اثر تنش خشکی و تراکم بوته بر عملکرد و برخی خصوصیات فیزیولوژیک لوییا چیتی

(Phaseolus vulgaris L.)

نوبیدالله عمادی، شاهرخ جهانبیگ و حمیدرض ابوجیه

(نمره دریافت: 27/12/1399؛ نمره پذیرش: 20/1/1399)

چکیده

به منظور بررسی اثر تنش خشکی و تراکم بوته بر عملکرد و خصوصیات فیزیولوژیک لوییا چیتی رنگی16، ازمایشی مزرعه‌ای در سال C.O.S.16، آزمایشی مزرعه‌ای در سال 1389 در دانشگاه کشاورزی دانشگاه پاسیو شرکت کرده‌اند. در گزارش‌هایی که کامل نتایج گزارش‌های اصلی و چهار سطح تراکم (0، 25، 50 و 75 بوته در متریم) به‌عنوان فاکتور بررسی شد. در این آزمایش، عملکرد دانه، عملکرد بیولوژیک، میزان کارکفیل، پروپونیت، کاروتئوند و پروپونین اندازه‌گیری شد. نتایج نشان داد که تراکم تنش خشکی و تراکم بوته بر عملکرد بیولوژیک، عملکرد دانه و شاخص برداشت معنی‌دار بود. تیمار ابزار معمولی در تراکم 0 بوته در متریم پیشرین عملکرد بیولوژیک و عملکرد دانه بهترین برای 11634 سیلوگرم ماده خشک و 3689 سیلوگرم دانه لوییا در هکتار نشان داد. به‌دست آمدها 245 بوته در متریم تفاوت معنی‌داری نداشتند. پیشرین عملکرد دانه در شرایط تنش خشکی در مراحل رشد روشی و راشی (بی‌تراکم 250 و 374 سیلوگرم در هکتار) هم به تراکم 35 بوته در متریم و کمترین آن (بی‌تراکم 260 و 1950 سیلوگرم در هکتار) به تراکم 15 بوته در متریم تعلق داشت. تنش خشکی در مراحل رشد روشی و راشی، میزان عملکرد دانه و کارکفیل ها، کاهش میزان کاروتئوند، کارکفیل 5، پروپونین و پروپونین دانه و افزایش داد. در کل، تراکم 25 بوته در متریم در شرایط بدون تنش و 25 بوته در متریم در کلیه سطح تنش در شرایط محیطی مشابه، برای لوییا چیتی رنگی16 توصیه می‌گردد.

واژه‌های کلیدی: پروپونین، رنگدانه‌های نتوستروئید، تنش خشکی، کاروتئوند، حیوانات

1. گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه پاسیو
balouchi@mail.yu.ac.ir

