اثر تغذیه نیتروژن و تشнь شوری بر وزن هزار دانه، میزان موسلات و جذب عناصر غذایی در گیاه اسفرزه

مصطفی حیدری ۱ و فاطمه فرزانه ۲

(تاریخ دریافت: ۱۳۹۰/۶/۱۲؛ تاریخ پذیرش: ۱۳۹۰/۶/۱۴)

چکیده

به منظور بررسی اثر تشнь شوری و سه نوع کود نیتروژن بر برخی ویژگی‌های گیاه اسفرزه، آزمایش بهصورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در سال ۱۳۸۹ در دانشگاه رازی انجام گرفت. سطح شوری (صرف ۱۰۰ و ۲۰۰ میلی مولار نمک کاریم سدیم) بهعنوان فاکتور اول و دو منبع نیتروژن به سه شکل (نیترات از منبع نیترات کلسیم، ایمونیوم از منبع سولفات ایمونیوم و ترکیب نیترات و ایمونیوم به نسبت یک به دو) بهعنوان فاکتور دوم در نظر گرفته شدند. کاشت در گلندهای حاوی ماسه شده صورت گرفت. بعد از چهار ماه، تغذیه گیاهان با استفاده از محلول غذایی هورسند که براساس تیمارهای نیتروژن درصد بود انجام گرفت. اعمال تشبن شوری در مرحله ۲ بر گیاهان آغاز شد. نتایج نشان داد که سبزی شوری تأثیر معنی‌داری بر وزن هزار دانه، طول سبزه، میزان موسلات دانه و شامل تورم بذر گیاه اسفرزه دارد. با افزایش شوری از طول سبزه به میزان ۲۱/۴ درصد و وزن هزار دانه به مقدار ۲۷/۸ درصد کاسته شد. در بین چهار صفت فوق، به‌همکشش شوری و نوع تغذیه نیتروژنی تأثیر مثبتی بر طول سبزه معنی‌دار بود. پیشینی طول سبزه در تیمار شوری شاهد و کاربرد کود ایمونیوم حاصل شد. پیشینی طول سبزه در تیمار شوری شاهد و کاربرد کود ایمونیوم حاصل شد. کلری نسبت به بذر گیاهان آثاری به‌صورت نیتروژن و درصدی بذر گیاهان آثاری به‌صورت نیتروژن و بسیارچه آنها با شوری زیاد بیشتر این سه عناصر سبزه دانه بودند. پیشینی طول سبزه در تیمارهای نیتروژن افزایش یافت و بزرگ‌ترین بسیارچه آنها با شوری زیاد بیشتر این سه عناصر سبزه دانه بودند. پیشینی طول سبزه در تیمارهای نیتروژن افزایش یافت و بزرگ‌ترین

واژه‌های کلیدی: نیتروژن، ایمونیوم، طول سبزه

۱ گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شاهرود
۲ گروه رئیس، دانشکده علوم، دانشگاه گلستان، گرگان
haydari2005@gmail.com

* مسئول مکاتبات. پست الکترونیکی: *
مقدمه
شوری بعد از خشکسالی مهم‌ترین چالش در تولید محصولات زراعی می‌باشد. بیشتر در مناطق خشک و نیمه‌خشک دنیا، به شمار می‌رود (14). در عین حال، تولید محصولات لازم برای ظرفیت جهانی به دلیل متفاوتی از این جمله مشکلات مربوط به نهی نقشه‌های خانه‌سازی، دفع این مشکلات نیست: اما تا ۹۷۰ میلیون هکتار تخمین زده شده است (15). افزایش مقدار نمک‌های در محصولات خاک از رشد و نمو گیاهان می‌کاهد. اثر شوری بستر به اقلیمی نشان‌دهند، که به گونه‌ای سر و مرحله نمود گیاهان متفاوت است (7). بدون شک، شوری گیاهان را به علت کالر از به‌دست آوردن آب نمی‌دارد. همه گیاهان قادر به نظیمی اسپری کسب آب و مواد معدنی از پایه مرضی می‌پردازند، گیاهانی که از شدید گیاهان این اسرار که گیاهان یک نظیم خاصیت به گونه‌ای گیاهان می‌شناسند، اعظمی از تکنیک‌های پرورش و انواع گروه‌هایی‌ها استفاده می‌نمایند. تولید این تکنیک‌ها، نیاز به صرف انرژی دارد گیاهان، با نظیمی اسپری آب و عنصر غذایی را از محیط به‌دست آورند. اما برخی از عناصر همانند کالر و سدیم دارای خاصیت خاصیت دارند، می‌تواند به آنها احساس برسانند. گیاهانی که از بسیاری از مربوط به شوری متوجه می‌شوند، ممکن است دارای علائم سوختگی برق ناشی از مصرف یا کلر باشند. افزون این آب‌برگ و همچنین جریان عدم و رشد می‌کنند است و سدیم‌های ردیش کننده به شیب‌های ناحیه طبیعی از موارد، زنگی برق‌های بهترین نمی‌بیند و با نشان‌هایی به عبور از توقف رشد در آن‌ها دیده نمی‌شود (12).

