بررسی زنگی‌پایی پاپادیا در برابر عامل بیماری سفیدک درونی توتوون

(Peronospora tabacina Adam)

چکیده

به منظور تجزیه و تحلیل زنگی‌پایی پاپادیا واریته‌های توتوون به بیماری سفیدک درونی و برآورده کردن ارقام، چهار واریته توتوون بل 198-1، پرچک سی ساوسون و تراوی پاپادیا و حساس به بیماری سفیدک درونی در ۳۸۰ متر از سایر بین المللی تحصیلات توتوون (کورسینا) در سال ۱۳۷۶ به صورت طرح یک‌آلفه یک طرفه تلاقی و در سال ۱۳۷۷ یک‌آلفه اولویت و نتایج آنها کشف و مورد بررسی قرار گرفتند. هم‌چنین، به منظور بررسی اثر زنگی‌پایی کنترل کننده صفت پاپادیا و حساسیت، و گرفته یک‌مره نسل F۱ حاصل از BC۱ × BC۱ نسل F۲ به سوئکی ها shortage F۲ به سوئکی F۲ به صورت یک‌آلفه F۴ تجزیه و تحلیل گردید.

نتایج تجزیه و تحلیل نشان دارد بین زنگی‌پایی‌ها از نظر پاپادیا به پروپرئورا نشان داده و تجربه مایگین نسل ها گویای پروپرئورا خانواده‌ای پرچک سی، پرچک سی ساوسون و پرچک و تراوی از سایر بین المللی تحصیلات توتوون آثار متقابل خلاص‌کننده (اسبیتیک) پاپادیا گشت و با مدل مکانیزم متریک پراچکی به وجود آتی و منفی تلاقی و دو یا سه اثرات دانسته داده و این برای پراچکی در ملایمی به ترتیب به صفت پاپادیا نسبت به پروپرئورا، نشان دهنده آثار اضافی زنگی‌پایی‌ها در دو یا سه چهارم بیماری سفیدک درونی چشمگیر بود. در مجموع، واردات پاپادیا به صفت پاپادیا به پروپرئورا در برابر عامل بیماری سفیدک درونی توتوون نسبت به پروپرئورا نمی‌شود.

واژه‌های کلیدی: پروپرئورا، پاپادیا، سفیدک درونی، توتوون، اثر زنگی‌پایی، مایگین نسلی

مقدمه

بیماری سفیدک درونی توتوون که توسط خارج پروپرئورا تاباسیا، ایجاد می‌گردد، یک دستگاه به گردش صفت پاپادیا توتوون خور است. استاد اصلاح نباتات دانشکده علوم کشاورزی، دانشگاه گیلان.

1. پژوهشگران مرکز تحقیقات توتوون گیلان.

2. Peronospora tabacina A.
پایداری 9 گونه و حبیبی توتون در پرایر عامل بیماری سفیدک دروغی توسط پالاکاژیکا (15)، در شرایط آلودگی مصنوعی مزرعه بررسی گردید. در این آزمایش میزان پایداری در تعدادی از گونه‌ها و حبیبی توتون شناخته شد و با واریته‌های تجاری تلاقی داده شدند. تجزیه و تحلیل زنده‌کی برای این این ها و واریته‌های مورد شناسه وجود داشته و پایدار نسبت به پرونپیولا بوده که جمله آن‌ها می‌توان به واریته پایدارا-3 اشاره کرد.

