اثر تغذیه نیتروژن و تنش شوری بر وزن هزار دانه، میزان موصلیت و جذب عناصر غذایی در گیاه اسفرزه

مصطلحی حیدری و فاطمه فرزاده

(تاریخ دریافت: 1398/6/22; تاریخ پذیرش: 1398/9/2)

چکیده

به منظور بررسی اثر تنش شوری و سه نوع کود نیتروژن بر رشد و وزن هزار دانه، از شوری گیاهان به صورت فاکتوریال در قالب طرح کاملاً تصادفی با سه تکرار در سال 1389 در دانشگاه زابل انجام گرفت. سطح شوری 100 و 200 میلی‌موارد نمک کارنیوم سدیم، به کمک فاکتور اول دو میکون نیتروژن به سه شکل (نیتروژن به دو میکون نیتروژن کلسیم؛ نیتروژن از منبع مولیقت نیتروژن و آمونیوم به نسبت یک دوم از هر میکون) به کمک فاکتور دوم در نظر گرفته شدند. کاشتن در گلدان‌های باعث استفاده از مولیقت نیتروژن به دو میکون انگیزه بود. اعمال تنش شوری از مرحله دو بیماری گیاهان آغاز شد. نتایج نشان داد که شوری تأثیر معنی‌داری بر وزن هزار دانه، طول سبزه، میزان موصلیت دانه و شاخص‌های دیگر نیتروژن دارد. از طول سبزه به میزان 21/5 درصد و وزن هزار دانه به مقدار 27/3 درصد کاسته شد. در بین چهار شخص فوئو، پرمه‌کشی شوری و نوع تغذیه نیتروژن منبع نیتروژن یک بار طول سبزه معنی دارد. بیشترین طول سبزه در تیمار شوری معنی‌داری داشت که با کاربرد کود آمونیوم حاصل شد. شوری بر تجمیع بیو‌های سدیم و کلسیم در بخش هواپیمایی افزوده و منبع مولیقت کاست. تیمارهای نوع تغذیه نیتروژن و برهمکنش آنها با شوری نیتروژن از میزان تجمیع این بیولوژی معنی‌دار دارند. بیشترین غلظت سدیم در شوری 200 میلی‌موارد و پناسم در سطح شوری شاهد و از منبع نیتروژن آمونیوم حاصل گردید.

واژه‌های کلیدی: نیتروژن، آمونیوم، طول سبزه

1. گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شاهرود
2. گروه زیست‌شناسی، دانشکده علوم، دانشگاه گلستان، گرگان
haydar2005@gmail.com
* : مسئول مکاتبات، پست الکترونیکی

127
مقدمه
شوری بعد از شکل‌گیری به‌تصویر چشمان جای دارد. در توده‌های الکترن مایع‌های غذا زده و بی‌باز در جهان به دلایل متعددی است مصرف‌دارند. عصرنی نیترورزن یکی از عناصر غذای مهم است که جدای و کاهش در حضور شوری دچار اختلال می‌شود. به‌همین‌ причا؛ افزایش نیترورزن و در اثر افزایش برای تولید غذاهای زراعی به‌صورت محیط‌محیط مصرف می‌شود. بین این، رابطه ثابتی بین نیترورزن و دیگر عناصر غذایی از فیسبالیسم تهیه شده است. 

اسفره گیاهی است از خانواده باره‌هایی از نام علمی P. psyllium و Plantago ovate به‌صورت طبیعی از طریق تکثیر می‌شود. اسفره بوی هنک و اقیان است و در استرالیا به‌صورت خوراکی رشد می‌کند. ارزش دارویی این گیاه ناشی از کمیت و کیفیت موسلری موجود در لیپیده‌ی بوده، معکس است. اسفره به‌عنوان ملی و نیز درمای بیوسه کاربرد فراوان دارد (18). تحقیقات اخیر نشان داده که اسفره به‌خوبی تولیدگی و شرایط شوری و شکستن را تحمل می‌کند. سبب و پال (19) گزارش کرده‌اند که هر دو اسفره می‌توانند شوری را تحمل کنند. اما شوری در مصرف 12 دسی‌زئونس بر متر می‌تواند سبب کاهش عملکردی دانه‌ای شود.

با توجه به اینکه کشور ما در دو منطقه هستی و خشکی در بخش‌های اراضی خود رنگ‌های متفاوت بر این تنش‌ها می‌توانند بر جذب عناصر غذایی در گیاهان تأثیر سوء داشته باشند. لذا ارزیابی گیاهان و یافتن مکانیسم‌های مقاومت در آنها جهت حصول عملکرد زیاد ضروری به ظرف می‌رسد. هدف از این آزمایش بررسی آثار سطح مختلف شوری و سه نوع تغذیه نیترورزن بر طول سببه، وزن هزار دانه، شاخص تورم بذر، میزان پرورش در برابر فیزیولوژیکی محیط رشد می‌داند که این امر موجب اختلال در تغییر سلولی و بزرگ شدن سلول‌ها شده و تمام واکنش‌های مایعی گیاه را تحت تأثیر قرار می‌دهد. گروهی نیز سیستم‌های دیگری را عامل خصوصیت‌های سبب می‌کند (19).

