کچیده
این آزمایش به منظور بررسی تأثیر تنش خشکسال بر پرولین، قندهای محلول، محتوای نسبی آب برگ، غلظت بیون، سدیم و پتاسیم برگ، نسبت کلروپتیه‌ها از برگ‌ها و عملکرد دانه در ارتفاع بهار کلزا در قالب تحقیقات دانشگاه پاسوج طی بهار سال 1389 انجام شد. آزمایش به صورت‌های تکراری در قالب طرح گفتمان‌نامه محلودی با سه تکرار اجرا گردید. در این آزمایش، کلروپتیه‌ها کلروپتیه کلزا شمل شن برگ و زنوتیپ. به سه سطح (آرایه پس از 20 و 40 و 60 درصد تخلیه رطوبی (Regent و Marnoo، Kroko، Kosa، CR3250، CR3189 (خاک) مورد بررسی قرار گرفتند. نتایج نشان داد که بهبودکنش اثر آب‌دار و زنوتیپ بر تیمار صفات مورد ارزیابی، بخشی فلزات تیمار، اثر مثبت و بود. تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و میزان پتاسیم در Zn نسبت‌های محلودی، غلظت بیون سدیم و کلروپتیه‌ها از برگ‌ها در اثر تنش خشکسال افزایش یافته و میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و میزان پتاسیم در Zn نسبت‌های محلودی، غلظت بیون سدیم و کلروپتیه‌ها از برگ‌ها در اثر تنش خشکسال افزایش یافته و میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد دارد. به جهت دانه، تیمارهای پاسو نسبت این میزان پتاسیم و محتوا برگ کاهش یافته و Marnoo، Kroko، Kosa، Regent و غلظت سدیم برگ کمتری برخورد D

واژه‌های کلیدی: پتاسیم، پرولین، قندهای محلول، محتوا نسبی آب

1. گروه وزارت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه پاسو
 yadavi53@yahoo.com

* : مسئول مکاتبات، پست الکترونیکی:

145
مقدمه

رشد گیاهان به وسیله نشانه‌های متعددی نظیر شوری، خشکی، گرم، سرما و سبب فلزات سنگین تأثیر قرار می‌گیرد. خشکی به عنوان کمیته رطوبت خاک به اندازه‌ای که موجب کاهش رشد گیاه شود تعریف می‌شود. این تعریف نشان دهنده وضع کیفی ابتدا استفاده در خانه بوده و وضع اب داخل گیاه در نظر گرفته شده است. لذا از تغییرات نظیر زراعی، تنش خشکی شرایطی است که از نظر نقداً و توزیع به اندازه‌ای توسط گیاه جریان عملکرد بالقوه خود را تولید. کند و این پیدا موجب آسیب به گیاه و تحولاتی در پروت پنتاسیل نتایجی عملکرد گیاه می‌شود. میزان آن آسیب پیشی به نوع گیاه و شرایط جوی موجب تغییر و تعریف دارد (21). آثار اولیه تنش خشکی، کمبود آب از گیاه در است و این اتفاق زمانی می‌افتد که میزان تبخیر و تعریف گیاه از مقدار آن که گیاه توسط ریشه‌ها جذب می‌کند. کمبود آب سبب کاهش فشار آرامس می‌شود و این آنچه که رشد و توسه سلول‌های باشند.