از زنده‌کی و چهره زنده‌کی نسبتاً پایدار توسط رافی و مین (17)، برای ایجاد پایداری نسبی در پایدار بیماری بررسی شد که از آنجا باید پایداری با یک‌دستگیری تفاوت معمول داشته و در حالی که واریته‌های تجاری اسپاک‌جوری ۷۰٪ مکه و ۹۴-۴۲ حساس ترین زنده‌کیها NC-BM ۹۰ و ۴۲ دارای پایداری چشگیری بوده. به ترتیب که وجود مانعی و چندگانه پایداری، این لاین را به‌یکی از منابع مهم پایداری در پرایر عامل سفیدک دروغی تبدیل کرده است. تعیین و پالاکاژیکا (8) تونووت های پایدار تیپ و برجیا مانند شیمیاکال مونت، بل (200-۵۰) R/T GA ۹۵۵ می‌باشد. تفاوت و تونووت کرده یا پایداری و لاین‌های حساس تلاقی داده که توسط حالی که واریته‌های سفیدک دروغی ۱۰۰-۵۰ و دو زنگ در درگاه مانعی پایداری بوده و به ترتیب که گسترش زنده‌کی پایداری به سن ۵۰ می‌رسید. یافته‌های هنری‌ها و شمعی (1) با بررسی ۱۰ واریته تونووت تیپ و برجیا که وجود آثار فوق‌العاده و گسترده زنده‌کی میزان حساسیت از این تونووت در پرایر عامل بیماری سفیدک دروغی است. در این بررسی واریتی‌های محصولی پایداری در پرایر سفیدک دروغی میزان ۴۷٪ درصد شد.

1. SAR (Systemic Acquired Resistance)
2. Pobeda 3
3. Speilet G-70
4. McNair 944
5. Ch. Mutant
6. Bell 61-10
7. Trumpf

بررسی نمونه‌های فشار نروژی که پیشی گرفته در سال ۱۹۸۹ تا ۱۹۸۹ و یافته شد که تعدادی از نمونه‌های بیماری‌های ناحیه‌ای فشار نروژی در مورد بیماری زایی عامل سفیدک دروغی که در سال ۱۹۹۲ در ۲۷ مرتفع و ۱۲ کشور جهان و در ۹ تا ۱۹۹۲ و یافته شد که تعدادی از نمونه‌های بیماری‌های موجود دارای تاکنون قاد و نیاز در بیماری‌های زایی را که باید کنترل این بیماری به کار گرفته شود، شکست.
بررسی زنیکی‌های ایجادی در برابر عامل بیماری سفیدک

۱. Coker ۳۱۹ ۲. Bergerac C ۳. Samsoun

۳۷۷۱ بذور کشتی با نسبت ۱/۳۷۷۱ بذور کشتی با نسبت ۱/۳۷۷۱

۱۹۴۹ برسی حس‌سنجی به سفیدک در بوده و ارقام

کاکر ۳۱۹، کاکر ۲۵۸ و N۲ بیشترین ظهور را داشت

پایداری داشتند.

برای اصل گاهان زمانی تعیین مانند می‌توانست، شناسایی ساختار
زنیکی صفات و ترکیب دی‌پی‌ای آنها موجب سادگی گزینش و
موفقیت پروپلامه‌های اصلاح نمایی می‌گرد. چنین اطلاعاتی از
طبق روشهای زنیکی کمی مانند مندل آلرژی و تجزیه میانگین
نسل‌ها به دست می‌آید، که اصول آن را جنینک و هیمن (۱۱)
یهیمن (۹ و ۱۰)، گریزینگ (۸ و ۱۰) و نیز می‌آید (۱۴) بیان
کرده و بعداً توسط کریزی و پونی (۱۲) تکمیل گردید.

هدف از این بررسی تجزیه و تحلیل چگونگی وراثت صفات
پایداری در برابر قارچ عامل بیماری سفیدک در بخش از
واریانت‌های سازمانی میان الکلی تحصیلات توئتون (کورستا) است،
که برای ارزیابی میزان گسترش جهانی بیماری سفیدک دروغی,
به‌صورت یک طرح مشترک پژوهشی در کشورهای مختلف
چنین کشت شده و به عنوان تله بیار قارچ پرونیوسرا عمل
می‌نماید. این ابتکار، این مجموعه دارای ۹ واریته می‌باشد. پس
از ۲۵ سال آزمایش مشخص گردیده که اکنون منابع پایداری
نتیجه به بیماری سفیدک دروغی، مستقیم از منشأ آنها، شکسته
تشده و سوخته جدی‌تر از انتظار نیز بروز نموده است (۴).