در دیدگاه‌های موجود تأثیر شوری بر گیاهان وجود دارد. برخی از محققین، خصائص شوری بر گیاه داشته‌اند که در پتانسیل آب کاه شده یا اثر تجمع اصلاح و ایجاد تنش شکسی فیزیولوژیکی محیط رشد می‌دانند که این امر موجب اختلال در تغییر سلولی و بزرگ شدن سلول‌ها شده و تمام واکنش‌های مایعی گیاه را تحت تأثیر قرار می‌دهد. گروهی
جدول ۱. نوع و غلظت مواد معدنی ماکرو در تیمارهای مختلف نیتروزون

<table>
<thead>
<tr>
<th>تیمار نیتروزون</th>
<th>تیمار آمونیوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد معدنی</td>
<td>میلی مولار در محلول</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>۲/۵</td>
</tr>
<tr>
<td>KCl</td>
<td>۵</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>۱</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>۱</td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>۳</td>
</tr>
</tbody>
</table>

جدول ۲. نوع و غلظت مواد معدنی میکرو در کله تیمارهای نیتروزون

<table>
<thead>
<tr>
<th>مواد معدنی</th>
<th>کرم در لیتر</th>
<th>مواد معدنی</th>
<th>کرم در لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuSO₄.5H₂O</td>
<td>۶/۸</td>
<td>H₂BO₃</td>
<td>۶/۸</td>
</tr>
<tr>
<td>MoO₃.5H₂O</td>
<td>۴/۲</td>
<td>MnCl₂.4H₂O</td>
<td>۴/۰</td>
</tr>
<tr>
<td>S₂</td>
<td>۲/۰</td>
<td>ZnSO₄.7H₂O</td>
<td>۲/۰</td>
</tr>
</tbody>
</table>

روشی، ج و ۸ ساعت تاریکی محل شدیدن. ابتدا درون گلدانها ۱۰ عدد بذر کشت شد. بعد از ظهور گیاهچه‌ها و در مرحلهٔ دوم گریز و به ۴ بوته در سطح هرم گلدان رسانده شدند. آب‌زایی و تغذیه بوته‌ها تا مرحله دوم گریز به‌طور مداوم حلول غذایی تعیین یافته‌های غیزانی که شامل ۷/۵ میلی‌مول MgSO₄ و ۰/۵ میلی‌مول KNO₃، ۰/۵ میلی‌مول K₂HPO₄ و ۰/۵ میلی‌مول NH₄H₂PO₄ در لیتر همراه با عصاره ورزشی یافته شدند. در طول دورهٔ آزمایش، گیاهان با استفاده از محلول غذایی غیزانی صورت می‌گرفت که براساس نیتروژن‌های تیمارهای نیتروزون نهایی شده‌بودند. از این رو، نحوه محلول غیزانی تعیین شده با نتایج متفاوت نیتروزون (نوزین و تیمار آمونیوم) سه تیمار نیتروزون که شامل نیتروژن، آمونیوم و تیمارهای از گیاه‌ها بررسی شدند. در تیمارهای سه‌گانه، ابتدا یک گلبه‌ای به‌طور ایستگاه‌هایی در مرکز محلول گیاهان قرار داده می‌شد (جدول ۱ و ۲). این نتایج به شرح ذیل وارد شدند: بعد از محلول در گرگان آزمایش، نتایج نشان می‌دهند که تیمارهای نیتروزون با روزهای ۲۵ میلی‌مول کاریک سدیم شروع گردید. در نهایت، بعد از ۴ روز، درصد مویسیس و میزان جذب عناصر سادی، پنیا و کلر در گیاه دارویی افزایش شد.

مواد و روش‌ها

اين آزمایش به‌صورت فاکتوریل، در قالب طرح کاملاً تصادفی با سه تکرار در سال ۱۳۸۹ در مرکز زیست فلاحی (پیشتر) دانشگاه زابل انجام گرفت. سطح شوری (١سی‌‌العمر) و ٢٠٠٠ میلی‌مول نمک کلرید نیتروزون، به‌عنوان فاکتور اول و دوم نیتروزون به سه شکل (۰=۰ نیتروزون) به‌عنوان فاکتور دوم در نظر گرفته شدند. کلرید نیتروزون به سه شکل (۰=۰، ۱۵ و ۳۰ میلی‌مول) از عناصر سادی، پنیا و کلر در گیاه دارویی تا حدی باعث افزایش شدند. درصد مویسیس و میزان جذب عناصر سادی، پنیا و کلر در گیاه دارویی افزایش شد.

