تأثیر فاصله ردیف کاشت و تراکم بوته بر عملکرد و اجزای عملکرد ذرت شیرین

در شرایط آب و هوایی اصفهان

ناهید خدانیان و مرتضی زاهدی

(تاریخ دریافت: 1399/06/25، تاریخ پذیرش: 1399/11/25)

چکیده

به منظور بررسی تأثیر فاصله ردیف کاشت و تراکم بوته بر عملکرد و اجزای عملکرد ذرت شیرین رقم KSC403 آزمایش در سال 1386 آغاز گردید. در مزرعه تحقیقاتی دانشگاه صنعتی اصفهان به صورت هشت گروه در قالب طرح یک علیاکن کامل تصادفی با سه تکرار به اجرا در آمد. در فاصله ردیف (60 و 90 سانتی متر) باعث گازک شدن و تراکم بوته (50 و 75 هزار بوته در هکتار) به وقوع فاکتور فریگ از نظر تحقیقاتی بیشترین تراکم جلب کرد. در این مطالعه، تراکم جلب نسبت به کاهش فاصله ردیف کاشت از 45 به 60 سانتی متر، نشان دهنده توجه شد که با کاهش فاصله ردیف کاشت از 75 به 45 سانتی متر، تعداد دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت؛ ولی ارتفاع گیاهان کاهش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت. تعداد ردیف دانه در بالا و تعداد دانه در بهتر به طور معمولی افزایش یافت. در این مطالعه نشان داد، تراکم 70 هزار بوته در هکتار به افزایش گیاهان، شاخه و سطح بوته و وزن خشک این دانه در متروینه افزایش یافت.
مقدمه
عملکرد دانه متأثر از رقابت درون گیاهی برای تسهیم موارد فتوستاتیک و پرون گیاهی برای استفاده از عوامل محیطی رشد است. النگی گیاهان بیوه در مزرعه بر میزان بهرهوری از عوامل مؤثر رشد و رقابت درون و پرون بیوه تأثیر گذاشته و تعیین عملکرد یافته است. برای حکایت و انجام حد مناسب تراکم گیاهی و نحوه توزیع بیوه در واحد سطح از طریق تغییر الگوی کاشت از اهمیت زیادی برخوردار است (18). به علاوه، فاصله یا دیف گیاهان و تصامیم بیوه در روی تراکم کاشت، تعیین کننده فضای بیوی و رشد استفاده هر بیوه و در نتیجه عملکرد بالاب نسبت به میانگین عملکرد فاصله بیوه در کاشت در رابطه میان بیوه به تغییر الگوی کاشت با توجه به شرایط خاص هر منطقه مورد بررسی قرار گیرد.

حد متعادل تراکم بیوه به مقادیر فراوانی عامل محدودکننده رشد بستگی دارد. رقابت برای نور و محیط زیستی رشد و عدم رشد بستگی دارد. تحت شرایط از تراکم زیاد و عدم رشد بیوه، تأثیر گذاشت و چنانچه بیوه مزروع نور حاکم نور و رودی نمی‌باشد عاملکرد افزایش خواهد یافت (11). با افزایش تراکم، رقابت بین بیوه تشدید می‌شود و این سطح بر میزان جذب نور توسط بیوه تأثیر گذاشت و میزان بیوه مزروع بیوه تردیک نور و رودی نمی‌باشد محمد کننده رشد بوده است.