*: مسئول مکاتبات، پست الکترونیکی: balouchi@mail.yu.ac.ir
کمبود آب در طول دوره روش گیاهان زراعی باعث نقصانه عامل‌کردن در موارد شدید سبب از بین رفتن کل محصول می‌شود (7). یکی از دلایل عمدتاً بودن تولید محصولات کشاورزی در سیستان و آذربایجان شرقی، در زبان‌های پاسارگادی از جهان به‌دلیل کمبود بارش و عدم آمیختگی آب کافی در طول فصل روشی عاملی قابلیت کشاورزی دارد (13)، با شکست و زرع در این اراضی باید با در نظر گرفت ملاحظات بیشتر. برای مقابله با کاهش آنتاری ی، خشکسالی، شناخت خصوصیات زیستی گیاهان در مواجهه با این پدیده، اهمیت زیادی دارد. به‌دلیل محدودیت زیادی از این گیاهان در ناحیه مورد بررسی قرار گرفته‌است. این اکتشاف به برداشت نتایج حنایی‌های فاوان‌های این منطقه سرویس‌دهنده از کشت در چهارین کشت برنده اراضی تحت تنش خشکسالی همچنین مرسوم است. اغلب این مناطق در جویان بی‌فرآینده‌های اکثر مانند شور و قلبی بودن اراضی سکلاخی بودن، سبب زیادی و حاصل شدن کم نیز دارند (7 و 22). در سیستان از مناطق دنا، هزینه تولید برونتون حیوانی بی‌خانمانی زیاد است، و بخش زیادی از پرورش مورد نیاز باید از منابع گیاهی تحت شود. حیوانات از جمله لویا چیتا با داشتن توانایی قابل توجه پرورش، سهم قابل توجهی در تأمین این عده غذایی است. به‌دلیل بی‌زیانی منابع لویا چیتا، ارقام مختلفی از آن در دنیا کشت می‌شود. این ارقام معمولاً دارای دانه‌ای درشت، منقوش و به رنگ‌های سفید، قرمز و خاکستری هستند. مهم‌ترین ارقام لویا چیتا که در ایران کشت کشته می‌شود به نام‌های تاش، سیاه، سیاه و ناز مشهور می‌باشند (15). تلاش برای معرفی ارقام جدید که با شرایط آبی و ناراحتات منطقه خشک و نیمه خشک سازگاری بیشتر داشته باشد همچنین ادامه دارد. یکی از این ارقام که در سال‌های اخیر به کشاورزی معرفی شده است رسماً مشاهده می‌شود که به نظر می‌رسد با شرایط خشک C.O.S.16 می‌باشد که که درآمد شکوفا، سازگاری بهتری دارد (16). خشکسالی علت‌هایی در این ماه می‌باشد. و در اولین تکنیکی مورد مطالعه در حفظ می‌دهد (9 و 16). یکی از اولین تکنیکی مورد مطالعه در حفظ
جدول 1. مشخصات خاک مزرعه مورد آزمایش

<table>
<thead>
<tr>
<th>خاصیت</th>
<th>ذرت</th>
<th>ذرت ترکیبی (C/M)</th>
<th>گیاه</th>
<th>گیاه ترکیبی (C/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>فشار قابل جدید</td>
<td>ناپذیر</td>
<td>23/3</td>
<td>ناپذیر</td>
<td>23/3</td>
</tr>
<tr>
<td>فشار قابل جدید بیشتر</td>
<td>ناپذیر</td>
<td>1/4</td>
<td>ناپذیر</td>
<td>1/4</td>
</tr>
<tr>
<td>هدایت الکتریکی (DL)</td>
<td>7/3</td>
<td>7/3</td>
<td>7/3</td>
<td>7/3</td>
</tr>
<tr>
<td>وزن مخصوص روش</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
</tr>
<tr>
<td>وزن مخصوص روش</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
</tr>
</tbody>
</table>

درصد اشعه (SP)

| درصد اشعه | 0/58 | 0/58 | 0/58 | 0/58 |

کرت های خرد شده در قالب طرح بلوک های کامل تصادفی با سه تکرار اجرا شد. تیمار کرت شکلی در مراحل روانی و استقرار گیاه به شکل گل، در مرحله زاینده و شروع گل-دهی تا رسیدگی فیزیولوژیکی و انجام آماری معنی‌دار در تمامی مراحل رشد گیاه به عنوان فاکتور اصلی و تراکم بیونه در چهار سطح (15، 35 و 45 و 60 بیونه در مترمربع) به عنوان فاکتور در نظر گرفته شد. هر کرت فرعی از پنج خط کاشت به طول 5 متر و فاصله رضف 5 سانتی متر بود. در هر جفت اثر بیونه ناشی از آب و هوا، فاصله دو کرت اصلی از هر طرف دو متر و فاصله دو کرت فرعی یک متر در نظر گرفته شد. بستر لوبیای جنوبی، رقیم رشد محدود با شکل بونهای جنوبی، زراعت گیاهان گیاهان به عنوان کنترل، انتخاب و ضریح‌های نامعلوم و با قطعه قطعه شدن آنها. به یادآوری می‌شود که یک کرت فرعی در طرف حفظ طرفین آبگیری در سیستم سلون، مزرعه نهایی، می‌تواند از تشکیل شکلهای نامعلوم و با قطعه قطعه شدن آنها جلوگیری بکند. (1)

هدف از این تحقیق بررسی اثر خشکسالی و تراکم بیونه بر عملکرد و خصوصیات فیزیولوژیک لوبیا چیتی در منطقه پاسیج می‌باشد.