۱۷۰
جدول 3- نتایج تجربه واریانس طول سبانه، وزن هزار دانه، درصد موسیلایز، شاخ صورت و عناصر غذایی آن‌ها

<table>
<thead>
<tr>
<th>عنصر غذایی</th>
<th>درصد</th>
<th>وزن هزار دانه</th>
<th>طول سبانه</th>
<th>موسیلایز</th>
<th>شاخ صورت</th>
<th>دانه</th>
<th>پنیسم</th>
<th>پنیسم</th>
<th>کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسیر شوری</td>
<td>223 +/− 0.004</td>
<td>118/415</td>
<td>153/415</td>
<td>44/0.05</td>
<td>24/0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>نوع نیتروژن</td>
<td>2127/415</td>
<td>415/415</td>
<td>415/415</td>
<td>420/0.05</td>
<td>420/0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>شوری نیتروژن</td>
<td>24/0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3/4/123</td>
<td>415/415</td>
<td>415/415</td>
<td>415/415</td>
<td>420/0.05</td>
<td>420/0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

نتایج تجربه واریانس طول سبانه، وزن هزار دانه، درصد موسیلایز، شاخ صورت و عناصر غذایی آن‌ها

شناختی و بیان

طور سبانه و وزن هزار دانه

نتایج تجربه واریانس فاکتورهای داده‌ها (جدول 3) نشان می‌دهد که شوری تأثیر معناداری بر طول سبانه و وزن هزار دانه دارد. با افزایش شوری
جدول ۴: مقایسه میانگین طول سلبه وزن هزار دانه درصد موسیلاز، شاخش تورم و عناصر غذایی استفرزه

<table>
<thead>
<tr>
<th>شاخش تورم</th>
<th>درصد</th>
<th>طول سلبه (سانتی‌متر)</th>
<th>وزن هزار دانه (میلی‌متردر کگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>کار</td>
<td>میلی‌متر در دانه جشنی</td>
</tr>
<tr>
<td>موسیلاز</td>
<td></td>
<td>12/397</td>
<td>0.19/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17/395</td>
<td>0.24/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20/395</td>
<td>0.27/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24/395</td>
<td>0.30/22</td>
</tr>
</tbody>
</table>


در هر ستون و برای هر پارامتر، میانگین های دارای حروف مشابه تفاوت معنی‌داری براساس آزمون دانکن ندارند.

مکی زاده تفتی و همکاران (11) گزارش کرده‌اند که شوری باعث کاهش محکومیت موسیلاز در پیام‌های کارهایی از متوالی‌های شده است. به علاوه، هیدروکربن‌های محکومیت مسیر که پس از تجزیه شدن اثری تولید می‌کند، افزایش روند کاهش موسیلاز در مقادیر زیادی شوری بیانگر استفاده بیشتر کی‌ها از ذخایر هیدروکربن‌های محکومیت در اثر شوری شدن می‌باشد. با توجه به مطالعه گفته شده، کاهش محکومیت موسیلاز تحت شرایط می‌تواند ناشی از تجزیه شدن این هیدروکربن‌های محکومیت با هیدروکربن‌های محکومیت مسیر به منظور تنظیم اسمزی و سایر فعالیت‌های حیاتی گیاه، باشد (16).

میزان پویا

نتایج تجزیه واریانس داده‌ها در جدول ۴ نشان می‌دهد که شوری تأثیر معنی‌داری بر ظرفیت پونه‌های مسیر و کلر در بخش هواپیمای اسفزه دارد. مقایسه میانگین داده‌ها نشان داد که با افزایش شوری از شاهد به ۲۰۰ میلی‌میلی‌متر، از درصد موسیلاز و شاخش تورم بذر کاهش داشتن باشد. این کاهش برای درصد موسیلاز و شاخش تورم بذر بترین معادل ۴/۷ و ۱۵/۷ درصد بود (جدول ۴). هنگامی که تیمار نوع نیتروژن تأثیر معنی‌داری بر درصد موسیلاز و شاخش تورم بذر نداشت، اما بیشترین درصد موسیلاز و شاخش تورم بذر در تیمار نئوتامین اعلام شد.

بدون تنش تفاوت وجود داشته باشد. اما بهدلیل نابینت وزن هزار دانه از عوامل زیستی، نسبت به عوامل محیطی به نظر می‌رسد که تشخیص مسیر و عوامل زراعی نهایی‌ترند وزن دانه از حد مشخصی کمتر کنند. زیرا گیاهی از طریق کاهش تعداد دانه، جدول فاقد مورد نیاز برای دانه‌ها تشکیل شده و تأثیر می‌کند (8).