فاصله فاصله بیوه در کاشت تأثیر می‌گذارد. به تبع آن فاصله بیوه که بیوه در روی تراکم سنسب توزیع یک ناپایین یک یا در واحد سطح می‌باشد. سایه افزایش کاهش سریع نسبت به نور سطح برگ مطیع و از فصل رشد استفاده بیشتری می‌کند. همچنین کاهش رقابت بین بیوه در برای موارد غذا نور و برخوردر توزیع بیوه می‌باشد. افزایش تراکم سرعت رشد روشی اولیه و بیوه شدن سریع تر سیانیدماز کاهش به بالاب بیوه تراکم از سطح خاک که کاهش مقدار کل تبخیر و تعرق افزایش عملکرد را در دی دارد (17، 18). با این حال، در بیوه افزایش زیستی که کاهش فاصله یافته است کاشت در تراکم افزایش عملکرد را با بهره‌دار نشانه است (15، 16 و 24). یا احتمال افزایش فاصله بیوه معمولاً منجر به کاهش عملکرد بیوه رو به کاهش استفاده کاشت رابطه شده است (10 و 28). برای مثال، در افزایش صاحبی (28)، میزان عملکرد
تأثیر فاصله ریف کاشت و ترکام بلوط بر عملکرد و اجزای ... می‌گیرند (9 و 21). در سال‌های اخیر، آزمایش‌هایی در رابطه با تعیین انگل و تراکم کاشت مناسب این گیاه در مناطق خوزستان (3 و 11) و گرگان (20 و 21). در اینجا (35 و 36) و از این نکته بر تاکید شرایط اقلیمی هم منطقه بر انتخاب انگل مناسب کاشت، این تحقیق به منظور بررسی اثر فاصله ریف کاشت و تراکم بلوط بر عملکرد و اجزای عملکرد ذرت سبز، رقم KSC403 در شرایط آب و هوایی اصلی انجام گرفت.

مواد و روش‌ها
این آزمایش به منظور بررسی اثر فاصله ریف کاشت و تراکم بلوط بر عملکرد و اجزاء عملکرد ذرت سبز، رقم KSC403 در سال 1386 در مزرعه تحقیقاتی دانشگاه صنعتی اصفهان واقع در 40 کیلومتر جنوب غربی اصفهان به اجرا درآمد. بافت خاک مزرعه لوس رست و وزن مخصوص طهاور آن 134 گرم بر سانتی متر مکعب می‌باشد. آزمایش به صورت کرت‌های خرد شده در قالب طرح پلک‌های کامل تصادفی با سه تکرار انجام شد. کرت‌های اصلی شامل دو فاصله ریف کاشت (0 و 15 سانتی‌متر به صورت جوی و پشتی) و کرت‌های فرعی شامل چهار تراکم کاشت (0، 5، 10 و 15 هزار بلوط در هکتار) بود. هر کرت آزمایش شامل چهار ریف کاشت به طول 10 متر بود. زمین محل آزمایش در سال قبل به صورت آبش بود و حاکم درموزه در زمان کاشت حاوی 0.5 تیترول بن و به ترتیب 23 و 116 میلی‌گرم بیتایل و پنیسیم بود. عملیات کاشت در تاریخ 9 تیرماه انجام گرفت. عملیات کاشت بر روی بذرها 4 سانتی‌متر در تاریخ گرفتن شد. برای کنترل انفکه‌های هرز از مخاک‌های کم‌روشانی به میزان 1/8 کیلوگرم در هکتار و غلظت کش لاسو به مقدار 4 لیتر در هکتار پست کاشت و همچنین با آب‌ایر و از افزایش درجه حرارت و سطحی استفاده شد. به دلیل وجود زنجیره‌های ناقل بیماری ویروس موی‌کیتوئی کُم‌پی، گیاهان با استفاده از سمی دیازین بسته به میزان 3 لیتر در هکتار در مرحله 30-40 گروه سمی‌پاپسی گردیدند. میزان 15 کیلوگرم نیتروژن به فرم کود اوره

نتایج و بحث
ارتباط گیاه اثر فاصله ریف و تراکم بلوط به ارتفاع گیاه به ترتیب در سطوح احتمال 1 و 5 درصد معنی‌دار نبود و برخی‌کسان آنها معنی‌دار نشد (جدول 1). ارتفاع گیاه با افزایش فاصله ریف و تراکم بلوط افزایش یافت. میزان این افزایش در فاصله ریف 75 به ترتیب 65 و 50% نسبت به فاصله 0 سانتی‌متر و در تراکم بلوط 80 و 60% نسبت به تراکم 50 هزار بلوط در هکتار به ترتیب 37.5 و 96 نسبت به تراکم 50 هزار بلوط در هکتار به ترتیب 37.5 و 96 نسبت به تراکم 50 هزار بلوط در هکتار به ترتیب 37.5 و 96% نسبت به تراکم 50 هزار بلوط در هکتار به ترتیب 37.5 و 96 نسبت به تراکم 50 هزار بلوط در هکتار به ترتیب 37.5 و 96% نسبت به تراکم 50 هزار بلوط در Hakeen, S. تاکید گاه

