اثر تش خشکی و تراکم بوته بر عملکرد و برخی خصوصیات فیزیولوژیک لوبیا چیتی (Phaseolus vulgaris L.)

نویدانه عمادی، شاهرخ جهانی و حمیدرضا بلچی

(تاریخ دریافت: 27/12/1399؛ تاریخ پذیرش: 30/12/1399)

چکیده

به منظور بررسی اثر تش خشکی و تراکم بوته بر عملکرد و خصوصیات فیزیولوژیک لوبیا چیتی رقم 16 (C.O.S.16) آزمایش مزرعه‌ای در سال 1389 در دانشگاه کشاورزی دانشگاه یزد به صورت کرده‌ای خرد شده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار اجرای گردید. عوامل آزمایش شامل عوامل اصلی عوامل نهایی و تش خشکی در مرحله روشی و تش خشکی در مرحله زایشی به عنوان فاکتورهای اصلی و چهار سطح تراکم (15، 25، 45 و 65 بوته در مترمیع) به عنوان فاکتور فرعی گردیدند. در این آزمایش عملکرد دانه، عملکرد بیولوژیک، میزان کاروتئین، پرولین، کاروتئین و پرولین اندازه‌گیری شد. نتایج نشان داد که برهمکنش تش خشکی و تراکم بوته بر عملکرد بیولوژیک، عملکرد دانه و شاخص برداشت معنی‌دار بود. تیمار آپاری معنی‌دار در تراکم 25 بوته در مترمیع بیشترین عملکرد بیولوژیک و عملکرد دانه را بهترین 1163 کیلوگرم ماده خشک و 3368 کیلوگرم دانه لوبیا در هکتار نشان داد که با تیمار 45 بوته در مترمیع تفاوت معنی‌داری نداشت. بیشترین عملکرد دانه در شرایط تش خشکی در هکتار رشد روشی و زایشی (بترتیب 270 و 276 کیلوگرم در هکتار) مه تراکم 25 بوته در مترمیع و کمترین آن (بترتیب 203 و 195 کیلوگرم در هکتار) به تراکم 15 بوته در مترمیع تعلق داشت. تش خشکی در مرحله رشد روشی و زایشی، میزان عملکرد دانه و کاروتئین را کاهش و میزان بالاترین میزان کاروتئین، پرولین و پرولین دانه را افزایش داد در کل تراکم 25 بوته در مترمیع در شرایط بدون تش و 25 بوته در مترمیع در کلیه سطوح تش در شرایط محیطی مشابه، برای لوبیا چیتی رقم 16 (C.O.S.16) توصیه می‌گردد.

واژه‌های کلیدی: پرولین، رنگدانه‌های نتوستئی، تش خشکی، کاروتئین، حیوانات

1. گروه وزارت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه یزد

balouchi@mail.yu.ac.ir

* مشاور مکاتبات، پست الکترونیکی: c.os16@yazd.ac.ir

25
مقدمه
كمبود آب در طول دوره روش گیاهان زراعی باعث نقش‌آفرینی انرژی و در موارد شدید سبب از بین رفتن کل محصولات می‌شود (7). یکی از دلایل عمده تأمین بودن تولید محصولات کشاورزی در شهرهایی که فاصله زمانی زیادی از جهان بهدلیل کمبود پارس و عدم تأمین آب کافی در طول فصل روشی عملکندهای کشاورزی ندارند (12)، با کشت و زراعت در این اراضی باید با در نظر گرفتن ملاحظاتی باشند. برای مقابله با کاهش آنتاریا نشاط خشک، شناخت خصوصیات فیزیولوژیک گیاهان در مواجهه با این بیماری بهره‌مندی زیادی دارد. بهدلیل معناداری اقتصادی و اجتماعی، تولید در بسیاری از مناطق خشک با حمل هزینه‌های قوانین همراه است. از سوی دیگر، بهدلیل کاهش اراضی مستغل وقابل کشت در جهان، به زیر کشت بردنش اراضی تحت تنش خشک، همچنین مرسوم است.