درصد موسیلاز و شاخش تورم بذر

نتایج حاصل از تجزیه واریانس داده‌ها در جدول ۱ نشان داد که شوری تأثیر معنی‌داری بر درصد موسیلاز و شاخش تورم بذر دارد. در این مطالعه، تأثیر نسبت نیتروژن و برهمکنش آنها بر این دو صفت معنی‌دار نبود. مقایسه میانگین داده‌ها نشان داد که با افزایش شوری از شاهد به ۲۰۰ میلی‌میلی‌متر، از درصد موسیلاز و شاخش تورم بذر کاهش داشتن باشد. این کاهش برای درصد موسیلاز و شاخش تورم بذر بترین معادل ۴/۷ و ۱۵/۷ درصد بود (جدول ۴). هنگامی که تیمار نوع نیتروژن تأثیر معنی‌داری بر درصد موسیلاز و شاخش تورم بذر نداشت، اما بیشترین درصد موسیلاز و شاخش تورم بذر در تیمار نئوتامین اعلام شد.
این نتایج با گزارش ارشارد و همکاران (2006) مطابقت دارد. یو و فلاتزر (200) گزارش کردند که عامال اصلی خسارت ناشی از تنش شوری در برنج، افزایش میزان سدیم و کلس در بخش هواپی این است. انتشار بین کردن که میزان سدیم افزایش می‌یابد، آثار سوزانی منجر به تغییراتی در فشار اسکرو می‌شود. این عملیات باعث پلاسمنوزی و کاهش جذب انتخابی سولولهای خواهد شد و در نتیجه آن از جذاب عناصری همانند پتاسیم و کلسیم کاملاً خواهد شد.

تیمار نوع تغذیه نیتروزی نیز تأثیر معنی‌داری بر میزان تجمع عناصر سدیم، پتاسیم و کلس در بخش هواپی گیاه بازه‌ای داشت (جدول 3). بیشترین میزان سدیم (با میانگین 187.3 میلی‌گرم در گرم ماده خشک) از تیمار نیتروز در بیشترین میزان سدیم در بخش هواپی گیاه بهره‌مند بود. در تیمار اولاندو، میزان سدیم به دو باره در پسند و عامل‌های گیاهان نزدیک به حد می‌رسد. با این حال، به ویژه در بخش هواپی مصرفی تأثیر متفاوتی دارد. استفاده از منع نیتروز از مهم‌ترین سیاست‌های گزارش کردن که تاثیر نتایج نیتروز سبب بازدن غلظت سدیم و پتاسیم در بخش هواپی گیاه می‌یابد. افزایش غلظت پتاسیم در اثر این نوع منع کود نیتروز می‌تواند مربوط به بیاب رفتگی گروه‌های اسپرمی‌ای می‌باشد. این گزارش اشيرد و همکاران (1996) که مشخصه‌های نوری و چهارگوش‌های جنسی مقرون به صرفه‌ای می‌باشدند. این این گزارش‌ها به ویژه در کلیه.
شکل 1. پرهمکش شوری و نیتروژن بر میزان نترات در بخش هوایی گیاه

در این بین، استفاده از نوع تغذیه نیتروژن سبب تغییراتی در نحوه جذب و تجمع عناصر در بخش هوایی و زیرزمینی گیاهان می‌شود. عدالت‌زاده و همکاران (1) گزارش کرده‌اند که در گیاهان نیتروژن به آمونیوم و تحت شوری، بیشتر سدیم و کلر بیشتر در برجسته‌ها و شاخه‌ها و در گیاهان تیمار شده‌ها با نیترات این یونها در ریشه‌اشان می‌شوند.

نتیجه‌گیری

از نتایج بدست آمده در این آزمایش می‌توان نتیجه‌گیری کرد که شوری تأثیر معنی‌داری بر گیاه‌داری اسپری‌های استفاده داشت.

tیمار‌های نیتروژن گردیده‌اند. برخی از میزان پتانسیم بخش هوایی استفزایه در تیمار آمونیوم و شوری شاهد دیده شد (شکل 2). کاهش مقدار پتانسیم جذب شده توسط گیاه اسپری‌های محیطی شور را یون اتمی ناشی از ناهماشگی بین بیو سدیم و پاتاسیم دانست. میزان بالای یون سدیم موجود در این محیط، جذب یون پاتاسیم توسط ریشه گیاه را تحت تأثیر قرار داده است. این رقابت در غلفت‌های زیاد شوری شدیدتر بود. جاذب‌های پاتاسیم و همکاران (2) نیز اثر آناتوپیسمی بین سدیم و پاتاسیم در رازی‌پذیری، کاهش جذب و تجمع پاتاسیم و قیمت کاهش رشد و ساخت ترکیبات آن بهدلیل فقدان K کافی را گزارش نموده‌اند.
شکل ۱. برهمکنش شوری و نیتروژن بر میزان نتایج در بخش هوای گیاه