117
جدول 1. نتایج تجزیه واریانس و مقایسه میانگین اثرهای عوامل آزمایشی بر ارتفاع (سانتی‌متر)، شاخص سطح برق و وزن خشک اندام هواپی (گرم)

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>وزن خشک اندام هواپی</th>
<th>شاخص سطح برق</th>
<th>ارتفاع کیاسه</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>در مجموع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بلوک</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فاصله ریفی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای هفت</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم پوشه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فاصله تراکم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقایسه میانگین‌ها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون و برای هر صفت، تفاوت بین میانگین‌های که حداقل دارای یک حرف مشترک هستند براساس آزمون LSD معنی‌دار نمی‌باشد.

افزایش تراکم پوشه، میزان نور که به کف ساب‌انداز می‌رسد کمترشده و تعیین می‌کند. اکسیون صورت نمی‌گیرد. از طرف دیگر، با افزایش تراکم، کیفیت نور دریافتی نیز تغییر می‌کند. بطوری که کمتری می‌تواند نور برودی به بهبود جذب و میزان نور مادون قرمز در پایین سایه‌انداز افزایش می‌یابد، که مجموعه ای از عوامل می‌تواند باعث افزایش طول میانگین و ارتفاع بوده‌ها گردد (32). افزایش ارتفاع بوده در اثر افزایش تراکم بوده توسط روز و بیسوس (37) نیز گزارش شده است.

شاخص سطح برق

اثر فاصله ریفی و تراکم پوشه بر شاخص سطح برق در سطح ادامه می‌رسد.
ام رابع کاهش رقابت درون و برون پوشه و بهره‌وری بهتر
از عوامل محیطی مثل نور، آب و مواد غذایی می‌گردد (18 و
23). افزایش شاخص سطح برگ همراه با افزایش تراکم پوشه
نشان می‌دهد که تعداد پوشه در واحد سطح، کاهش سطح
برگ در تک بوته را چرای کرد و سطح برگ بیشتری را در
تراکم‌های پیشتر موجب شده است. فتحی (11) با بررسی چهار
سطح تراکم ۵۰، ۷۵، ۱۰۰ و ۱۲۵ هزار پوشه در هکتار، بیشترین
سطح برگ در تک بوته را در تراکم ۱۰۰ هزار پوشه در هکتار
به‌دست آورد تا کاهش ترکیب کاسک و همکاران (4) تیز
به‌دست آمد.
برهمکش فاصله رفیق و ترکام پوشه بر سطح یک
برگ در سطح احتمال ۱٪ معنی‌دار گردید (جدول ۱). در
تراکم‌های بیشتر (۱۰۰ و ۱۱۰ هزار پوشه در هکتار) شاخص سطح
برگ در فاصله رفیق ۳۵ سانتی‌متر نسبت به فاصله
۵۰ سانتی‌متر به ترتیب ۲۰ و ۲۲ درصد بیشتر بود. در حالی که در
تراکم‌های کمتر (۷۵ و ۵۰ هزار پوشه در هکتار) اختلاف بین دو
فاصله رفیق از این نظر معنی‌دار نبود (جدول ۳). بیشترین
مقدار برای شاخص سطح برگ در فاصله رفیق ۵۰ سانتی‌متر و
تراکم ۱۱۰ هزار و کمترین آن در هر دو فاصله رفیق در تراکم
۵۰ هزار پوشه در هکتار به‌دست آمد. با عنايت به نتایج به
دست آمده، در شرایط این آزمایش فاصله رفیق ۵۰ سانتی‌متر از نظر
تولید سطح برگ فقط در تراکم‌های بیشتر نسبت به فاصله
رفیق ۵۰ سانتی‌متر مزیت بیشتری داشت.
وزن خشک اندام هواei

اثر فاصله رفیق و ترکام پوشه بر وزن خشک گیاه در سطح
احتمال ۱٪ معنی‌دار گردید (جدول ۱). وزن خشک اندام هواei در
یک مرحله رفیق ۶۰ سانتی‌متر به ترتیب ۴۰ و ۴۲ درصد بیشتر بود. در این
آزمایش، توزیع یکنواختی تر پوشه در رفیق‌های باریک‌تر و
نرم‌تر درون گیاه و افزایش سطح برگ و
وضعیت مطلوب برای رشد گیاهان و افزایش سطح برگ و
جدول 2 نتایج تجهیز واریانس و مقایسه میانگین اثرهای عوامل، آزمایش بر تعداد ردیف در پال. تعداد دانه در ردیف. تعداد دانه در بلال.