مواد و روش‌ها

به منظور بررسی اثر تراکم بیونه و تراکم بیونه بر عملکرد و خصوصیات فیزیولوژیک لوبیا چیتی (Phaseolus vulgaris) مزرعه دانشکده کشاورزی دانشگاه پاسیج با طول گرافافیا 1800 متر از سطح دریا انجام گردیده است. آزمایش به صورت 65 شرکت و عرض 280 شماره ارتقاء 180 متری از سطح دریا انجام گرفته است. آزمایش به صورت...
جدول 2. تجزیه و تحلیل مربعات بیرخی صفات فیزیولوژیک لوبیا چینی تحت تنش خشکی و تراکم‌های مختلف بوته

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درجه</th>
<th>مرتبه تغییر</th>
<th>آزادی</th>
<th>Karon</th>
<th>نکار</th>
<th>تست</th>
<th>تنش</th>
<th>خطای a</th>
<th>تست X متر</th>
<th>ضریب تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین بوته</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.41</td>
<td>0.16</td>
</tr>
</tbody>
</table>

نتایج و بحث

کاروتونین در بره گیاهان سبز و رنگ‌های غیر سبز رنگ کاروتونین وجود دارد که نقش مهمی در حفاظت از گنگ‌های سبز رنگ یعنی کلروفیل دارد. اثر تنش خشکی بر میزان کاروتونین برا سیار معنی‌دار بود (جدول 2). کمترین میزان کاروتونونی در شرایط آبیاری کامل (60 میلیگرم بر گرم وزن تراکم) به دست آمد که سیار تغییر از معنی‌داری داشت. به طوری که بیشترین مقدار معنی‌داری در تیمار تنش خشکی در مرحله زایمان ملاحظه گردید (جدول 2). افزایش میزان کاروتونین در این شرایط می‌تواند نشان از نقش حفاظاتی این رنگ‌ها باشد. کاروتونونی همچنین نور جذب شده را به کلروفیل‌ها متقس کرده و باعث آزادی کاراکی کلروفیل‌های می‌گردد. این گونه‌ها لازم ساختار غشاها تیلاکونیدی هستند و با پیوندی از پروتئین‌هایی که در دسته‌گاه ملکن دلالت دارند. ارتباط تناگشته‌های دارنده افرازیون میزان تراکم باعث افزایش میزان کاروتونین گردیده است (جدول 3). به بدنه نقله معنی داری بین تیمارهای تراکم 25 0.25 و 25 پونه در مترمیک مشاهده نگردید. احتمال می‌رود که این افزایش میزان کاروتونونی به ترتیب معموله پس از 60 میلی‌متر تیخیم تجمیعی از سطح تنش و ایجاد تیمار تنش پس از 90 میلی‌متر تیخیم تجمیعی از سطح تنش تیخیم تغییر گردد. در طول فصل روبه‌رویی، میزان کلروفیل a و b کاروتونونی، میزان اسید آمینه پروتئین (از بالاترین تراکم کامل گیاه در اندازه مراحل شکوفا و قبیل از رسیدگی‌نامه از 10 بوته هر کرت به طور تصادفی به 5 متر حاشیه از طرفین کرت) و پروتئین دانه مورد بررسی قرار گرفت. میزان کاروتونونی موجود در بره گیاهان رو به پیش‌نهایدی آرون (5) پروتئین از روش بینی (9) و پروتئین با استفاده از طبقه‌گان مدل و از روش برافورد (11) اندازه‌گیری شد. جهت اندازه‌گیری، معنی‌دار بیولوژیک و عملکرد دانه در زمان برداشت، مساحت یک متر مربع از سه ردیف مبانی هر کرت فرعی به‌صورت تصادفی انتخاب و بوته‌های اکنون کاملاً کف‌دار گردید. این بوته‌ها به حال مناسب می‌شوند و پس از این که بطور کامل خشک گردیدند، این بوته‌ها در زمان کمال شکوفا و بوته‌های اضافه ون دانه و به سپر ون دانه درگیر افتادند. تست‌های آزمایشی T میزان تراکم باعث افزایش میزان کاروتونین گردیده است (جدول 3). هر چند نتایج معنی‌داری بین تیمارهای تراکم 25، 0.25 و 25 پونه در مترمیک مشاهده نگردید.
جدول 3 مقایسه میزان‌های اثر ساده برخی صفات فیزیولوژیک لوپا چینی در مقارن مختلف تنش خشکی و تراکم بوته

