تأثير کاربرد سایکولس و نیتروزن بر عملکرد و اجزای عملکرد کلزاپ پاییزه در تراکم‌های مختلف بوته

سولماز مجد و بحیثی امام

(تاریخ دریافت: ۱۳۹۰/۰۹/۱۵، تاریخ پذیرش: ۱۳۹۱/۰۴/۲۳)

چکیده
در این پژوهش، که به صورت دو آزمایش مزرعه‌ای و گلخانه‌ای در سال‌های ۱۳۸۸ و ۱۳۸۹ در محل ایستگاه تحقیقاتی دانشگاه شیراز طراحی و اجرا شد، تأثیر سطح مختلف نیتروزن، تراکم بوته و سایکولس بر عملکرد و اجزای عملکرد کلزاپ پاییزه رقم طلایی و مورد بررسی قرار گرفت. آزمایش مزرعه‌ای به صورت کرت های دویار خرد شده در قالب یک هکتار کامل تصادفی اجرا شد. تیمارها شامل نیتروزن (۰، ۸، ۱۶ و ۲۴ کیلولیتر در هکتار) به عنوان فاکتور اصلی و تراکم بوته (۰، ۵۰ و ۱۰۰ بوته در متر مربع) به عنوان فاکتور فرعی طراحی گردید. آزمایش گلخانه‌ای، که به صورت فاکتوریل بر پایه طرح کاملاً تصادفی اجرا شد، شامل نیتروزن (صفر، ۵۰، ۱۰۰، ۲۰۰ و ۴۰۰ کیلولیتر در هکتار) و سایکولس (صفر، ۰/۴ و ۴/۸ لیتر در هکتار) بود. نتایج نشان داد که بهترین عملکرد دانه از تیمار ۲۰۰ کیلولیتر در هکتار نیتروزن، کاربرد ۲/۸ لیتر سایکولس در هکتار و تراکم ۹۰ بوته در متر مربع (به ترتیب ۶۳/۳، ۶۳/۳، ۶۳/۳، ۶۳/۳ و ۶۳/۳ گرم در متر مربع) به دست آمد. همچنین کاربرد ۲/۸ لیتر سایکولس در هکتار باعث افزایش تعداد خورچین در بوته و وزن خشک نهایی بوته‌ها گردید. افزایش تراکم بوته از ۰ به ۷۰ بوته در متر مربع باعث کاهش تعداد خورچین در بوته و وزن خشک نهایی بوته و تعداد دانه در خورچین گردید. به نظر می‌رسد در شرایط مناسب با پروپان حاضر، به‌ویژه استفاده از ۲۰۰ کیلولیتر در هکتار نیتروزن، ۱/۴ لیتر در هکتار سایکولس و تراکم ۹۰ بوته در متر مربع را برای دستیابی به حداکثر عملکرد دانه کلزاپ پاییزه رقم طلایی توصیه کرد.

واژه‌های کلیدی: دانه‌های روح‌نهایی، کودده‌های بپینه، تنظیم کندنده، رشد

1. گروه زراعت، دانشگاه کشاورزی، دانشگاه شیراز
yaemam@gmail.com

*: مسئول مکاتبات، پست الکترونیکی
تآثیر کاربرد سایکوسول و نیتروزر بر عملکرد و اجزای عملکرد...

آزمایش با استفاده از برنامه SAS تجزیه آماری در سطح احتمال 5/ مقایسه شدند.