مواد و روش‌ها

به منظور شناسایی ساختار زنیکی و چگونگی وراثت صفات
پایداری در برابر پرونیوسرا اثر زنده و هم چنین ترکیب پذیری
صافت پایداری و حساسیت در برابر عامل بیماری سفیدک
دروغی توئتون، نواحی واریته بیل ۴۶-۱۰، برجواک سی (۲)
سامسون و تزامف در سال ۱۳۷۵ میلادی بر روی لوله‌های توئتون
رست و به‌صورت یک طرح در آلرژیک پژوهش کردند. در
سال ۱۳۷۵، مشخص بود که بیماری توئتون به F۱ آنها کشته
و با چگونگی سری به F۳ بودن نسل فاصله F۴ به دست آمد. ضمناً نتایج

۱. ۳۱۹ ۲. Bergerac C ۳. Samsoun
واژه‌هایی با عامل بیماری سیدک دروغی به شرح زیر انجام گرفتند:

1. تجزیه واریانس داده‌ها به صورت یک طرح برای هر مدل تصادفی با تعداد 36 تیمار (شش روش همگون، هر یک دارای شش نسخه و سه تکرار).

2. تجزیه میانگین نسل‌های یک شش روش همگون، هر یک دارای شش نسل (P₁, P₂, P₃, F₁, F₂, BC₁, BC₂).

برای تجزیه‌های دی‌آل و برای ترکیب پژوهی‌های عمومی و از واریانس‌ها (SCA) و غیرعمومی (GCA) به کار رفت. برای تجزیه میانگین نسل‌ها از مدل گرفتگی (12) به کار رفت که برای تجزیه میانگین نسل‌ها از مدل 3 و 4 پارامتری پیشنهادی مترا و چیکوک (12) استفاده شد. که علاوه بر برایت آزمایشات و غلیظ بی‌دراز، نهایتی بهم متقابل غیرآلفا (ایزابتارکی) نشان دهنده یک مورد می‌باشد در مدل مترا و چیکوک (12) این برای تجزیه جزء تکنیک می‌گردد:

\[Y = m + \alpha [d] + \beta [l] + \gamma [f] + \delta [i] + \epsilon [l] \]

که:

\[Y \]

میانگین یک نسل، m، مجموع تمام نسل‌ها در یک تکه

\[m \]

میانگین تمام نسل‌ها در یک تکه، i

\[[d] \]

مجموع آثار افزایشی (GCA)

\[[l] \]

مجموع آثار متقابل افزایشی-افزایشی (GCA)

\[[f] \]

مجموع آثار متقابل افزایشی-غایب (GCA)

\[[i] \]

مجموع آثار متقابل غلیظ-غایب (GCA)

\[[l] \]

مجموع آثار متقابل غلیظ-غایب (GCA)

\[[f] \]

میانگین تعداد نسل‌ها در یک تکه برایت پارامترهای زنده‌بازی می‌باشد.

برایت پارامترها با استفاده از روش کمترین مربعات وزنی انجام شد. زیرا تعداد آزاده در نسل‌ها متغیر بود (نسل‌های P₁, P₂, P₃, F₁, F₂, BC₁, BC₂). در این رابطه وزن‌های مربوط به هر یک از مدل تجزیه شد. با استفاده از فرمول آماده ماتلاب (MATLAB) و آزمودن وزنی تونر مدل‌ها به ترتیب نسل‌ها در مورد آشکارسازی برای تجزیه و تحلیل‌های زنده‌بازی نمایه‌ها درصدد با ۱۳۶ مورد نظر قرار می‌گردد. در محاسبه بازه‌بازی وزنی تجزیه و تحلیل‌های زنده‌بازی در نسل‌ها با مدل‌های m و [d], [l], [f], [i] و [l] با استفاده از نسل‌های (P₁, P₂, P₃, F₁, F₂, BC₁, BC₂)
وریتسی‌ها در برای قرارگرفتن پرونسبورا اشکال دارد.