اغلب این مناطق دارای محدودیت‌های دیگری مانند شور و قلبی‌بودن اراضی، سکل‌کشیدگی بودن، شیب زاویه و حاصل خبری کم تیز دارد (6 و 26). در بسیاری از مناطق دنیا، هرگز نلیم پرورش حیوانی با سبب زیادی از این نتیجه‌گیری مورد نظر نیاز یافته‌اند از منابع گیاهی تأمین شود. این بحث‌های، از جمله لویا چینی، با داشتن مقدار قابل توجهی پرورش پرورشی، سهم قابل توجهی در تمیزکاری این آبادانه‌ها از زاویه بهره‌مندی در روزگاری زیان بخش خشک، نیمه خشک متفقین شد. کاست لویا چینی در بسیاری از مناطق ایران در محدوده زمین‌های اواخر فصل بهار و نیز بازیابی تأمین طول‌ریز نسبت به مسیر مشابه (25). در این فاصله، هرچه هر سمت بهره‌مندی جزیره کاسته می‌شود برای انتقال آب باید استفاده توسط گیاهان کاسته می‌شود (26). میزان پرورش مناسب موجود در واحدهای سطح می‌تواند تا اندوراژای آتار زیان‌بخشی را در کشت‌گاه گیاه لویا چینی کاهش دهد (32).

پرخی محققین بر این باورند که نشان خشکی میزان پرورش این بهدلیل کاهش میزان کربوهیدرات‌های دانه لویا چینی کاهش می‌دهد (3 و 26). یکی از اولین تحقیقات مورد مطالعه در حفظ
جدول 1. مشخصات خاک مزرعه مورد آزمایش

<table>
<thead>
<tr>
<th>مقدار</th>
<th>درصد اشاعه (SP)</th>
<th>وزن مخلوط‌ساز (g/cm²)</th>
<th>نوری متغیر (mg/L)</th>
<th>تاریک‌ساز (mg/L)</th>
<th>نیتروژن</th>
<th>کربن آلی</th>
<th>تراکم آنزیمی</th>
<th>گل اشاعه (µm)</th>
<th>گل اشاعه (µm)</th>
<th>گل اشاعه (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس سیلیک</td>
<td>374</td>
<td>1/5</td>
<td>32/8</td>
<td>1/100</td>
<td>1/36</td>
<td>0/42</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
</tr>
</tbody>
</table>

کرت‌های خرد شده در قابل طرح بلوزه‌های کامل تصادفی با سه نمونه آب شده یافته که نتایج در نظرگرفته شده است. نتایج نشان می‌دهد که نوزدهمین بار، نتایج دقیق‌تر از دیگر بارها بررسی شد که این خاصیت ممکن است به طور کلی درآمده باشد.

این نتایج نشان می‌دهد که نوزدهمین بار، نتایج دقیق‌تر از دیگر بارها بررسی شد که این خاصیت ممکن است به طور کلی درآمده باشد.

پتانسیل اسماز سول، اسید آمینه پروپین است. تجمع پروپین تحت شرایط غیرویژنتیک در تعدادی از گونه‌های گیاهی همیسکتی پاییز با توجه به این نشان داده رفتکنی در نتایج نشان می‌دهد که پروپین در بهبود تراکم نشان خود، به‌طور کلی اشکال انگشتی گل، گل‌های متحرک و گل‌های متحرک گل‌ها از جمله آن‌ها است. می‌تواند با افزایش مصرف هدف از این امکان بررسی اثر خشکی و تراکم پوشه بر استانداردهای مختلف سولولو، نوری‌های گوناگونی مطرح شده است. برای نمونه پرخی معتقد که پروپین از طریق حفظ ویژگی‌های در سیاه‌پوشان سولولو تابعه قطعه بدن آنها جلوگیری به عمل آید (1).

مواد و روش‌ها

به منظور بررسی اثر تنش خشکی و تراکم پوشه بر عملکرد و خصوصیات فیزیولوژیک لوبیا چیتی (Phaseolus vulgaris) در منطقه پاسیج آزمایش به صورت مزرعه‌ای در سال 1389 در مزرعه دانشکده کشاورزی دانشگاه جنوبی گل‌ها به طول جغرافیایی 23° 35'-15' شرقی و عرض جغرافیایی 52° 38'-0' شمالي و ارتفاع 1870 متری از سطح دریا انجام گرفت. آزمایش به صورت...
جدول ۲: تجزیه واریانس مربوط به برخی صفات فیزیولوژیک لویا چیت تحت تنش خشکی و تراکم‌های مختلف بوته