<table>
<thead>
<tr>
<th>بروتین</th>
<th>کارتوئید</th>
<th>میکرو موگ بر گرم</th>
<th>سطح</th>
<th>تیمارهای آزمایش</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>در مرحله بروتین</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.84±0.25</td>
<td>0.84±0.25</td>
<td>0.61</td>
<td>شاهد</td>
<td></td>
</tr>
<tr>
<td>0.84</td>
<td>0.84±0.25</td>
<td></td>
<td></td>
<td>تشنج خشکی</td>
<td>15</td>
</tr>
<tr>
<td>0.84</td>
<td>0.84±0.25</td>
<td></td>
<td></td>
<td>تراکم بوته</td>
<td>25</td>
</tr>
<tr>
<td>0.84</td>
<td>0.84±0.25</td>
<td></td>
<td></td>
<td>در مترمیع</td>
<td>35</td>
</tr>
<tr>
<td>0.84</td>
<td>0.84±0.25</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

اعداد با حروف مشاهده در هر ستون و تیمار آزمایش براساس آزمون LSD (0.05) اختلاف معنی‌داری ندارند.

ازفاشی میزان تراکم ناشی از کاهش وجود آب در دسترس گیاه و زودتر مواجه شدن با تنش خشکی در این شرایط باشد.

میزان کارتوئید

اثر مقابل تنش خشکی و تراکم بوته بر میزان کارتوئید: برگ لوپا چینی بسیار معنی‌دار بود (جدول 2). بیشترین میزان کارتوئید (170) میلیمتر بر گرم وزن تر برگ) در تیمار بوته در مترمیع در شرایط آبیاری معنی‌دار بود. ۲۵ بروتین در شرایط تنش خشکی در مرحله زایش مشاهده گردید که با سطح تراکم در مرحله این مورد هم گستردد. تراکم دیگر در این مرحله از نشان اخلاقی معنی‌داری نداشت. بهطورکلی، تنش خشکی به کاهش میزان کارتوئید گردید (جدول 3). مقایسه میانگین‌ها نشان می‌دهد که تنش خشکی و تراکم بوته به ترتیب ممکن می‌باشد و کاهش معنی‌داری داشتند. کاهش میزان کارتوئید از افزایش تنش خشکی و افزایش بیش از حد تراکم باعث کاهش جذب نور کاوش و فتونتز و کاهش مواد بروزه و در نهایت کاهش عملکرد می‌شود. ساکسا (53) در آزمایشات روز سه واریته نوحه، به این ترتیب افزایش که با افزایش تراکم، میزان کارتوئید افزایش می‌یابد.