نتایج و بحث

تعداد خرچنگین در بونه

تعداد خرچنگین در بونه یکی از مهم‌ترین اجزای عملکرد است. کاهش عملکرد یا گه‌ای عامل‌که به‌عنوان یکی از خرچنگی‌ها از یک سو در برگرده‌دهای بوده و از توجه اولیه کننده موارد پرورده مورد نیاز دانه‌ها می‌باشد. تأثیر تیمار نیتروزر در هر دو آزمایش تعداد خرچنگین در بونه معنی‌دار گردید (جدول 1 و 2). به‌صورتی که تعداد خرچنگی در بونه با افزایش میزان کود نیتروزر افزایش یافت (جدول 3 اسکاتس و همکاران 23) گزارش کردن که از میزان اجزای عملکرد دانه کاهش تعداد خرچنگی در بونه بیشتری تأثیر را از میزان کود نیتروزر مصرف شده می‌یابد. طبق تحقیق برخی از پژوهش‌های، استفاده از نیتروزر باعث افزایش معنی‌دار تعداد شاخه‌ها در هر بونه شده و از راه افزایش سطح مفرشته و تولید مواد پرورده، موجب تبدیل تعداد بیشتری از خرچنگین می‌شود (21 و 22). افزایش تراکم 70% در 90 بونه در مت معنی‌دار این کاهش معنی‌دار تعداد خرچنگین در بونه گردید (جدول 4). با افزایش تراکم نیتروزر در داخل سطح زیر شاخه‌های فرعی و تعداد خرچنگی در بونه کاسته می‌شود (23). در پژوهش حاضر، افزایش تراکم بونه در مت معنی‌دار این کاهش را جوان کرد و بیشترین تعداد خرچنگین در بونه از تراکم 90 بونه به‌دست آمد (جدول 4). کاربرد سایکوسول باعث تغییر معنی‌دار تعداد خرچنگی در بونه نسبت به شاهد نیتروزر (جدول 1 و 2). تفاوت بین تعداد خرچنگی در بونه در سطح متفاوت کاربرد سایکوسول در هر اجماع نیتروزر افزایش و کاهش معنی‌دار در نتیجه (جدول 5) که با نتایج پژوهش معنی‌دار و امام (31) محاسبه داده بر طبق گزارش‌ها، کاندیدات‌های رشد کا کاهش ارتفاع بونه، عمومی تر کردن شاخه‌ها و افزایش قطر ساقه باعث افزایش تعداد شاخه‌های فرعی در بونه و افزایش کارایی فوسترزر

در مهار 1 مهاره با استفاده از رویاک طرح کالا در گلدن‌های چهار کیلوگرمی و به صورت فاکتوربول در قالب طرح کامل کالا است که از کاربرد در کلها، تحقیقات به‌خوبی زراعت در آزمایش انجام گرفت. فاکتورهای ایمنی شامل پنج سطح کود نیتروزر (صفحه، 50، 100 و 150 کیلوگرم در هکتار) و سه سطح سایکوسول (صفحه، 1/8 و 1/4 لیتر در هکتار) بود. عملکرد تحقیق که در گل‌ها در پایان قبل رشد با برداشت بونه صورت گرفت، و با نشان دادن بونه‌ها گدازه‌ای نشانه‌ای به مدت 48 ساعت در آن در دمای 25 درجه سلسیوس مشخص شد. داده‌های هر دو

125
جدول 1. میانگین مربوطات اثرهای اصلی و برهمکنش نیترژن، تراکم بوته و غلظت‌های متغیرات سایکوسل بر عملکرد دانه

<table>
<thead>
<tr>
<th>عملکرد دانه</th>
<th>وزن خشک هر بوته</th>
<th>وزن هزار تعداد دانه در</th>
<th>تعداد خورچین در</th>
<th>درجه</th>
<th>منابع تغییرات</th>
<th>آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترژن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای (نیترژن)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم بوته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم بوته × نیترژن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای (تراکم بوته)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سایکوسل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سایکوسل × تراکم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سایکوسل × نیترژن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اثر مقابل سه گانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای آزمایش</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. میانگین مربوطات اثرهای اصلی و برهمکنش نیترژن و غلظت‌های متغیرات سایکوسل بر عملکرد دانه

<table>
<thead>
<tr>
<th>عملکرد دانه</th>
<th>وزن خشک هر بوته</th>
<th>وزن هزار تعداد دانه در</th>
<th>تعداد خورچین در</th>
<th>درجه</th>
<th>منابع تغییرات</th>
<th>آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایکوسل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترژن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سایکوسل × نیترژن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای آزمایش</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنی‌دار در سطوح احتمال 1% و 5%
جدول ۳. مقایسه میانگین‌های صفات مورد مطالعه تحت تأثیر تیمار تیتروزن در مزرعه

<table>
<thead>
<tr>
<th>میانگین‌ها (کیلوگرم)</th>
<th>وزن خاک‌خود (گرم در ناحیه)</th>
<th>تعداد خرچین (گرم در بونه)</th>
<th>نت‌گیری (گرم در بونه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیتروزون</td>
<td>۲۴۳/۸۹</td>
<td>۲۳/۸۵</td>
<td>۱۲/۸۱</td>
</tr>
<tr>
<td></td>
<td>۲۷۶/۳۳</td>
<td>۲۴/۸۷</td>
<td>۱۲/۴۳</td>
</tr>
<tr>
<td></td>
<td>۵۳۳/۱۷</td>
<td>۲۸/۱۰</td>
<td>۱۶/۴۴</td>
</tr>
<tr>
<td></td>
<td>۵۲/۱</td>
<td>۲۹/۸۷</td>
<td>۱۶/۰۵</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های با حروف مشابه اختلاف معنی‌داری ندارند (0.05 ≤). (LSD)

