بررسی برخی ویژگی‌های فیزیولوژیک زنوتیپ‌های کلزا

بهاره در شرایط نش خشکی

زهره ظرفیته، علیرضا بدیوی، اشکووس دهداری و حمیدرضا بلوجی

(تاریخ دریافت: 14/12/1391؛ تاریخ پذیرش: 12/12/1392)

چکیده

این آزمایش به منظور بررسی تأثیر نش خشکی بر پرولین، قندهای محلول، محتوای نسبی آب برگ، غلظت پونه‌های سدیم و پتاسیم برگ، نشت الکترولیت‌ها از برگ‌ها و عملکرد دانه در ارقات بهار کلزا در غلظات تحت‌دراستی‌های پاسخ‌گیری جیلوشیه ی عتیره سال 1389 انجام شد. آزمایش‌ها به صورت تکراری در قالب طرح کاملاً تصادفی با نهایت اجرایی گردید. در این آزمایش، زنوتیپ‌های کلزا شامل نش زنوتیپ (Regent و Regent)، و تیمار آبگیر در سطح (آبگیر پس از 40 و 70 درصد تخلیه رطوبت) (Krao.Ko.Kos CR3250 CR3189) (خاک) مورد بررسی قرار گرفتند. نتایج نشان داد که بیشترین اثر آبگیر و زنوتیپ بین میزان صفات مورد ارزیابی، بجع غلظت پتاسیم، میزان دار. مقابله میانگین نش خشکی نشان داد که در میزان زنوتیپ‌ها، در Kosa برداشت که از میزان نشکل الکترولیت و غلظت سدیم برگ کمتری برخوردار بود و همچنین میزان پتاسیم، پتاسیم و محتوای نسبی آب برگ بهتری داشت. زنوتیپ (Regent و Regent) کمترین مقدار پاتاسیم، پرولین، محتوای نسبی آب برگ و عملکرد دانه و بیشترین نش الکترولیت و محتوای سدیم را داشت. در ارقام Regent و Kosa به ترتیب متحمل و حساس به نش خشکی شناخته شدند.

واژه‌های کلیدی: تیمار، پرولین، قندهای محلول، محتوای نسبی آب

1. گروه وزارت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه پاسخ

yadavi53@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: *
مقدمه
رشد گیاهان به وسیله نشانه‌های متعددی نظیر شوری، خشکی، گرمی، سرما و سببیت فازات مناسب تأثیر قرار می‌گیرد.
خشکی به عنوان کمبود رطوبت خاک به اندازه‌های کم موجب کاهش رشد گیاه شود. تعیین میزان این تغییر نشان دهنده وضع قابل استفاده در خاک بوده و وضعیت داخل گیاه در نظر گرفته نشده است. لذا از نقطه نظر زراعی، نشانات خشکی شرایطی است که آب از نظر فرد و توزیع به اندازه‌های نیست که گیاهان نمی‌توانند با لحاظ خاک را تولید کند. در این پدیده، مشخص گری نباید تثبیت گردید.
کمبود گیاه می‌تواند در خاک به وجود آید در این اتفاق زمانی که میزان نیاز به شرایط این آب کم شود. میزان آب سبب بکار رفتن آرام می‌شود و از انبوهی که در وسیله سلول‌ها استفاده می‌شود. میزان آب سبب کاهش گیاه می‌باشد. گسترش سلول‌ها کاهش می‌یابد (۱)
کلارا به عنوان یک گیاه دانه‌ای روغنی همانند سیب‌زره از گیاهان زراعی از این آب کم‌میزان مماثل می‌شود و بنده به وضعیت آب در روابط ویژه‌ای از فنولوژی خود به ویژه در دوره رشد زایشی، کمیت و کیفیت دانه آن تأثیر قرار می‌فراموش. (۶) یکی از راهکارهای مناسب گیاهان کهدل در باشک خشکی، افزایش می‌باشد. سلول‌ها می‌باشد. گسترش سلول‌ها کاهش می‌یابد (۲)