نام عناصر، پتاسیم یکی از مهم‌ترین کاتیون‌های مورد نیاز گیاه می‌باشد. این کاتیون در توزیع وابستگی به وضعیت آب در کلروفیل در برای خطرات اکسیداسیونی نوری می‌شود (25). پتاسیم اولین کاتیون معدنی است که در پاسخ به شرایط کم‌آبی انتاژیه می‌شود و نقص کلیدی در زبان دندان روزه‌ها ایفا می‌کند (19). گیاهان که پتاسیم پیشتری دارند، سازگاری بیشتری به کمبود آب نشان می‌دهد و در زننیتیم مقاوم به خشکی، در زمان نشانه افزایش پتاسیم در اندازه‌ها مشاهده است (24). در تحقیق مراد شاهی و همکاران (15) و اخوندی و همکاران (23) نشان آب سرعت جذب پتاسیم را ترتیب در ارقام مختلف کلارا و بیوش داد. بسته به سطح، کمبود پتاسیم را در کیفیت افقی می‌کند. باتری (2) نوری تأثیر نشان خشکی بر نیاز بیولوژیک ارشدی تأثیر گرم کرده که نشان خشکی مالیم در اندازه‌های اکارتائیت غلفت سپسیم برگ می‌شود. ولی با افزایش شدت نشان خشکی، میزان پتاسیم برگ می‌شود و لذا سبب جلوگیری از رشد و بهبود روزه‌ها می‌گردد (17). نشانه‌های محلول در دیگر اسولوتیه‌های سازگار همکاره که در شرایط نشان خشکی تجمع یافته و تجمع آن در داخل سلولها کمک می‌کند تا پتانسیم آب سلول کاهش یافته و اب بیشتری برای حفظ فشار آرامس در داخل سلول باقی مانند (2). از محنتی نسبت آب برگ می‌توان به عنوان یک صفت قابل انتقادی در میدان‌های مقدراً به وضعیت آب نظام تأثیر قرار می‌گیرد. شرایط کرده که نشان نشان خشکی شرایطی است که از نظر نقداً و توزیع به اندازه‌ای توسط گیاه جریان عملکرد بالقوه خود را تولید. کند و این پیدا موجب آسیب به گیاه و تحولاتی در پروت پنتاسیل نتایجی عملکرد گیاه می‌شود. میزان آن آسیب پیشی به نوع گیاه و شرایط جوی موجب تغییر و تعریف دارد (21). آثار اولیه تنش خشکی، کمبود آب از گیاه در است و این اتفاق زمانی می‌افتد که میزان تبخیر و تعریف گیاه از مقدار آن که گیاه توسط ریشه‌ها جذب می‌کند. کمبود آب سبب کاهش فشار آرامس می‌شود و این آنچه که رشد و توسه سلول‌های باشند.
قرار گرفتن. لازم به ذکر است که زنوتپ‌هایی در مؤسسه Leibniz زنوتک‌گیاه و تحقیقات گیاهان زراعی کشور آلمان (Institute of Plant Genetics and Crop Plant Research, IPK) به شدت بافت و چشم‌های رنگی به هم‌سازی به سبدگی در گزینه‌ها بوده و مکانیکی از منابع منابع اویون آبی، آبی-نارنجی، نارنجی، قرمز، هفتوندان و همکاران (9) با مطالعه‌های بررسی شده و نشان دهنده در فرهنگ‌های غربی و افراشی می‌باشد. برای جلوگیری از ممنوع‌گیری می‌باشد.

می‌تواند بیانگر مقدار تأثیر مناسب شکل گیاهی به داشت.

با توجه به اهمیت صفت‌های جهت شکل و نقش آنها در بررسی تحمیل، این مراحل که در گیاهان زراعی، جایگاه آن در دانشگاه آکادمیک به عنوان یک گیاه روغنی مهم و همچنین وقوع سایر مشکلات به دلیل فقیر گرفتن کشور ایران در طبقه‌بندی شکل و نقش حسک، این پژوهش به‌عنوان بررسی منابع تحمیل به شکل زنوتیب کلزاً بهره بخش استفاده از مهندسی ویژگی‌های فوق‌الذکر طراحی گردید.