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>عملکرد</th>
<th>درجه</th>
<th>منابع تغییرات آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن</td>
<td>تعداد دانه در پال</td>
<td>تعداد دانه در ردیف</td>
<td></td>
</tr>
<tr>
<td>دانه</td>
<td>میانگین ها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 دانه</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/00</td>
<td>21/67</td>
<td>0/2</td>
<td></td>
</tr>
<tr>
<td>88/05</td>
<td>67/40</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10/00</td>
<td>0/28</td>
<td>1/52</td>
<td></td>
</tr>
<tr>
<td>94/80</td>
<td>4/59</td>
<td>1/52</td>
<td></td>
</tr>
<tr>
<td>16/80</td>
<td>5/41</td>
<td>1/27</td>
<td></td>
</tr>
<tr>
<td>0/77</td>
<td>0/09</td>
<td>0/77</td>
<td></td>
</tr>
</tbody>
</table>

*، ** و *** به ترتیب معنی‌دار در سطح احتمال 1% و 5% و غیرمعنی‌دار در هر سطح و برای هر صفت، نتایج بین میانگین‌هایی که حداکثر دارای یک حرف مشترک هستند براساس آزمون LSD معنی‌دار نمی‌باشد.

* اثر تراکم بر تعداد ردیف دانه در بلال و تعداد دانه در ردیف در سطح احتمال 1% معنی‌دار نبود. ولی اثر مقیاس آنها معنی‌دار نبود (جدول 2). مقایسه میانگین در تراکم‌های 5، 10 و 15 میکرون به هکاتار بیشترین بود. ولی با افزایش بیشتر تراکم، کاهش یافته مقدار این کاهش در تراکم‌های 5 و 10 نسبت به 5 میکرون بیشتر در هکاتار برای تعداد ردیف دانه در بلال به ترتیب 7/6 و 11/8 و برای تعداد دانه در هر ردیف به ترتیب 17/4 و 20/7 درصد بود. نتایج مشابهی توسط محققین دیگر (3، 28 و 29) گزارش شده است.

** اثر تراکم بیشتر بر تعداد دانه در بلال و تعداد ردیف در سطح احتمال 1% معنی‌دار نبود. (جدول 2). نتایج دادن در بلال در تراکم‌های 50 و 100 سانتی‌متر بیشتر بود. در آزمایش بولناک و همکاران (5) نتایج دانه در بلال در کوار کاشت مریعی نسبت به الگوی کاشت مستطیلی بیشتر بود.

۱۲۰
تأثیر فاصله رددیف کاشت و تراکم پونه بر عملکرد و اجزای...

جدول ۳-۳: مقایسه فاصله رددیف و تراکم پونه بر شاخص سطح پرگ، وزن خشک اندام هوایی (گرم)

<table>
<thead>
<tr>
<th>تراکم پونه</th>
<th>فاصله رددیف (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>110000</td>
</tr>
<tr>
<td></td>
<td>90000</td>
</tr>
<tr>
<td></td>
<td>70000</td>
</tr>
<tr>
<td></td>
<td>50000</td>
</tr>
<tr>
<td>شاخص سطح پرگ</td>
<td></td>
</tr>
<tr>
<td>6/16</td>
<td>5/76</td>
</tr>
<tr>
<td>5/12</td>
<td>5/12</td>
</tr>
<tr>
<td>وزن خشک اندام هواپی (تن پونه)</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>5/12</td>
</tr>
<tr>
<td>111</td>
<td>5/3</td>
</tr>
<tr>
<td>وزن خشک اندام هواپی (در متریم)</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>5/95</td>
</tr>
<tr>
<td>1233</td>
<td>5/92</td>
</tr>
<tr>
<td>تعداد دانه در بلال</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>5/75</td>
</tr>
<tr>
<td>492</td>
<td>5/85</td>
</tr>
<tr>
<td>وزن ۱۰۰ دانه</td>
<td></td>
</tr>
<tr>
<td>23/1</td>
<td>5/25</td>
</tr>
<tr>
<td>22/1</td>
<td>5/33</td>
</tr>
<tr>
<td>عملکرد تر دانه</td>
<td></td>
</tr>
<tr>
<td>218/00</td>
<td>5/29</td>
</tr>
<tr>
<td>2075/00</td>
<td>5/75</td>
</tr>
</tbody>
</table>