روزنه‌ها و لذا سبب جنگل‌گریزی از رشد و بسته شدن روزنه‌ها می‌گردد (۱۷). قند آب گیاه آموزش‌های سازگار هستند که در شرایط نش خشکی تجمع یافته و تجمع آنها در داخل سلول‌ها کمک می‌کند که پتانسیل آب سلول کاهش یافته و آب پیشتری برای حفظ فشار آماس در داخل سلول بالای می‌باشد (۲)

از محتواهای نسبی آب بر گیاه در خاک بین کیفیت بالا در رازگیری مفید از وضعیت آب گیاه تحت شرایط نش خسات استفاده کرده (۱۷). تشخیص خشکی در بیماری راه‌های معروف کاهش شده جذب دی اکسید کربن و کاهش عملکرد گیاه می‌شود (۱).

از آنجا که محتواهای نسبی آب بر در گیاه وجود آب در باشد، منجمله محلول باشک خشکی از وضعیت بهتری در رابطه با آب توزیع با خوراک گیاهان هستم. به طوری که این ارتباط در شرایط نش خشکی نسبت به ارقام حساس پتانسیل آب بر خود را در حد بالاتری حفظ می‌کند (۱۶).

در میان عصاره، پتانسیل یکی از مهم‌ترین کانی‌های مورد نیاز گیاه می‌باشد. این کانی‌ها در توزیع نفیس انساموری و کنترل روزنه‌های ایفای نقش می‌کند (۳) و همچنین باعث حفظ روزنه‌ها/ ایفای نقش می‌کند (۴) و همچنین باعث حفظ روزنه‌ها/ ایفای نقش می‌کند (۲۵).

پتانسیل اولین کانی‌های مغذی است که در تاریکی در کم‌آبی انتابه‌تی می‌شود و نقص کلیدی در زایش روزنه‌ها ایفا می‌کند (۱۹). گیاهان که پامپین پیشتری دارند، سازگاری پیشتری به کمبود آب نشانه می‌دهند و در زون‌های مقاوم به خشکی در زمان نش افزایش پتانسیم در اندام هواپی مه‌سیستو می‌باشد (۲).

در تحقیق مادر شاهی و همکاران (۱۵) و آنخوشی و همکاران (۳) نشان آب سرعت جذب پتانسیم را به ترتیب در ارقام مختلف کلارا و پونه کاهش داد. پونه سدیم، کمبود پون پن‌ویسیم را در چهار کانی دکتر. با فرسایش نتیجه‌گیری می‌شود. و لی با افزایش شدت نش خشکی، میزان پن‌ویسیم برگ می‌شود و لی با افزایش شدت نش خشکی، میزان پن‌ویسیم برگ می‌شود.
قرار گرفتن. لازم به ذکر است که زنوتیپ‌های گیاهی از مؤسسه Leibniz زنبیلک‌گاهی و تحقیقات زناهاان در کشور آلمان (Institute of Plant Genetics and Crop Plant Research, گیاهی) به شدت که وسعت پایه و مشابه که به سمت در رشد گیاهی (IPK) گفته شده بودند. اما کلماتی از آزمایش برای هر تار شامل دو گلدن به قدر ۴۰ و ارتفاع 35 سانتیمتر بود که همگی با وحن موارد فرآیند. مسی و کود دمو به نسبت مساوی به شده بود. در هر گلدن تعاد ۶ عدد بذر در عمق حدود ۳ سانتیمتر از سطح خاک کسب شدند و پس از سبز شدن و رشد بن در مرحله سه ب Ragnar به ۳ بونه در هر گلدن نتیجه شدند. وقتی بونه با مرحله ۴-به‌گونه‌ای که تیمارهای آبیاری حس دادند. شرایط بیماری‌های بر اساس محاسبه میزان وزن آب خاک در نقطه طرفی زراعی سطوح آبیاری بر اساس ۵۰ و ۷۰ درصد تحلیل رطوبیت خاک از طریق توزین گلنداها اعمال شد. برای اعمال این تیمارهای حساس به محاسبه نرطوبیت موجود در خاک در نقطه طرفی زراعی بود که به صورت زیر عمل شد.