<table>
<thead>
<tr>
<th>میانگین معیار</th>
<th>تراکم</th>
<th>خطای a</th>
<th>تنش</th>
<th>خطای b</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخ</td>
<td>کاروتئید</td>
<td>پرونین</td>
<td>کاروتئید</td>
<td>پرونین</td>
</tr>
<tr>
<td>عملکرد</td>
<td>عملکرد</td>
<td>عملکرد</td>
<td>کاروتئید</td>
<td>پرونین</td>
</tr>
<tr>
<td>برداشت</td>
<td>دانه</td>
<td>بیولوژیک</td>
<td>دانه</td>
<td>بیولوژیک</td>
</tr>
<tr>
<td>۳/۷۹</td>
<td>۲۰/۶۹</td>
<td>۲۰/۶۹</td>
<td>۲۰/۶۹</td>
<td>۲۰/۶۹</td>
</tr>
<tr>
<td>۱۱۵/۸۰</td>
<td>۱۱۵/۸۰</td>
<td>۱۱۵/۸۰</td>
<td>۱۱۵/۸۰</td>
<td>۱۱۵/۸۰</td>
</tr>
<tr>
<td>۵/۵۸</td>
<td>۵/۵۸</td>
<td>۵/۵۸</td>
<td>۵/۵۸</td>
<td>۵/۵۸</td>
</tr>
</tbody>
</table>

نتایج و بحث

کاروتئید

در برگ گیاهان سبز رنگ‌های غیر سبز رنگ کاروتئید وجود دارد که نقش مهمی در حفاظت از رنگ‌های سبز رنگ یعنی کاروتئید دارند. اثر تنش خشکی بر میزان کاروتئید برگ سیار معنی دار بود (جدول ۲). کمترین میزان کاروتئید در شرایط آبیاری کامل (۲/۲۰ میلی گرم بر گرم وزن تبرگ) به‌دست آمد که با سایر تیمارها اختلاف معنی‌داری داشت. الکتروری شیمی‌پتر نمودار میزان کاروتئید در تیمار تنش خشکی در مرحله زایمی ملاحظه گردید (جدول ۲). افزایش میزان کاروتئید در این شرایط می‌تواند ناشی از نقش حفاظتی این رنگ‌های باشد که در توصیف نور جذب شده به دلیل کاروتئید‌ها متغیر کرده و باعث افزایش کاروتئید به‌سرعت می‌گردد. این رنگ‌های کاروتئیدی ساکت خشکی‌های تیلاکونیدی هستند و با بیماری از پروری‌هایی که در دستگاه فتوستاتیک دخالت دارند، از طریق تنش‌گذاری دارند. افزایش میزان تراکم باعث افزایش میزان کاروتئید گردیده است (جدول ۲). هم‌چنین تفاوت معنی‌داری بین تیمارهای تراکم ۲۵، ۲۱ و ۲۰ در تمرکز مشاهده نگردید. احتمال می‌رود که این افزایش میزان کاروتئید بر اثر معمولی پس از ۶۰ میلی‌متر تبخیر تجمیعی از سطح تنش و ایجاد تیمار تنش پس از ۹۰ میلی‌متر تبخیر تجمیعی از سطح تبخیر تعيش گردید. در طول فصل روزی، میزان کاروتئید a و b کاروتئید‌ها، میزان اسید آمینه پروپریول (از بالاترین برگ کامل گیاه در انتهای مرحله غلاف‌دهی و قبل از رسیدگی دانه) از ۱۰ بوته هر کرت به‌طور تصادفی به ۵ متر ایجاد گردیده از طرف روزین (کرت) و ۲/۰ بیوت دانه مورد بررسی قرار گرفت. میزان کاروتئید موجود در برگ گیاه از روش پیشنهادی آرون (۰/۵) پرولین از روش بیسی (۹) و پرولین با استفاده از استانداردهای گیاهی و روش برافورد (۱۱) بین‌الالبی‌های گیاهی شده جهت اداساگیری عملکرد بیولوژیک و عملکرد دانه از زمان برداشت، مساحت یک تمعینی از سه رزیدی میانی گاه کرت فرعی به‌صورت تصادفی انتخاب و پردریه آن کمال که کف‌گیر کرده، یک بوته‌ها به محل مانندی منتقل شدند و پس از ۵ متر کامل خشک گردیدند، اینتا برکنار کامل شدند و پس از ۵ متر کامل خشک گردیدند، اینتا برکنار کامل شدند و پس از ۵ متر کامل خشک گردیدند، اینتا برکنار کامل شدند و پس از ۵ متر کامل خشک گردیدند، اینتا برکنار کامل شدند و پس از ۵ متر کامل خشک گردیدند، اینتا برکنار کامل شدند و پس از ۵ متر کامل خشک گردیدند، اینتا برکنار کامل شدند و پس از ۵ متر کامل خشک گردیدند.
جدول 3 مقایسه میزان‌های اثر ساده برخی صفات فیزیولوژیک لوبیا چیتا در مقدار مختلف تنش خشکی و تراکم بوته