این در حالی بود که نتایج دیگر محققین (17 و 23) نشان داد که کاهش گیاهان قبل از افزایش تراکم بود.
ایجاد تنش‌های اکسیدانی و همچنین کاهش سطح برش می‌تواند باعث کاهش میزان کاروفیل در برگ گردد.

تغییرات میزان کلی کاروفیل نیز در اثر وجود تنش خشکی و افزایش تراکم بونه در یکدسته سطح می‌شود. به‌صرفه‌سنتی که افزایش شدت و مدت وقوع تنش خشکی و افزایش تراکم بونه باعث کاهش میزان کل کاروفیل، افزایش میزان کاروفیل b و کاهش کاروفیل a شده است (21). تغییرات میزان کاروفیل همچنین به رفتار انتقال مجدد رطوبت داده می‌شود (22 و 23). البته عامل مهم دیگر در هنگام بررسی تراکم بونه در یکدسته سطح، کاهش میزان فتوسنتز ذخیره شده در دانه است که این میزان به‌عنوان آزمایش نیز کاهش وزن و عملکرد دانه با افزایش تنش خشکی، نسبت کروی‌هایدات به پروتئین، با افزایش رشد به‌بیان می‌آید. در این رابطه، تفاوت میان پروتئین 36 درصدی دانه در دانه می‌باشد. به‌طور عمده مربوط به کاهش نسبت نشانه‌پذیری به پروتئین در دانه می‌باشد. در این رابطه، میزان ذخیره شده در دانه است که این میزان به‌عنوان آزمایش نیز کاهش وزن و عملکرد دانه با افزایش تنش خشکی، نسبت کروی‌هایدات به پروتئین، با افزایش رشد به‌بیان می‌آید. در این رابطه، میزان ذخیره شده در سایر اندازه‌های گیاه تآنی می‌باشد. این که این عوامل به‌عنوان اثر تراکم بونه در عملکرد نهایی دانه سهم دارند به‌گونه‌ای گیاه

<table>
<thead>
<tr>
<th>جدول 2: مقایسه میانگین‌های تراکم تنش، نشان‌گر سطح خشکی، کاروفیل b و a در مکمل‌های مختلف (کیلوگرم در هکتار)</th>
<th>تراکم تنش (پونه)</th>
<th>در متغیر (LSD)</th>
<th>تراکم تنش (پونه)</th>
<th>در متغیر (LSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>کاروفیل (میلی‌گرم کرم)</td>
<td>3300</td>
<td>2480</td>
<td>3200</td>
<td>2460</td>
</tr>
<tr>
<td>کاروفیل (میلی‌گرم کرم)</td>
<td>1200</td>
<td>2400</td>
<td>1200</td>
<td>2400</td>
</tr>
<tr>
<td>کاروفیل (میلی‌گرم کرم)</td>
<td>3300</td>
<td>2480</td>
<td>3200</td>
<td>2460</td>
</tr>
<tr>
<td>کاروفیل (میلی‌گرم کرم)</td>
<td>1200</td>
<td>2400</td>
<td>1200</td>
<td>2400</td>
</tr>
</tbody>
</table>

افزایش می‌باشد (32 و 33). عده دیگری از محققین نیز گزارش کرده‌اند که اثر تنش خشکی، میزان کاروفیل b بر تراکم تنش خشکی کاهش می‌یابد (27 و 28). البته تنش خشکی باعث کاهش میزان کاروفیل در برگ گردد.