با توجه به اهمیت صفات گفته شده و نتیجه آنها در برسی تحقیق در گیاهان زراعی، جایگاه کارا به عنوان یک گیاه روشی مهم و همچنین وقوع کنش خشکی به دلیل فرار گرفتن کشور ایران در شرایط خشکی و تهیه خشکی، این پژوهش به هدف بررسی اثر میزان تحمل به خشکی زنوتیپ ۶ زنوتیپ کازیکه با استفاده از به‌برونان ویژگی‌های فوق‌الذکر طراحی گردید.

مواد و روش‌ها

این آزمایش در گلخانه‌های تحقیقات دانشگاه پایدار در بهار سال ۱۳۹۹ به صورت فاکتوریل در قالب طرح کامل‌تأملی تصادفی (۳×۳) تکرار اجرا گردید. فاکتورهای آزمایشی شامل شدت زنوتیپ (CR3250 .CR3189 .Kosa .Kroko) مختلف کازیکه باهاره و تیمارهای آبیاری در سه سطح (آبیاری Regent و Marnoo پس از ۲۰ و ۷۰ درصد تحلیل رطوبیت خاک) مورد بررسی بود.

قرار گرفتن. لازم به ذکر است که زنوتیپ‌های گیاهی از مؤسسه Leibniz زنبیلک‌گاهی و تحقیقات زناهاان در کشور آلمان (Institute of Plant Genetics and Crop Plant Research, گیاهی) به شدت که وسعت پایه و مشابه که به سمت در رشد گیاهی (IPK) گفته شده بودند. اما کلماتی از آزمایش برای هر تار شامل دو گلدن به قدر ۴۰ و ارتفاع 35 سانتیمتر بود که همگی با وحن موارد فرآیند. مسی و کود دمو به نسبت مساوی به شده بود. در هر گلدن تعاد ۶ عدد بذر در عمق حدود ۳ سانتیمتر از سطح خاک کسب شدند و پس از سبز شدن و رشد بن در مرحله سه ب Ragnar به ۳ بونه در هر گلدن نتیجه شدند. وقتی بونه با مرحله ۴-به‌گونه‌ای که تیمارهای آبیاری حس دادند. شرایط بیماری‌های بر اساس محاسبه میزان وزن آب خاک در نقطه طرفی زراعی سطوح آبیاری بر اساس ۵۰ و ۷۰ درصد تحلیل رطوبیت خاک از طریق توزین گلنداها اعمال شد. برای اعمال این تیمارهای حساس به محاسبه نرطوبیت موجود در خاک در نقطه طرفی زراعی بود که به صورت زیر عمل شد.

با توجه به اهمیت صفات گفته شده و نتیجه آنها در برسی تحقیق در گیاهان زراعی، جایگاه کارا به عنوان یک گیاه روشی مهم و همچنین وقوع کنش خشکی به دلیل فرار گرفتن کشور ایران در شرایط خشکی و تهیه خشکی، این پژوهش به هدف بررسی اثر میزان تحمل به خشکی زنوتیپ ۶ زنوتیپ کازیکه با استفاده از به‌برونان ویژگی‌های فوق‌الذکر طراحی گردید.

مواد و روش‌ها

این آزمایش در گلخانه‌های تحقیقات دانشگاه پایدار در بهار سال ۱۳۹۹ به صورت فاکتوریل در قالب طرح کامل‌تأملی تصادفی (۳×۳) تکرار اجرا گردید. فاکتورهای آزمایشی شامل شدت زنوتیپ (CR3250 .CR3189 .Kosa .Kroko) مختلف کازیکه باهاره و تیمارهای آبیاری در سه سطح (آبیاری Regent و Marnoo پس از ۲۰ و ۷۰ درصد تحلیل رطوبیت خاک) مورد بررسی بود.