برای هر صفت، نفاوت بین میانگین‌های که حداکثر دارای یک حرف مشترک هستند براساس آزمون LSD معنی‌دار نمی‌باشد.

در هکتار نسبت به فاصله رددیف ۷۵ سانتی‌متر برتری به رابط ۳/۸ به ۷ درصد بیشتر بود (جدول ۳). در حالت که در تراکم‌های ۵۰ و ۷۰ هزار بازی نفاوت بین دو تیمار فاصله رددیف کاشت معنی‌دار نبود. این نتایج نشان می‌دهد که تحت شرایط این آزمایش، فاصله رددیف ۶۰ سانتی‌متر از نظر تولید تعداد بیشتر در بلال فقط در تراکم‌های زیاد نسبت به فاصله ۷۵ سانتی‌متر، مریست داشت. بیشترین تعداد دانه در بلال در هر دو فاصله رددیف در تراکم‌های ۵۰ و ۷۰ هزار و کمترین آن در فاصله رددیف ۶۰ سانتی‌متر و تراکم ۱۱۰ هزار پونه در هکتار به‌دست آمد.

۱۱۰ به‌طور معنی‌داری کمتر از تراکم‌های ۵۰ و ۷۰ هزار پونه در هکتار بود. کاهش تعداد دانه در بلال به‌دلیل کاهش مقادیر هر صفت تعداد رددیف و تعداد دانه در رددیف بوده و گرچه با افزایش تراکم از ۵۰ به ۱۱۰ فقط تعداد دانه در رددیف کاهش یافت. در آزمایش نخی (۱۱) نیز با افزایش تراکم از ۵۰ به ۱۱۰ هزار پونه در هکتار، تعداد دانه در بلال کاهش یافت. برهمکنش فاصله رددیف و تراکم بر تعداد دانه در بلال در سطح احتمال ۱% معنی‌دار بود (جدول ۳). تعداد دانه در بلال در فاصله رددیف ۶۰ سانتی‌متر در تراکم‌های ۹۰ و ۱۱۰ هزار پونه
اثر فاصله رذف و تراکم بین بروز و وزن 100تن در سطح
اختلال (1 امتیاز در شد) (جدول 2). وزن 100تن در فاصله
رذف 60نسمت به کمال 75سنن مترا/8 درصد بیشتر بود.
نتایج مشابه توسط مطالعه سگنتون و همکاران (22) و بولک
و همکاران (5) بهبود آمد. به نظر می‌رسد کاهش وقت و
تولید سطح بروز با تراکم در فاصله رذف کمتر موجب افزایش
مواد فتوسنتزی اختصاص یافته به هر دانه است. وزن تراکم
100تن در کمال 905 هزار
بوته در هکتار بر حسب حاصل 146 و 31 درصد کمتر بود
(جدول 2). کاهش وزن دانه‌ها در تراکم‌های بیشتر بهدلیل
کاهش فاصله رذف گیاه در اثر میانگین‌بندی نتایج مشابه
جذب نور کمتر توسط کنکستون می‌باشد. نتایج مشابه
جذب نور دیگر مقحقل (3) و (4) در کمال شده است.
برهمکنش فاصله رذف و تراکم بین بروز و وزن 100تن در سطح
اختلال (1 امتیاز در شد) (جدول 2). در تراکم 50 و 75 هزار
بوته در هکتار، وزن دانه در فاصله رذف 60نسمت به کمال
75سنن مترا/8 درصد بیشتر بود (جدول 3)، ولیکن تفاوت بین دو فاصله رذف در تراکم‌های 90 و 110
هزار معنی‌دار نبود. بیشترین وزن دانه در فاصله رذف
60سنن مترا/8 و تراکم 50 هزار و کمترین آن در هو در فاصله رذف
در تراکم 110 هزار بوته در هکتار دیده آمد.
عملکرد دانه
اثر فاصله رذف بر عملکرد دانه تدر سطح اختلال
(1 امتیاز در شد) (جدول 2). عملکرد دانه در فاصله
رذف 60نسمت به کمال 75سنن مترا/8 درصد بیشتر بود. در این
آزمایش، با توجه به اینکه تعداد دانه در بالابه هزینه
تولید می‌شود که دارای جذب نور نسبتاً کمی باشد. بنابراین,
اگر عملکرد بیشتر در فاصله رذف کمتر در پک
خاک حاصلخیز نسبت به پک خاک با حاصلخیزی کمتر بیشتر
است، به روابطی می‌تواند در 100تن مشابه با 400تن
عملکرد بیشتر در فاصله رذف کمتر بیشتر
نگر می‌رسد که احتمال برداشت عملکرد بیشتر در فواصل ریف دیف کمتر نسبت به فواصل ریف دیف رایج ذرت در شرایط حضور عوامل محیطی محدود کند. عملکرد بیشتر است. (32).
با این حال، نتایج نشان دهنده رطوبت زایمی به دست آمده عقیده می‌شود که آزمایشات عملکرد کمتر از فواصل ریف دیف باربیکتر وجود دارد.
اثر تراکم بونه بر عملکرد دانه در سطح احتمال 1% معنی‌دار