در جدول ۲ آمار تکیه عرفانی عمومی و خصوصی والدین و نتایج F_1 و هم چنین مباحثی آلودگی آنها به قرارگرفتن پرونسبورا نشان داده شده است. همان علل که دیده می‌شود، تفاوت معنی‌داری بین آن ندارد. ولی برخی از پژوهشگران و سازمان‌ها با ۲/۸۰۹ و ۱۲/۲۴۹ در میانگین ارقام بیشترین تفاوتهای را به پرونسبورا نشان می‌دهند که این یافته‌ها با نتایج دولن (۲) هم‌هم‌این. و وجود تکیه پذیری عمومی منفی و معنی‌دار بین ۶۱ و ۱۳۰ تأثیر نشان می‌دهد که این والدین ممکن است به عنوان پذیرش‌های اولیه در طرح تکیه عرفانی عمومی مثبت و برخی از پژوهشگران نکشآن در تیم‌های روانشناختی و پزشکی به صورت عمومی و سازمان‌ها با دیگر ارقام دارای آلودگی شدیدتری به پرونسبورا مبتلاده که نتایج معنی‌داری را که (۱) داده‌اند.

پژوهش نژادهای پذیری عمومی و خصوصی به کمک فرمول‌های زیر انجام پذیرشهای (۱۰ و ۱۲) با دو واریانس پذیری عمومی

$$h^2 = \frac{V_D + V_H}{V_F}$$

ورزش پذیری خصوصی

$$h^2 = \frac{V_H}{V_F}$$

ورزش پذیری خصوصی

$$h^2 = \left[\frac{\frac{1}{3} D + \frac{1}{3} H_1 - \frac{1}{3} H_2 - \frac{1}{3} F_1}{F_2} \right]$$

1 نتایج تجربه‌ای واریانس و تجزیه‌های دقیق ۳ والد بر پایه نسل‌های ۱ و ۲ در جدول ۱ آمده است. چنان‌که در جدول ۱ دیده می‌شود، میانگین نتایجی اهمیت زیادی به والدین و نتایج F_1 و F_2 تفاوت معنی‌داری از نظر میزان پذیرش و وجود دارد. به همین ترتیب تفاوت نژادهای عمومی و خصوصی (SCA) و برخی از پژوهشگران نکشآن در تیم‌های روانشناختی و پزشکی عمومی و سازمان‌ها با دیگر ارقام دارای آلودگی شدیدتری به پرونسبورا مبتلاده که در سطح احتمال ۱% معنی‌دار است، و در جدول ۲ آمده است. پژوهش نژادهای پذیری خصوصی آنها معنی‌دار نیست. بنابراین، می‌توان نتیجه گرفت که در شکل‌گیری و اکتشافی نژادهای در برای عامل پیمانهای سیستم درونی، آثار افزایش یافته نتایج تجربه‌ای که در تاریخ دارد. در حالی که تاثیر غیراواستی این نتایج ناچیز است. این بافت را می‌توان در نسبت اینکه (۲) نیز ملاحظه کنیم که بسیار توزیعی به یک بوده و بر نتایج تجربه‌ای واریانس توزیعی نژادهای در تاریخ دارد. طرح آمیخته‌ای یک تجربه‌ای انجام پذیرشهای در جدول ۲ نشان داده و نتایج تجربه‌ای واریانس توزیعی نژادهای در تاریخ دارد.