جدول ۴. مقایسه میانگین‌های صفات مورد مطالعه تحت تأثیر تراکم بونه در مزرعه

<table>
<thead>
<tr>
<th>میانگین‌ها (کیلوگرم)</th>
<th>وزن خاک‌خود (گرم در ناحیه)</th>
<th>تعداد خرچین (گرم در بونه)</th>
<th>نت‌گیری (گرم در بونه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراکم بونه (بوته در هکتار)</td>
<td>۴۶/۸۵</td>
<td>۳۸/۸۵</td>
<td>۱۵/۹۵</td>
</tr>
<tr>
<td></td>
<td>۴۴/۱۰</td>
<td>۳۸/۵۰</td>
<td>۱۵/۱۵</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های با حروف مشابه اختلاف معنی‌داری ندارند (0.05 ≤). (LSD)

جدول ۵. مقایسه میانگین‌های صفات مورد مطالعه تحت تأثیر سایکوسل در مزرعه

<table>
<thead>
<tr>
<th>میانگین‌ها (کیلوگرم)</th>
<th>وزن خاک‌خود (گرم در ناحیه)</th>
<th>تعداد خرچین (گرم در بونه)</th>
<th>نت‌گیری (گرم در بونه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایکوسل (الیتر در هکتار)</td>
<td>۲۶/۱۱/۶۷</td>
<td>۳۵/۷۵</td>
<td>۱۶/۳۴</td>
</tr>
<tr>
<td></td>
<td>۵۷/۳/۶</td>
<td>۵۳/۸۵</td>
<td>۱۲/۳۴</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های با حروف مشابه اختلاف معنی‌داری ندارند (0.05 ≤). (LSD)

گشته و از این راه بر تعداد خرچین در بونه می‌افزایند (۱۰). به علاوه، سایکوسل در تراکم زیادی بونه‌ها بیشترین تأثیر را از راه کاهش طول میانگین‌های طولی به جا می‌گذارد (۹).

تعداد دانه در خرچین
نیتروزون در دو آزمایش تأثیر بسیار معنی‌داری بر تعداد...
افزایش تعداد دانه در بوته می‌باشد. با افزایش تراکم بوته، تعداد دانه در خورjąین تغییرات معنی‌داری داشت (جدول ۱ و ۲). بیشترین تعداد دانه در خورجاری از تراکم ۷۰ بوته در متر مربع به دست آمده (جدول ۲) که تأثیر اصلی از این افزایش با یافته‌های کمی، دسته‌گذاری و تعداد نمونه‌ها در افزایش، هر طبق خورجاری، افزایش تعداد دانه در هر بوته در حدود ۰/۲ درآمده است.

مواد پورورده از برای تشکیل دانه‌ها می‌شود (۱۶ و ۱۷). استفاده از سایکوس تاثیر معنی‌داری را (کاهشی) بر تعداد دانه در خورجاری در هر دو آزمایش در سطح ۱/۰ داشت (جدول ۱ و ۲). سایکوس سایکوس با افزایش تعداد خورجاری در بوته همراه است و بر طبق کارهای آزمایشگران و نیکول (۲) تعداد دانه در خورجاری و تعداد خورجاری در بوته با یکدیگر همبستگی معنی‌داری دارد.

وزن هزار دانه

رونده تغییرات وزن هزار دانه نسبت به اعمال تیمارها مختلف نیترژن، تراکم بوته و سایکوس تفاوت قابل توجهی نشان نداد (جدول ۱ و ۲). به نحوی که تعداد تیمارها از نظر وزن هزار دانه در پس گروه آماری قرار داشتند. وزن هزار دانه از تراکم افزایش عامل دانه کلرک است که تحت تأثیر شرایط محیطی قرار داشته و یک ویژگی به نسبت ثابت و قابل توجهی بود. (۲) در پژوهش حاضر نیز نتایج مثبتی به نسبت مادات در هر دو آزمایش، کلیاتها و مزروعه‌ها مؤثر همین موضوع می‌باشد.