مواد و روش‌ها

این آزمایش در محیط‌ها و نتایج داشته‌ای به پایه‌گذاران در بهتر سال 1398 به صورت فاکتوریلی در قالب طرح کاملاً تصادفی با 3 تکرار اجرا گردید. فاکتورهای آزمایشی شامل شکل زنوتیب .CR3250 .CR3189 .Kosa .Kroko مختلط کلزاً به‌هاره و تیمارهای آبی در سه سطح (آبیاری .Regent و Marnoo پس از 10 .20 و 40 درصد تهیه رطوبی خاک) مورد بررسی
برای اندازه‌گیری صفات فیزیولوژیک مورد نظر در مرحله گله‌کا، نمونه برداری از یکی از دو گلدن از هر تیمار صورت گرفت. جهت اندام‌گیری میزان پرولین و نتیجه‌ها محلول، ابتدا لازم بود تا عصاره کلیکی از گرگ‌ها تهیه شود. بدین منظور گرم از بافت نازه برگ از تهیه شده در هوابان کامل‌الله گردید و طی چند مرحله توسط اندازه‌گیری استخراج شد. سپس به روش پاکیون و لولشکر (300 و به کمک Perkin اسپکتروفیومن (مدل Lambda EZ201) ساخت شرکت اسپکتروفیومن آمریکا) میزان پرولین در طول میو 515 نانومتر و تبدیل به کمک منحیه و استحنج به حساب میکروموکل بر گرم وزن تر برگ محاسبه شد. برای اندام‌گیری صفات محلول نیاز از روش ایریگین و همکاران (134) استفاده شد. بدین صورت که 500 میلی‌لیتر از عصاره الکل تهیه و 500 میلی‌لیتر آب تازه تهیه شده 365 میلی‌گرم از میزان لیتر استاد سولفولوئین (79 و نانومتر بر بیانیه به آن اضافه شده و به مدت 10 دقیقه در حمام آب جوش قرار داده شد. سپس میزان حجم نمونه‌ها در طول میو 515 نانومتر با اسپکتروفیومن قرانیت گردید. منحیه و استحنج با استفاده از استیواند اگرکنس و میزان صفات محلول نمونه‌ها از میکروموکل بر گرم وزن تر برگ محاسبه گردید. برای اندام‌گیری صفات محلول نمونه‌ها به مدت 90 دقیقه در حمام آب جوش قرار داده شد و بعد از ذوب کناد از گلدن‌ها باز کنید. نمونه‌ها به مدت 48 ساعت می‌گذرد. سپس میکرومونه‌ها در طول میو 75 درجه سلسیوس در آون خشونت شدند. سپس یک گرم از نمونه خشونت شده توزیع و در کوره با دمای 40 درجه سلسیوس به مدت 4 ساعت حاکم شد. خاکستر مورد نظر بعد از اضافه کردن 5 میلی‌لیتر اسید کلرید سوی و نیترات روغن هیتر قرار داده شد. شرکت جوشیدن. محلول حاصل از گاز صفحه عبور داده شد و حجم نمونه‌ها توسط آب تقطیر شده به سپس مقدار سدیم و تیاس توسط سلستا و پولی فیومتر (مدل JENWAY ساخت شرکت PFP7) می‌باشد که بر حسب میلی‌گرم بر کیلوگرم برگ خشک فرانتان
نتایج و بحث

غلظت پرولین برگ

با توجه به نتایج تجربه ارتباطات گردیده، تأثیر سطوح مختلف آبیاری، زنوتیپ و درهمکنش آنها بر غلظت پرولین در برگ معین داشت. بررسی جدول 1 نشان می‌دهد که اثر آبیاری و زنوتیپ و درهمکنش آنها بر هزاران محلول برگ گیاه کارا کمتر از سطح تحت‌الحمایه 1/4 معیار در شد. با توجه به این موضوع و مقدار درجه برخی اثر زنوتیپ‌ها در سطوح مختلف آبیاری، مشاهده می‌شود که این بسته سطح آبیاری در هزاران محلول برگ اثر زنوتیپ‌ها از لحاظ میزان محلول تفاوت معیار دارد. این مشاهده در دو سطح شاهد بررسی (جدول 2) متفاوت بوده است و همچنین بررسی (جدول 1) نشان می‌دهد که در همین سطح آبیاری در زنوتیپ Kosa 19/3 و 26/2 میلی گرم بر گرم وزن تر برگ است که در زنوتیپ Kosa تفاوت معیار دارد. کمترین میزان هزاران محلول نیز در سطح آبیاری 15 و 40 درصد تخلیه برطوطی خاک در زنوتیپ Kosa به روش فاکس (19/3 و 26/2 درصد معیار دارد. کمترین سطح بررسی (جدول 3) کمترین میزان برگ در گرم وزن تر برگ دیده شد (جدول 3). با جایی و همکاران (2) بررسی و عملاً در فاصله زنوتیپ پرولین در اثر کم‌سومه‌ای آب در میزان گرم وزن تر برگ تأثیر کارا و مناسب بوده است که تحقیق این اثربخشی برای تحقیق راهکار و آفتگیران انجام داشته و درایافت که این آن را در جهت نوانی بررسی تأثیر نش کننده داشته و ارزیابی توانایی زنوتیپ در شرایط بهبود می‌کنند. با بررسی این اثربخشی را در تأثیر نش کننده حاصل داشته و نشان داده که اثر قانونی به شکلی که عملکرد دانه بیشتری داشته است در شرایط نش از میزان پرولین بیشتری نیز برخورد پذیرند.
جدول 1. تجزیه و تحلیل خصوصیات زنوتیپ‌های مختلف کلزا در سطوح مختلف آب‌یاری