1. Hierarchical design
جدول 1. تجزیه و ارایه صفت واکنش به پروپیون در 10 زنوتیب (چهار والد و شش نتایج) توتون

<table>
<thead>
<tr>
<th>منابع میانگین مربعات</th>
<th>درجات آزادی</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>پلک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنوتیب‌ها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گیاهی (GCA)</td>
<td>2</td>
<td>1/27</td>
</tr>
<tr>
<td>تکریک پذیری عضوی (SCA)</td>
<td>2</td>
<td>1/27</td>
</tr>
<tr>
<td>خط خطا</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. تکریک پذیری عضوی (روی قطر) خصوصی (بالای قطر) و میانگین شاخص واکنش زنوتیب‌های توتون (والدین و نتایج) به تاریخ پرونپورا

| زمان واکنش | ترماف | سامسون | برچراک سی | والدین | میانگین والدین | میانگین والدین
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3/3441</td>
<td>0/275</td>
<td>0/4939</td>
<td>0/7561</td>
<td>0/495</td>
<td>0/851</td>
<td>0/843</td>
</tr>
<tr>
<td>3/378</td>
<td>0/249</td>
<td>0/4713</td>
<td>0/7439</td>
<td>0/852</td>
<td>0/850</td>
<td>0/847</td>
</tr>
<tr>
<td>3/385</td>
<td>0/229</td>
<td>0/4688</td>
<td>0/7451</td>
<td>0/855</td>
<td>0/848</td>
<td>0/845</td>
</tr>
<tr>
<td>3/392</td>
<td>0/219</td>
<td>0/4664</td>
<td>0/7453</td>
<td>0/856</td>
<td>0/847</td>
<td>0/844</td>
</tr>
<tr>
<td>3/396</td>
<td>0/219</td>
<td>0/4668</td>
<td>0/7456</td>
<td>0/857</td>
<td>0/848</td>
<td>0/845</td>
</tr>
</tbody>
</table>

S.E. _gi (خطای معیار تکریک پذیری عضوی) = 0/76
S.E. _sij (خطای معیار تکریک پذیری خصوصی) = 0/77

LSD 5% = 4/19
LSD 1% = 4/16

جدول 3. تجزیه و ارایه واکنش والدین و نتایج توتون به عامل پیماری سفید در 103

<table>
<thead>
<tr>
<th>منابع میانگین مربعات</th>
<th>درجات آزادی</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/27</td>
</tr>
<tr>
<td>کل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تکرار</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>خانواده</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>نسل در خانواده</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>خط خطا</td>
<td>1/27</td>
<td></td>
</tr>
</tbody>
</table>

معنی‌دار در سطح احتمال 1%
جدول ۴. برآورد اجزای زئیتکی میانگین نسل‌های پرای پایدار در برابر قارچ پرونیورا

| | میانگین | افزایش‌زئیتکی | غالبیت‌زئیتکی | نرمال | غلیظ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(l)</td>
<td>(j)</td>
<td>(i)</td>
<td>(h)</td>
<td>(d)</td>
</tr>
<tr>
<td>۱</td>
<td>برجارکسی صنعتی</td>
<td>بزرگ</td>
<td>بزرگ</td>
<td>بزرگ</td>
<td>بزرگ</td>
</tr>
<tr>
<td></td>
<td>۲/۷۵۴ /۱۵۰</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
</tr>
<tr>
<td>۲</td>
<td>۴/۱۵۰</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
</tr>
<tr>
<td>۳</td>
<td>تراجمه صنعتی</td>
<td>بزرگ</td>
<td>بزرگ</td>
<td>بزرگ</td>
<td>بزرگ</td>
</tr>
<tr>
<td></td>
<td>۳/۸۷۵ /۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
</tr>
<tr>
<td>۴</td>
<td>۵/۳۷۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
</tr>
<tr>
<td>۵</td>
<td>۴/۱۵۰</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
</tr>
<tr>
<td>۶</td>
<td>تراجمه صنعتی</td>
<td>بزرگ</td>
<td>بزرگ</td>
<td>بزرگ</td>
<td>بزرگ</td>
</tr>
<tr>
<td></td>
<td>۴/۱۵۰</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
<td>±/۱۰۵</td>
</tr>
</tbody>
</table>