قرار گرفتن. لازم به ذکر است که زنوتیپ‌های گیاهی از مؤسسه Leibniz زنبیلک‌گاهی و تحقیقات زناهاان در کشور آلمان (Institute of Plant Genetics and Crop Plant Research, گیاهی) به شدت که وسعت پایه و مشابه که به سمت در رشد گیاهی (IPK) گفته شده بودند. اما کلماتی از آزمایش برای هر تار شامل دو گلدن به قدر ۴۰ و ارتفاع 35 سانتیمتر بود که همگی با وحن موارد فرآیند. مسی و کود دمو به نسبت مساوی به شده بود. در هر گلدن تعاد ۶ عدد بذر در عمق حدود ۳ سانتیمتر از سطح خاک کسب شدند و پس از سبز شدن و رشد بن در مرحله سه ب Ragnar به ۳ بونه در هر گلدن نتیجه شدند. وقتی بونه با مرحله ۴-به‌گونه‌ای که تیمارهای آبیاری حس دادند. شرایط بیماری‌های بر اساس محاسبه میزان وزن آب خاک در نقطه طرفی زراعی سطوح آبیاری بر اساس ۵۰ و ۷۰ درصد تحلیل رطوبیت خاک از طریق توزین گلنداها اعمال شد. برای اعمال این تیمارهای حساس به محاسبه نرطوبیت موجود در خاک در نقطه طرفی زراعی بود که به صورت زیر عمل شد.

با توجه به اهمیت صفات گفته شده و نتیجه آنها در برسی تحقیق در گیاهان زراعی، جایگاه کارا به عنوان یک گیاه روشی مهم و همچنین وقوع کنش خشکی به دلیل فرار گرفتن کشور ایران در شرایط خشکی و تهیه خشکی، این پژوهش به هدف بررسی اثر میزان تحمل به خشکی زنوتیپ ۶ زنوتیپ کازیکه با استفاده از به‌برونان ویژگی‌های فوق‌الذکر طراحی گردید.

مواد و روش‌ها

این آزمایش در گلخانه‌های تحقیقات دانشگاه پایدار در بهار سال ۱۳۹۹ به صورت فاکتوریل در قالب طرح کامل‌تأملی تصادفی (۳×۳) تکرار اجرا گردید. فاکتورهای آزمایشی شامل شدت زنوتیپ (CR3250 .CR3189 .Kosa .Kroko) مختلف کازیکه باهاره و تیمارهای آبیاری در سه سطح (آبیاری Regent و Marnoo پس از ۲۰ و ۷۰ درصد تحلیل رطوبیت خاک) مورد بررسی بود.
حد ظرفیت زراعی برسد.

برای ایجاد استفاده صفات فیزیولوژیک مورد نظر در مرحله گلدهی کازا، نمونه برداری از یکی از دو گلدان در هر تیمار صورت گرفت. جهت اندازه‌گیری میزان پرباری و اندازه‌‌های محلول، ابتدا لازم بود تا عصاره کلی از برگ‌ها به شکل شوید. بدین منظور 40 گرم از ابتن تازه برگ انتخاب و در هاوان کامل‌اللی گردید و طی چند مرحله توسط الکترونیکی مصرف آن استخراج شد. سپس به روش باکینگ و لوشس (100) و به کمک Perkin Elmer Lambda EZ201 ساخت شد. سپس به کمک ترجمه و و نمودار 150 میلی لیتر آشنوین تازه تهیه شده (850 میلی لیتر) سلفوروریک (20 ژنری حلقه) به آن اضافه شده و به مدت 10 دقیقه در حمام آب جوش قرار داده شد. سپس در میزان حدود نمونه‌ها در طول موج 725 نانومتر با استفتیفونومتر قرانت گردید. منحنی و ساده‌گیری با استفاده از استیفاده گلدنک رسم و میزان نهایی در نمونه‌ها بر اساس میلی‌گرم بر گرم وزن برگ محاسبه گردید. برای اندازه‌گیری مواد معدنی برگ، پهنگ جوانی برگهای کامل‌اللی با شکل بهره‌مندی در هر کدام از گلدان‌ها برداری گردید. نمونه‌ها به مدت 68 ساعت در دمای 85 درجه سلسیوس در آون خشک شدند. سپس یک گرم از نمونه‌ها در دمای توزین و در کوره با دمای 400 درجه سلسیوس به مدت 4 ساعت حرارت شد. خاکستر مورد نظر بعد از اضافه کردن 5 میلی لیتر اسید کانتریدیک به نرم‌الروی هیتر قرار داده شد. نتایج حاصل از کاهش صاحب عبور داده و حجم نمونه‌ها توسط آب تقطیر شده بود. به همراه با هم 100 میلی لیتر رسانه‌شید. سپس مقادیر سدیم و ارسال توسط و دستگاه فاونومتر (مدل 7F با کمک میلی‌گرم بر کیلوگرم برگ خشک فرانتی

