>0/394</td>
<td>0/363</td>
<td>0/328</td>
<td>0/363</td>
<td>0/363</td>
<td>0/363</td>
<td>0/277</td>
</tr>
</tbody>
</table>

برنرهی معنی‌دار در سطح احتمال 0/05 و 0/01
جدول ۵. ماتریس مؤلفه پس از دوران وربیکس و واریانس نسبی و تجمعی صفات مورفولوژیک با سه مؤلفه اصلی اول در لایه‌های ولدینی برنج هیرید

<table>
<thead>
<tr>
<th>صفات</th>
<th>سوم</th>
<th>دوم</th>
<th>اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع (cm)</td>
<td>0/22</td>
<td>0/01</td>
<td></td>
</tr>
<tr>
<td>تعداد پنجه بارور در بوته</td>
<td>0/21</td>
<td>0/02</td>
<td></td>
</tr>
<tr>
<td>طول خونه (cm)</td>
<td>0/40</td>
<td>0/40</td>
<td></td>
</tr>
<tr>
<td>تعداد كل دانه در خونه</td>
<td>0/72</td>
<td>0/72</td>
<td></td>
</tr>
<tr>
<td>طول دانه (mm)</td>
<td>0/95</td>
<td>0/95</td>
<td></td>
</tr>
<tr>
<td>عرض دانه (mm)</td>
<td>0/88</td>
<td>0/88</td>
<td></td>
</tr>
<tr>
<td>عرض/طول دانه</td>
<td>0/44</td>
<td>0/44</td>
<td></td>
</tr>
<tr>
<td>وزن هزار دانه (g)</td>
<td>0/75</td>
<td>0/75</td>
<td></td>
</tr>
<tr>
<td>عملکرد (t/ha⁻¹)</td>
<td>0/23</td>
<td>0/23</td>
<td></td>
</tr>
<tr>
<td>واریانس نسبی (%)</td>
<td>27/17</td>
<td>27/17</td>
<td></td>
</tr>
<tr>
<td>واریانس تجمعی (%)</td>
<td>27/17</td>
<td>27/17</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱. بازیابیت مؤلفه‌های اول و دوم زنویپ‌ها بر اساس داده‌های صفات مورفولوژیک

(1)پویا، 2)رنگ، 3)رطوبت، 4)سیب‌پرود، 5)پژوهش، 6)IR50، 7)کنترل، 8)دشت، 9)چم، 10)پذیرش، 11)ابل، 12)تند، 13)تند، 14)دشت، 15)چم، 16)ابل)
شکل 2. دندورگرام مربوط به خوش‌نمایی نی‌هایه و دلینی برنج هیرید به روش وارد و معیار فاصله اقیانوسی

جدول ۶. میانگین خوش‌نمایی حاصل از تجزیه خوش‌نمایی نی‌هایه و دلینی برنج هیرید بر اساس صفات

<table>
<thead>
<tr>
<th>رقم مقادیر</th>
<th>میانگین خروش (cm)</th>
<th>ارتقاء</th>
<th>ارقام</th>
<th>خروش</th>
<th>طول دانه (mm)</th>
<th>تعداد دانه</th>
<th>طول دانه (mm)</th>
<th>تعداد پنجه دانه</th>
<th>وزن هزار دانه (g)</th>
<th>وزن هزار دانه (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۱۶/۷۵</td>
<td>۱</td>
<td>۶۸۵/۷۵</td>
<td>۱۹/۰۵</td>
<td>۲/۸/۴۲۵</td>
<td>۸/۳۷۴/۱۷۷</td>
<td>۲۱/۴۵</td>
<td>۲۱/۴۵</td>
<td>۹/۰۴۵</td>
<td>۹/۰۴۵</td>
</tr>
<tr>
<td>۲</td>
<td>۹۷/۲۹</td>
<td>۲</td>
<td>۶۸۰/۴۵</td>
<td>۲/۸/۴۵</td>
<td>۲/۴۰۰۱</td>
<td>۲۱/۴۵</td>
<td>۲۱/۴۵</td>
<td>۲۱/۴۵</td>
<td>۹/۰۴۵</td>
<td>۹/۰۴۵</td>
</tr>
<tr>
<td>۳</td>
<td>۷۳/۸۴</td>
<td>۳</td>
<td>۶۸۰/۴۵</td>
<td>۲/۴۰۰۱</td>
<td>۲/۴۰۰۱</td>
<td>۲۱/۴۵</td>
<td>۲۱/۴۵</td>
<td>۲۱/۴۵</td>
<td>۹/۰۴۵</td>
<td>۹/۰۴۵</td>
</tr>
<tr>
<td>۴</td>
<td>۶۸/۷۲</td>
<td>۴</td>
<td>۶۸۰/۴۵</td>
<td>۲/۴۰۰۱</td>
<td>۲/۴۰۰۱</td>
<td>۲۱/۴۵</td>
<td>۲۱/۴۵</td>
<td>۲۱/۴۵</td>
<td>۹/۰۴۵</td>
<td>۹/۰۴۵</td>
</tr>
</tbody>
</table>
Genetic distance analysis of hybrid parental lines based on morphological traits and RAPD markers. Omonrice 7: 57-69.