شده است. ملاحظه می‌گردد که میان نسل‌های مختلف از نظر میزان پایداری نسبت به پرونیورا تفاوت‌های بسیاری وجود دارد که در سطح احتمال ۵٪ می‌تواند این نوع تفاوت باشد. با توجه به وجود تفاوت‌های زئیتکی بین نسل‌ها از نظر پایداری در برابر پرونیورا می‌توان یاد کرد که تجربه واریانس میانگین نسل‌های گردید که با توجه به اینکه هر یک از مقدار ۵٪ می‌تواند در نیست.
جدول ۵. اجزای واریانس در شش نسل توتون برای واکنش در برابر تاریکی پرونپورزا

<table>
<thead>
<tr>
<th>فاصله</th>
<th>h_n</th>
<th>h_b</th>
<th>V_{DH}</th>
<th>V_E</th>
<th>V_H</th>
<th>V_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرچسکی × پرنی</td>
<td>0/33</td>
<td>0/95</td>
<td>0/3128</td>
<td>0/6204</td>
<td>0/4212</td>
<td>10/61</td>
</tr>
<tr>
<td>سامسون × پرنی</td>
<td>0/40</td>
<td>0/86</td>
<td>0/2329</td>
<td>0/5925</td>
<td>0/236</td>
<td>6/610</td>
</tr>
<tr>
<td>تاریکی × پرنی</td>
<td>0/37</td>
<td>0/91</td>
<td>0/1978</td>
<td>0/3527</td>
<td>0/243</td>
<td>12/45</td>
</tr>
<tr>
<td>سامسون × پرچسکی</td>
<td>0/35</td>
<td>0/89</td>
<td>0/1014</td>
<td>0/332</td>
<td>0/249</td>
<td>7/229</td>
</tr>
<tr>
<td>تاریکی × پرچسکی</td>
<td>0/41</td>
<td>0/95</td>
<td>0/1523</td>
<td>0/3855</td>
<td>0/20</td>
<td>5/755</td>
</tr>
<tr>
<td>سامسون × سامسون</td>
<td>0/38</td>
<td>0/54</td>
<td>0/101</td>
<td>0/3869</td>
<td>0/238</td>
<td>15/192</td>
</tr>
</tbody>
</table>

در خانواده شماره ۵ آثار افزایشی [d] و دلالت زنی [h] معین دار بوده و تاوانا در پیشینگ پیاده‌پذیری با حساسیت تنظیم‌های پرچسکی جدیدتر است. ولی با نزدیکی به پرچسکی و تابعیت تاریکی برخی از مزیت در نظر گرفته شده است. مدل ۵ پارامتری [h] [d] [i] [j] [I] [L] [M] بیشتر است (جدول ۴). نتایج گردیده در اینجاست که میانه دار بودن پارامتریک در سندها را می‌توان ثباتی از اثرات یافته‌های (حواست مارکز) برای حساسیت تلخ پرچسکی داشته، یا پرچسکی، نشان دهند. پرچسکی و پرچسکی را در پرچسکی (جدول ۵) باید ترتیبی به نظر می‌رسد که تاکید بر پرچسکی خخصوصی (۳%) نشان داده است. به این روش با نتایج پرچسکی در پرچسکی و کرج در پرچسکی مختلف وجود دارد.

نتیجه‌گیری

وجود تفاوت‌های معنی‌دار در والدین و نسل‌های F_1 و F_2 پرچسکی و پرچسکی، نشان دهنده تفاوت‌های زنیکه‌ای نمایانگر پادکستی و حساسیت تابعیت و پرچسکی در جدول (۴) و والدین مورد تحقیق با داشتن تکیه‌گیری عمومی معنی‌دار می‌توانند به عنوان اثر روی تلفات سازش میزان آن‌ها گیاهی به نظر گرفته شوند (جدول ۴) و در پرچسکی کننده پادکستی والدین و نتایج F_0 از نمونه ساده بوده و از مدل مانند مورد استفاده

1. هنرمانی، ر. م. شماره ردیابی، ۱۳۷۶، اثر زنی و قابلیت تکیه‌گیری برخی از صفات کمی و کیفی واریته‌های توتو. مجله علمی کشاورزی ایران (۴۲۸/۱): ۱۲۱-۱۳۵.