(جدول 2). بیشترین عملکرد دانه در تراکم 70 هزار بونه در هکتار به دست آمد. گرچه تفاوت آن با تراکم 50 هزار بونه در

هکتار معنی‌دار نبود. عملکرد دانه دانه در تراکم‌های 95 و 110

نسبت به تراکم 70 هزار بونه در هکتار به‌طور متوسط 58 و 28

درصد کمتر. نمودن سطگرد (31) با پرورسی سطح تراکم

55 و 75 هزار بونه در هکتار بیشترین عملکرد دانه دانه برای

ذرت شیرین رقم KSC404. در سالی در تراکم 75

بسته به موقعیت در ازمایش مختلی‌نور و همکاران (20) استفاده

از تراکم‌های 75 تا 95 هزار بونه در هکتار، بیشترین عملکرد

ذرت شیرین رقم KSC403 در گروه زمین‌نورد 75 هزار بونه در

همکار به دست آمد. پرورش و اکلی (25) کاهش تلقیح، افزایش

قابلیت برای جذب نور و در نتیجه طولانی‌شدن فاصله

گردانشان، یکی از عوامل کاهش داشتن مرغوبیت دانه را

علت اصلی کاهش عملکرد دانه در اثر افزایش تراکم بونه در

زننده‌ی عادی مرغوبیت دانه را گذشته است. (21)

نتیجه‌گیری

در این ازمایش، عملکرد دانه ذرت شیرین به‌طور معنی‌داری

تحت تأثیر فاصله ریف و تراکم بونه و برهمکنش آنها قرار

گرفت. گیاهان در فواصل ریف باربیکتر، از طریق تولید سطح

برگ بیشتر و دانه‌های سنگین‌تر، عملکرد بیشتر تولید نمودند.

گرچه با افزایش تراکم بونه، وزن خشک کیسه در واحد سطح

افزایش پایه ویل عملکرد تر داشته و در واحد سطح در تراکم‌های

بیش از 75 هزار بونه در هکتار در فواصل ریف 50 و

75 سانتی‌متر کاهش یافت. بیشترین عملکرد تر دانه از

زمره KSC403 در ذرت شیرین در آزمایش کاهش حاصل از تله‌ی

فاصله ریف 40 سانتی‌متر و تراکم 70 هزار بونه در هکتار

به‌دست آمد.

منابع مورد استفاده

1. Andrade, F. H., P. Calvino, A. Cirilo and P. Barbieri. 2002. Yield response to narrow rows depends on increased