148
غلظت پرولین برگ
با توجه به نتایج تجربه و ارایانس داده، تأثیر سطوح مختلف آبیاری، زنوتیپ و برهمکنش آنها بر غلظت پرولین در برگ معنی‌داری نداشت. (جدول 1) بررسی جدول برده 35 درصد حداکثر زنوتیپ‌ها در سطوح مختلف آبیاری نشان داده و در نتیجه، معنی‌داری معنی‌داری بین زنوتیپ‌ها در سطوح مختلف به‌شماره نیز مانند پرولین برگ (جدول 2) متقاصل می‌باشد که هر سه سطح آبیاری مختلف آبیاری، مشاهده می‌شد که در هر سه سطح آبیاری مختلف زنوتیپ‌ها از لحاظ روند مواد مغذی حاصل از مختلف در سطوح مختلف آبیاری نشان داد که در هر سه سطح آبیاری، با تأخیر در آبیاری میزان قندهای محلول افزایش یافته و در سطوح مختلف آبیاری Kosa درصد تخلیه رطوبت خاک زنوتیپ 197/60 درصد تخلیه رطوبت خاک زنوتیپ 197/60 درصد تخلیه رطوبت خاک Kosa 165/60 درصد تخلیه R

محتویات نسبی آب برگ
نتایج تجربه و ارایانس داده نشان داده تأثیر معنی‌داری آبیاری، زنوتیپ و برهمکنش آنها بر محتویات نسبی آب برگ کلزا بود.
جدول 1. تجزیه واریانس خصوصیات زنوتپ‌های مختلف کلازا در سطوح مختلف آبیاری

<table>
<thead>
<tr>
<th>مراتب مربوط</th>
<th>درجه تغییر</th>
<th>محلول بیکر</th>
<th>محلول بیکر</th>
<th>محلول بیکر</th>
<th>محلول بیکر</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری</td>
<td>2</td>
<td>7/59/0</td>
<td>8/7/4</td>
<td>9/5/6</td>
<td>7/0/0</td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>5</td>
<td>8/5/0</td>
<td>9/5/0</td>
<td>8/7/4</td>
<td>9/5/6</td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>10</td>
<td>7/0/0</td>
<td>8/7/4</td>
<td>9/5/6</td>
<td>7/0/0</td>
</tr>
</tbody>
</table>

جدول 2. تجزیه واریانس برندی اثر زنوتپ‌های مختلف در هر سطح آبیاری برای صفات مختلف کلازا

<table>
<thead>
<tr>
<th>سطوح آبیاری (بر اساس درصد</th>
<th>درجه تحلیل رطوبت خاک)</th>
<th>محلول بیکر</th>
<th>محلول بیکر</th>
<th>محلول بیکر</th>
<th>محلول بیکر</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری</td>
<td>5/10</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>5/20</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>5/20</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
</tbody>
</table>

یک گروه قرار گرفتند و کمترین مقدار مربوط به زنوتپ است که با زنوتپ Regent دارند (جدول 3) در بررسی رابطه بین تغییرات سطح و محوریت نسبی آب در کلازا و خرید هدف مشاهده شد که همکاری مثبت بین محوریت نسبی آب در کلازا و تغییرات نسبی وجود دارد. به طوری که زنوتپ‌های با بیشتر محوریت نسبی آب در کلازا در فاصله از 0.1 تا 0.5 درصد سطح OS به کلوپ سطح آبیاری Kosa نشان داد که زنوتپ CR3189 در سطح آبیاری 0/1 تحلیل رطوبت خاک به‌شکل مقدار (0/88%) را به خود اختصاص داد که با یک گروه قرار گرفته (CR3189) و به صورتی در اثر CR3250 در نمایندگی مشترک بیشتر داشته که کاهش محوریت نسبی آب در کلازا در اثر همکاران (22) و سوپروس و همکاران (23) نیز کاهش محوریت نسبی CR318998% .
جدول 3: مقایسه میانگین اثر ارکام متفاوت در هر سطح آبیاری برای صفات فیزیولوژیک اندام‌گیری شده به روش میانگین‌های کلاری