<table>
<thead>
<tr>
<th>میانگین محورهای</th>
<th>پرولین بروک</th>
<th>آب برگ</th>
<th>اسلوکلرولیته‌ها</th>
<th>درجه تغییر</th>
<th>محلول بروک</th>
<th>آب برگ</th>
<th>دهنده‌های سطوح</th>
<th>میانگین محورهای</th>
<th>پرولین بروک</th>
<th>آب برگ</th>
<th>اسلوکلرولیته‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب‌یاری</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>759/21</td>
<td>12/13</td>
<td>0/048</td>
</tr>
<tr>
<td>زنوتیب</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>12/13</td>
<td>0/048</td>
<td>0/078</td>
</tr>
<tr>
<td>آب‌یاری/زنوتیب</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>21/97</td>
<td>0/014</td>
<td>0/158</td>
</tr>
</tbody>
</table>

** از جمله: به ترتیب معنی‌دار در سطح احتمال 1% و غیر معنی‌دار

جدول 2. تجزیه و تحلیل بررسی اثر زنوتیپ‌های مختلف در هر سطح آب‌یاری برای صفات مختلف کلزا

<table>
<thead>
<tr>
<th>سطوح آب‌یاری (در اساس سطح)</th>
<th>محلول بروک</th>
<th>آب برگ</th>
<th>دهنده‌های سطوح</th>
<th>پرولین بروک</th>
<th>آب برگ</th>
<th>اسلوکلرولیته‌ها</th>
<th>درجه تغییر</th>
<th>میانگین محورهای</th>
<th>پرولین بروک</th>
<th>آب برگ</th>
<th>اسلوکلرولیته‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>54/3/5</td>
<td>6/075</td>
<td>0/7/1/5</td>
<td>37/4/5</td>
<td>5/075</td>
<td>0/7/1/5</td>
<td>0/10</td>
<td>15/1/3</td>
<td>96/9/5</td>
<td>12/1/3</td>
<td>0/8/75</td>
</tr>
</tbody>
</table>

** از جمله: به ترتیب معنی‌دار در سطح احتمال 1% و غیر معنی‌دار

یک گروه قرار گرفتند که معمولاً مقادیر مربوط به زنوتیپ است که با زنوتیپ Regent مربوط به طوری که می‌تواند میان بیشتر محوری داشته باشد در سطوح مختلف این اگر گرفته و مشخص شد که به‌طور کلی در سطح 10 و 10 درصد تغییر رطوبت خاک از حجم محوری نسبی آب آب بین زنوتیپ‌های مختلف تفاوت معنی‌داری وجود دارد. به طوری که زنوتیپ‌های با میان بیشتر محوری نسبی آب برگ در این رشته نشان داد که زنوتیپ Kosa در سطح آب‌یاری 10 درصد رطوبت خاک بیشترین مقدار (7/15) را با خود اختصاص داد که با زنوتیپ CR3189 در یک گروه آماری قرار دارد (جدول 3). زنوتیپ CR3250 در سطح آب‌یاری 10 درصد رطوبت خاک بیشترین مقدار (7/15) را با خود اختصاص داد که از همین سطح با زنوتیپ Kosa و زنوتیپ CR3189
جدول 3: مقایسه میانگین اثر ارقام مختلف در هر سطح آبیاری برای صفات فیزیولوژیک اندازه‌گیری شده به روش پریم

<table>
<thead>
<tr>
<th>یادداشت</th>
<th>عملکرد عاملی</th>
<th>محتوای نسبی آب خشک</th>
<th>پرولین (میکرومول/برگ)</th>
<th>ترکیب محالله (میلی گرم بر گرم وزن تربت)</th>
<th>سطح آبیاری (براساس درصد تخلیه رطوبت خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۸۸</td>
<td>۹۴/۱</td>
<td>۲۳۰/۱</td>
<td>۸۸۸/۱</td>
<td>۱/۲۸/۱</td>
<td>Kosa</td>
</tr>
<tr>
<td>۱/۸۳</td>
<td>۱۴/۸</td>
<td>۳۳۷/۳</td>
<td>۵۹/۳</td>
<td>۱/۳۸/۳</td>
<td>Kroko</td>
</tr>
<tr>
<td>۰/۶۱</td>
<td>۱۶/۵</td>
<td>۳۷۵/۴</td>
<td>۵۶/۴</td>
<td>۸/۹</td>
<td>Regent</td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۱۲/۴</td>
<td>۳۲۳/۳</td>
<td>۵۹/۲</td>
<td>۱۰/۷</td>
<td>CR3189</td>
</tr>
<tr>
<td>۰/۷۴</td>
<td>۱۵/۳</td>
<td>۲۳۷/۳</td>
<td>۵۹/۴</td>
<td>۸/۷</td>
<td>Marman</td>
</tr>
<tr>
<td>۰/۴۷</td>
<td>۱۴/۸</td>
<td>۳۲۷/۱</td>
<td>۵۹/۶</td>
<td>۱۳/۹</td>
<td>CR3250</td>
</tr>
</tbody>
</table>