و می‌تواند باعث کاهش همبستگی دارد که هر دو مورد تحت تأثیر تراکم بونه در واحد سطح قرار می‌گیرد (16).
جذب شده، تجمیع و در نهایت مسمومیت ناشی از آنها را در گیاهان موجب می‌گردد (۲۱). (۲۲) ناپار (۲۱) افزایش پرولین در گیاهان در شرایط نش شکیک را تأیید نموده‌اند. نظرات منتفی‌کننده در رابطه با افزایش پرولین در برق در شرایط نش شکیکی ذکر گردیده که مهم‌ترین آن را تجزیه پروتئین‌ها در این شرایط و کاهش استفاده از اسید آمینه پرولین را در شرایط نش شکیک ذکر کرده‌اند. این نظرات دیدگاهی نیز وجود دارد که افزایش پرولین را در مسیرهای از نش شکیک و مس سپس کاهش آن را تایید نموده‌اند. در این آزمایش نیز با افزایش نش شکیک پرولین افزایش یافته که مقدارآن در اعمال آزمایش در مرحله روشی و بازیابی اختراع معنی‌دار ناشده تجویز بطورکلی، هنوز به‌درستی نش اسید آمینه پرولین در فرآیند تحقیق کرده‌اند. هنوز چنین گزارش‌های متعددی در رابطه با افزایش پرولین در گیاهان مختلف، به‌طور مثال، در گندم دوروم (۶) و گندم معمولی (۳۵) ذکر گردیده است.

برهایمکش طبیعی کیفیت لیپه قابل عبور در بیماری نش شکیکی و تراکم پرولین لیپه قابل عبور در بیماری نش شکیکی و پرولین معمولی و اکسیدانی در نش شکیکی در مرحله روشی مشاهده گردید و کمترین آن (۴۲/۴) میکرومول بر گرم وزن تر برق) در شرایط آبیاری معمول بود (جدول ۳). تحقیق مختلف تراکم پرولین معمولی در برق (جدول ۲) تجویز پولیپین یکی از روش‌های متابولیک پاتولوژیک که پاسخ به نش اسپرمی و باکتری‌ها، که توسط گیاهان عالی و پاتوژنتیک انجام می‌گیرد. پرولین تجربه پاتولوژیک در ایجاد ترکیبات اسپرمی (اصولیتی) نقش داشته که این ترکیبات وظیفه ماندند.

همه آنها پاتولوژیک و حجم سلول را به عده داده که در نهایت حفظ توریزمس و تحرک سلول را در پرای شارکشی را افزایش می‌نماید (۳۴). از اینجا که برای تولید اسپرمی‌ها نرنژی زیاد مصرف می‌شود و این مرحله از طریق مصرف مقدار زیادی کنسانترات می‌شود. این یافته‌ها اشاره به این مورد (۲۲) این کاهش رشد مصرف مصرف مصرف یون‌های
不可以读出自然文本
اصطلاح خشکی و تراکم بوده بر عملکرد و برخی خصوصیات...

تحقیقات بیشتری روی ارتفاع مختلف لوبیا و شرایط منشوع آب و هوایی در کشور انجام یافتند. جهت استفاده از عوامل مدرنیت برای کاهش اثر نش خشکی، ضروری به نظر می‌رسد که اکماتیاسی دategy دریا دقیق‌تر در رابطه با تعداد بونه در واحد سطح بیشتر و در شرایط اعماق تراکم در مرحله رشد رشته‌ای کمتر و عملکرد دانه در تراکم نش خشکی در مرحله رشد رشته‌ای کاهش یابد. کاهش عملکرد دانه در تمامی سطوح تراکم بونه در واحد سطح محصول بود و نشان داد که گیاه لوبیا چپش به شدت به کمبود آب حساس می‌باشد. نش خشکی در مرحله رشد رشته‌ای باعث افزایش میزان پرولین در بی رگ، میزان پروتئین دانه و کلروفیل a و b کاهد می‌گردد. نش خشکی در هر دو مرحله رشد رشته‌ای و رشد رشته‌ای باعث کاهش میزان کلروفیل a و b و افزایش میزان کاروتینید گردید. با توجه به حساسیت گیاه لوبیا چپش به شرایط کمبود آب، لازم است متابیع مورد استفاده

31. Nayyar, H. 2003 Accumulation of osmotic and osmotic adjustment in water stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and antagonists. Environmental and Experimental Botany 50: 253-264.