عملکرد دانه

افزایش مصرف نیترژن در هر دو آزمایش باعث تغییر معنی‌دار عملکرد دانه کلرک در محیط ۱/۲ نیترژن گردیده؛ افزایش تراکم بوته با ایجاد رقابت بین بوته در جذب آب و عناصر غذایی باعث کاهش مقدار خشکی تولیدی در هر بوته می‌گردد (۱۱ و ۱۸).

عملکرد بوته

افزایش مصرف نیترژن در هر دو آزمایش باعث تغییر معنی‌دار عملکرد بوته کلرک در سطح ۱/۲ نیترژن گردیده، افزایش تراکم بوته با ایجاد رقابت بین بوته در جذب آب و عناصر غذایی باعث کاهش مقدار خشکی تولیدی در هر بوته می‌گردد (۱۳ و ۱۹).
جدول ۶ مقایسه میانگین های صفات مورد مطالعه تحت تأثیر تیمار نیتروژن در گلخانه

<table>
<thead>
<tr>
<th>میانگین‌ها</th>
<th>نیتروژن (کیلوگرم در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک هر بوته (گرم)</td>
<td>تعداد دانه‌های خوراکی در بوته (گرم)</td>
</tr>
<tr>
<td>۷/۲۸d</td>
<td>۸/۲۳b</td>
</tr>
<tr>
<td>۷/۸۱c</td>
<td>۷/۳۲a</td>
</tr>
<tr>
<td>۸/۳۴a</td>
<td>۹/۲۴b</td>
</tr>
<tr>
<td>۹/۴۴a</td>
<td>۱۰/۵۵b</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌ها با حروف مشابه اختلاف معنی‌داری ندارند (0.05≤LSD).

جدول ۷ مقایسه میانگین‌های صفات مورد مطالعه تحت تأثیر ساکوسول در گلخانه

<table>
<thead>
<tr>
<th>میانگین‌ها</th>
<th>ساکوسول (لیتر در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک هر بوته (گرم)</td>
<td>تعداد دانه‌های خوراکی در بوته (گرم)</td>
</tr>
<tr>
<td>۸/۲۸b</td>
<td>۹/۸۱a</td>
</tr>
<tr>
<td>۸/۳۱a</td>
<td>۹/۴۲b</td>
</tr>
<tr>
<td>۹/۴۳a</td>
<td>۱۰/۳۵b</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌ها با حروف مشابه اختلاف معنی‌داری ندارند (0.05≤LSD).

شکل ۱. میانگین عملکرد دانه در واحد گلدان تحت تأثیر نیتروژن و میزان CCC مصرفی

بتون‌هایی که در دایره حروف مشابه هستند اختلاف معنی‌داری در سطح ۵% ندارند.
نتیجه‌گیری

به طور کلی، نتایج پژوهش حاضر نشان داد که افزایش تراکم از 30 به 90 بوته در مت瑞 مربع با کاهش معنی‌دار نسبت به تعداد خورجین در بوته و وزن خشک گیاه در طی دوره‌های مختلف عامل نمودار آزمایش عمدتاً عامل باعث افزایش تعداد خورجین در بوته و وزن خشک گیاه در طی دوره‌های مختلف عامل نمودار آزمایش عمدتاً عامل باعث افزایش تعداد خورجین در بوته و وزن خشک گیاه در طی دوره‌های مختلف عامل نمودار آزمایش عمدتاً عامل باعث افزایش تعداد خورجین در بوته و وزن خشک گیاه در طی دوره‌های مختلف عامل نمودار آزمایش عمدتاً عامل باعث افزایش تعداد

افتاده از سایکوسل در هر درآم، باعث افزایش 6/28 لیتر در هکتار سایکوسل به‌دست آمد (جدول 5). با این حال نتایج برخی پژوهشگران، کاربرد کندنده‌های رشد در افزایش تعداد ثابت به خشک‌سازی پیش‌بازی‌های سایکوسل گردد و به‌دین تریب خورجین باعث شد که مجزا نمگردید. باعث افزایش تعداد ثابت به خشک‌سازی پیش‌بازی‌های سایکوسل گردد و به‌دین تریب خورجین باعث شد که مجزا نمگردید. باعث افزایش تعداد ثابت به خشک‌سازی پیش‌بازی‌های سایکوسل گردد و به‌دین تریب خورجین باعث شد که مجزا نمگردید. باعث افزایش تعداد ثابت به خشک‌سازی پیش‌بازی‌های سایکوسل گردد و به‌دین تریب

منابع مورد استفاده