<table>
<thead>
<tr>
<th>تیمارهای آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>خشکی شاهد</td>
</tr>
<tr>
<td>در مرحله رویش</td>
</tr>
<tr>
<td>در مرحله زایمان</td>
</tr>
<tr>
<td>تراکم بوته</td>
</tr>
<tr>
<td>در مترمیع</td>
</tr>
<tr>
<td>در مترمیع</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>پروتئین</th>
<th>میکرو مول بر کرم</th>
<th>تراکم بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/4</td>
<td>0/357</td>
<td>2/15</td>
</tr>
<tr>
<td>0/6</td>
<td>0/325</td>
<td>2/25</td>
</tr>
<tr>
<td>0/8</td>
<td>0/310</td>
<td>2/35</td>
</tr>
<tr>
<td>0/10</td>
<td>0/293</td>
<td>2/45</td>
</tr>
</tbody>
</table>

که با افزایش تراکم، میزان کارفوئوفیل تا یک حد مطلوب با افزایش میزان خشکی شده و بسیار کاهش می‌یابد. میکرو مول بر کرم (۹) تابعی از عوامل درونی گیاه بوده و در مرحله رویش بیشتر باقی می‌ماند. در مرحله زایمان، کاهش دلایل افزایش خشکی مشاهده می‌گردد. باعث کاهش میزان کارفوئوفیل در بزرگ گردد.

این مقایسه میزان تراکم شده از کاهش وجود آب در دسترس گیاه و زودتر مواجه شدن با تنش خشکی در این شرایط باشد.

مواد کارفوئوفیل

یک کمیته بسیار معنی‌دار بود (جدول ۴). میزان تراکم بوته در ۱۷/۹۰ میلی گرم بر گرم وزن نر برگ در تراکم بوته در مترمیع شرایط تنش خشکی در مرحله زایمان مشاهده می‌گردد که با سطح تراکم گیگر در این مرحله از تنش اختلاف معنی‌داری ندارند. به‌طور کلی، تنش خشکی به‌طور کلی کاهش میزان کارفوئوفیل a گردیده است.

جدول ۴ مقایسه میزان‌های a ناشان می‌دهد که تنش خشکی و تراکم بوته در مترمیع باعث کاهش میزان کارفوئوفیل a گردیده است. کاهش میزان کارفوئوفیل a در افزایش تنش خشکی و افزایش بیش از حد تراکم باعث کاهش چربی نور، کاهش فتوانی، کاهش مواد عضوی و در نهایت کاهش عمق کورنگ می‌شود. ساکسنس ۳۳ در مترمیع روزه سه واریتی نخود، به این ترتیب رسید که با افزایش تراکم، میزان کارفوئوفیل افزایش می‌یابد.

این در حالی بود که نتایج دیگر محققین (۱۷ و ۲۳) نشان داد.
جدول 2 مقایسه میانگین‌های اثر متقابل تراکم و تنش

<table>
<thead>
<tr>
<th>آزمایش می‌باشد</th>
<th>تراکم (بونه)</th>
<th>تنش (در متریک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>35</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>35</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>35</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>35</td>
<td>1.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

اعداد با حروف مشابه در هر ستون براساس آزمون LSD (P ≤ 0.05) اختلاف معنی‌داری ندارد.

افزایش می‌باشد (30 و 35). عده دیگری از محققین نیز گزارش کرده‌اند که اثر تنش خشکی، میزان کاروفیل بر ترکب اثر تنش خشکی کاهش می‌یابد (2.0 و 37). این اثر تنش خشکی با ایجاد تنش‌های اکسیدانی و هم‌چنین کاهش سطح گرگ می‌تواند باعث کاهش میزان کاروفیل در گرگ‌ها شود.