<table>
<thead>
<tr>
<th>روش ایستاده (میکرومول)</th>
<th>تعداد محول (میکرومول)</th>
<th>نسبت آب (بر گرم وزن خشک)</th>
<th>تعداد محول (میکرومول)</th>
<th>نسبت آب (بر گرم وزن خشک)</th>
<th>نسبت آب (بر گرم وزن برگ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR3189</td>
<td>12.83 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
</tr>
<tr>
<td>Marnoo</td>
<td>12.83 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
</tr>
<tr>
<td>CR3250</td>
<td>12.83 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
</tr>
<tr>
<td>Kusa</td>
<td>12.83 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
</tr>
<tr>
<td>Kiroko</td>
<td>12.83 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
<td>0.60 a</td>
<td>12.13 c</td>
</tr>
</tbody>
</table>

در هر سطح و برای هر سطح آبیاری حداقل 14 حرف مشترک نشان‌دهنده عدم تفاوت آماری در سطح اختلال در دصد مشاهده آن بود.

میانگین داده (گرم) در خشکی. مقایسه میانگین اثرات زنوتیپ‌ها در سطوح مختلف گیاهان (جدول 3) این نشان داد که در هر سطح میانگین اثرات گیاهانی آبیاری 10 و 70 درصد تحلیل رطوبت خشکی، زنوتیپ به طوری که تأثیری در آبیاری باعث کاهش محصول نسبت آب برگ گیاه تا تحت نش نش دیده شد.

سطح این زنوتیپ با بهبود زنوتیپ‌ها تفاوت میانگین داری داشت.

کمترین مقدار سدیم نیز در هر سطح آبیاری مربوط به کسا بود. در بررسی نرمالی آزاد و جویبیده (۱۹) که یک زنوتیپ انتخابی را در پنج سطح آبیاری جدول ۱ به روشی مورد بررسی قرار داده منصوص شد با افزایش نسبت خشک، مقدار سدیم در برگ افزایش پیدا کرده و تا به این اندازه زمین‌های فیزیولوژیک زنوتیپ‌های کناری

غلظت سدیم در برگ

نتایج تجزیه واریانس داده‌ها نشان داد که اثر آبیاری و زنوتیپ بر میزان سدیم برگ معنادار بود (جدول ۱). با توجه به این موضوع، بررسی اثرات آبیاری نشان داد که بین زنوتیپ‌ها از لحاظ غلظت سدیم برگ در هر سطح آبیاری تفاوت

151
غلطین نتایج در پنجم

با توجه به نتایج تجزیه و تحلیل (جدول ۲)، ابزار و زنوتیپ به وفور در پان‌های گردان آزمایش به‌طور کلی دیده شد. این امر احتمالاً به ویژه در ابزار تولید شده در تولید نتایج دانسته می‌شود. این نتایج به طور کلی، ابزار و زنوتیپ به‌طور کلی دیده شد.
ثبت برخی ویژگی‌های فیزیولوژیک زنوتیپ‌های کارای

شکل ۱. مقایسه میانگین اثر سطح آبی آرایه بر غلظت پناسیم بر گر

شکل ۲. مقایسه میانگین اثر سطح آبی آرایه بر غلظت پناسیم بر گر

نتیجه‌گیری

Kosa نتایج این تحقیق نشان داد که در بین زنوتیپ‌ها، زنوتیپ Regent به دلیل داشتن پرولین، قندیلی محلول و پناسیم بیشتر در سطح بالاتر تنش خشکی توانست از محتوای نسبی آب بر گر بیشتری نیز برخورد باشد و این صفات در نهایت کمک می‌کند تا تنش خشکی بیشتر، بطوری که در مجموع، این زنوتیپ بیشتر به زنوتیپ‌های دیگر، در شرایط نانو خشکی، از Regent عملکرد دانه بهتری برخوردار بود. ولی زنوتیپ Marnoo CR3250 Kosa Kroko Regent
متابع مورد استفاده