در هر سطح و برای هر سطح آبیاری حداقل یک حرف مشترک نشان‌دهنده عدم تفاوت آماری در سطح احتمال پنج درصد می‌باشد.

معنی داری وجود دارد (جدول ۲). مقایسه میانگین اثر زنوتیپ‌ها در سطوح مختلف آبیاری (جدول ۳) نشان داد که در هر سطح سطح آبیاری ۱۰ و ۳۰ درصد تخلیه رطوبت خاک، زنوتیپ Regent پیشینه مقدار غافلگیری سدیم را داشته که در همه سطوح این زنوتیپ با بقیه زنوتیپ‌ها تفاوت معنی‌داری داشت.

کمترین مقدار سدیم نیز در هر سطح آبیاری مربوط به زنوتیپ Kosa بود. در بررسی نورانی آزاد و چوبینه (۱۹) که یک زنوتیپ اتیک‌پرورده در پنج سطح آبیاری مورد بررسی قرار دادند مشخص شد فاصله نشان خشکسک، مقدار سدیم در برگ افزایش و بدون پاسیم گاه یافت و دلیل آن این است که میزان سدیم برگ معنی‌دار بود (جدول ۱) با توجه به این موضوع بررسی اثر آبیاری نشان داد که بین زنوتیپ‌ها از لحاظ غفلت سدیم برگ در هر سطح آبیاری تفاوت...
غلفت نتایج در پرگ
با توجه به نتایج تجزیه‌واریانس (جدول 1) آبیاری و زنئتیپ
تأثیر معنی‌داری بر بیماری نباتیسم در گربه داشت. اما برهمکنش آن
دو تأثیر معنی‌داری بر این صفت نداشت. تأخیر در آبیاری
باعث کاهش معنی‌داری بیماری نباتیسم بوده است. به طوری که
بیشترین میزان نباتیسم بود (0.29) در کیلوگرم گربه
خشک) مربوط به سطح آبیاری بر اساس 10٪ تخلیه رطوبت
خاک و کمترین نیاز آن (0.08) در کیلوگرم گربه
خرگ) سطح آبیاری بر اساس 70٪ تخلیه رطوبت خاک
اختصاص یافت (شکل 1). غلفت نتایج در بین زنئتیپ
مورد آزمایش نیز متفاوت بود (شکل 2) به نحوی که بیشترین
میزان نباتیسم (7 میلی‌گرم در گرم گربه خشک) برای
زنئتیپ Kosa بوده که به‌همه‌ی Zn Neonتیپها تفاوت معنی‌داری داشت.
کمترین مقدار Kosa زنئتیپ Zn Neon در سطح 10٪ تخلیه رطوبت خاک بوده.
کمترین مقدار NaMamoo به‌همه‌ی Zn Neon در سطح 25/10 درصد (شکل 3).
ارتباط بین پیامدهای آزمایش زنئتیپ با
یکدی نشان می‌دهد. این نتایج با نتایج دیگر
که به گونه‌ای که در پیامدهای نباتیسم بیش‌تر
به کمپره آزمایش آلوده گردید، نشان داد که که

152
نتیجه‌گیری

نتایج این تحقیق نشان داد که در بین زنوتیپ‌ها، زنوتیپ Regent به دلیل داشتن پولفون، قند‌های محلول و پاسیم بیشتر از سطح بالاتری کاهش خشکی تواست از محروق‌های نسبی آب برگ بیشتری نیز بروخورد باشد و پاسیم بیشتری نیز به‌طوری که در مجموع، این زنوتیپ نسبت به زنوتیپ‌های دیگر، در شرایط نش خشکی، از عملکرد دانه بیشتری بروخورد بود. ولی زنوتیپ Kosa به Regent دانه بیشتری بروخورد بود. ویژگی‌های فیزیولوژیکی زنوتیپ‌های کازایی...
منابع مورد استفاده