پروتئین‌های دانه

اثر تنش خشکی بر میزان پروتئین دانه معنی‌دار بود (جدول 2). میزان بالای تورجی‌های در نسبت به در نسبت به پروتئین تشکیل می‌دهد. تولید پروتئین‌هایی از اهداف اصلی کشت لوبیا می‌باشد. همان‌طور که در جدول 3 مشاهده می‌گردد، پیشینگی میزان پروتئین دانه (25٪) مربوط به تیمار نشان خشکی در مرحله زایشی می‌باشد و کاهش آن (25/1) مربوط به تیمار آماری معنی‌دار بود. افزایش پروتئین دانه در شرایط تنش به‌طور معمول به کاهش نسبت نشان‌دهنده در علت پیشینگی به می‌باشد. نه افزایش مطلق در میزان پروتئین (25٪) در این آزمایش نیز کاهش وزن و عامل کاهش دانه با افزایش تنش خشکی، نسبت کربوهیدرات به پروتئین نیز افزایش داشت. بنابراین، می‌توان کاهش کربوهیدرات به پروتئین نیز افزایش داشت. بنابراین، می‌توان کاهش در شرایط تنش، کاهش وزن و عامل کاهش فتوسنتز خالص و به تبع آن تکمیل نشدن وزن بالقوه دانه است. به‌طور
جرب شده، تجمع در نهایت مسمومیت ناشی از آنها را در گیاهان موجب می‌گردد (21). در اثر ناب و نایر (31) افزایش پروتئین در گیاهان در شرایط تتراکم و گیاهان در شرایط شریک را تأثیر می‌گذارد. نظارت متقابلی در رابطه با افزایش پروتئین در برگ در شرایط شریک گیاهان دو مهم‌ترین آن را تجزیه پروتئین‌ها در این شرایط و کاهش استفاده از اسید آمینه پروتئین را در شرایط شریک گیاهان ذکر کرده‌اند. این نظارت دیگری نیز وجود دارد که افزایش پروتئین در مخلوط از شرایط شریک و مسی که احتمالاً در رابطه با افزایش پروتئین در گیاهان مختلف هستند. بهطورکلی، هنوز به‌دست نشده است آیا آنها اتصال می‌باید در فرآیند تجزیه گیاهان خصوصاً در این مدت. در گندم دوروم (6) و کندم معمولی (7) ذکر گردیده است.

برخی‌ها نتایجی در کاهش شریک و تراکم پروتئین از طریق بلوژیک برکناریا برای بروز (جدول 2) بیشترین میزان پروتئین در برگ (0/676 میکرومول بر کرم وزن برگ) در پاسخ به نشانه واکنشی و اکسیداسیون در تیمار شریک گیاهان در مرحله شریک مشاهده گردید و کمترین آن (0/33 میکرومول بر کرم وزن برگ) در شرایط آبیاری معمول بود (جدول 3). از این نتایج، می‌توان به تدریج افزایش میزان پروتئین در برگ (جدول 2) نتایج پژوهشی یکی از روش‌های متداول برکناریا به‌دست آمده که در پاسخ به نشانه واکنشی و اکسیداسیون در تیمار شریک گیاهان عالی و باکتری‌ها، زده شده است. پروتئین نتایج زده‌شده از افزایش ترتیبات اسیدی (اسیدولیت) نقش داشته که این ترتیبات وظایفی ماند. نظارت بیانگری‌های اسیدولیسی می‌باشند که pH حفظ و تجزیه نارسایی و حجم سلول را به عهده دارند که در نهایت همه آنها موجب ساختار و تجمیع در برایر تنظیم و سوالاتی را در اثر کمبود آب باید. کاهش وزن خشک اکتشافاتی هرودی و کاهش تولید مواد فستونتی در بررسی افزایش آب توسط محضیان دیگر تبیین شده است (60 و 40). افزایش ماده خشک تولیدی در گیاهان تحت شرایط آبیاری معمول می‌تواند عمده، این کاهش ناشی از کاهش نشانه می‌باشد و نسبت پروتئین به نشانه در دانه افزایش می‌یابد. تحقیقات نشان می‌دهد که مکانیسم‌های ساخت پروتئین به خشکی مقاوم‌تر است. بنابراین، در شرایط تنظیم شریک، چشمگیر است (32). از طرف دیگر، در شرایط تنظیم شریک، بروز تغییر گیاه و دهان روزنگاری که این امری می‌باشد. در حال که آنها به دانه کاهش می‌یابد و این امر را برای افزایش درصد پروتئین‌های دانه می‌شود. تراکم پروتئین نیز بر میزان پروتئین تراکم نشان داده است (جدول 2)
آفراش پیدا گردید. این میزان افراش در تیمار آبیاری معمول، پیشتر و در شرایط اعمال نش در مرحله رشد زایشی، کمتر بود.

میزان کاهش عامل عکس پیوستی و عامل عکس دانه در تیمار نش خشکی در مرحله رشد رویشی گیاه از تیمار نش خشکی در مرحله رشد زایشی کمتر بود. کاهش عامل عکس دانه در تمامی سطوح تراکم بونه در واحد سطح محصول بود و نشان داد که گیاه لوپا چیتی به شدت به کمبود آب حساس می‌باشد. نش خشکی در مرحله رشد زایشی باعث افزایش میزان پروتون در برج، میزان پروتون دانه و کاروتئین b گردد. نش خشکی در هر دو مرحله رشد رویشی و رشد زایشی باعث کاهش میزان کاروتئین b و a و افراش میزان کاروتئین b گردد. با توجه به حساسیت گیاه لوپا چیتی به شرایط کمبود آب، لازم است

منابع مورد استفاده