در دیدگاه در مورد تأثیر شوری بر گیاهان وجود دارد. بخی از محققین، خصائص شوری بر گیاه‌ها ناشی از کاهش پتانسیل آب خوراکی رود اثر جمعی اصلی را به ایجاد تنها خشکسالی نیز از راه روش‌های مقاومت از آنها چه جهت حصول عملکرد زیر خوراکی به نظر می‌رسد. هدف از این آزمایش بررسی اثر سطوح مختلف شوری و سه نوع تغذیه نیتروژن بر طول سالیه، وزن هزار دانه، شاخیک تورم بذر.
جدول ۱. نوع و غلظت مواد معدنی مکرو در تیمارهای مختلف تیرزن

<table>
<thead>
<tr>
<th>تیمار نیترات</th>
<th>تیمار امونیوم</th>
<th>تیمار نیترات</th>
<th>تیمار امونیوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد معدنی</td>
<td>میلی مولار در محلول</td>
<td>مواد معدنی</td>
<td>میلی مولار در محلول</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>۲/۵</td>
<td>(NH₄)₂SO₄</td>
<td>۵/۵</td>
</tr>
<tr>
<td>KCl</td>
<td>۵</td>
<td>KCl</td>
<td>۵</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>۲</td>
<td>MgSO₄</td>
<td>۱</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>۱</td>
<td>KH₂PO₄</td>
<td>۱</td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>۳</td>
<td>CaCl₂</td>
<td>۳</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مواد معدنی</th>
<th>هسته</th>
<th>مواد معدنی</th>
<th>هسته</th>
</tr>
</thead>
<tbody>
<tr>
<td>باکتری های اسید</td>
<td>کلرید مرگ</td>
<td>سولفات روی</td>
<td>زنی سوزاره‌ای</td>
</tr>
<tr>
<td>۱۰۶۸</td>
<td>CuSO₄·5H₂O</td>
<td>H₂BO₃</td>
<td></td>
</tr>
</tbody>
</table>
| ۱۱۰۷ | MoO₃·H₂O | MnCl₂·4H₂O | ۱/۱۵ |}

روش‌شناسی و ۸ ساعت تقاضای متغیر شده دارد. ابتدا درون گلدان‌ها
درصد مسیلا و میزان جذب عناصر سدیم، پتاسیم و کلسیم در
گیاه دارویی استرفزوده بوده است.

مواد و روشهای

این آزمایش به‌صورت فاکتوریل، در قالب طرح چهار‌متغیره کاملاً تصادفی با
سه تکرار در سال ۱۳۸۹ در مرکز زیست فناوری (پیوستر) داشته‌گاه زبان اندازه‌گیری سطح شوری (۵۰) S₁ و
دو معیار تیرزن به‌صورت N1=امونیوم از معیار سولفات امونیوم و
N2=آزمایش انجام شد.

مواد و روشهای

این آزمایش به‌صورت فاکتوریل، در قالب طرح چهار‌متغیره کاملاً تصادفی با
سه تکرار در سال ۱۳۸۹ در مرکز زیست فناوری (پیوستر) داشته‌گاه زبان اندازه‌گیری سطح شوری (۵۰) S₁ و
دو معیار تیرزن به‌صورت N1=امونیوم از معیار سولفات امونیوم و
N2=آزمایش انجام شد.
جدول 3 نتایج تجزیه و ارایه‌ی طول سنبه‌ت. وزن هزار دانه. درصد موسلزا. شاخص تورم و عناصر غذایی اسپره‌ی سطح سوری به حاکمه‌ی شدند و تو پایان دوره آزمایش (زمان رسیدگی دانه‌ی) ادامه پایه. در پایان دوره آزمایش، گیاهان موجود در سطح هر گلدان برداشت و صفات طول سنبه‌ت، وزن هزار دانه، شاخص تورم و درصد موسلزا اندادگی‌گیری شدند. مقدار موسلزا (درصد) و فاکتور تورم (میلی‌لیتر) با استفاده از روش میکرو و هم‌کاران (12) و مقدار تورم در هر گرم دهنده براساس تحقیق ابزارهم زاهد و هم‌کاران انجام گرفت. همچنین برای اندادگی‌گیری عناصر غذایی مورد استفاده در این دسته‌بندی استفاده شد.

نتایج تجزیه و ارایه‌ی طول سنبه‌ت وزن هزار دانه
نتایج تجزیه و ارایه‌ی داده‌ها (جدول 3) نشان می‌دهد که شرایط تأثیر معنی‌داری بر طول سنبه‌ت و وزن هزار دانه دارد. با افزایش طول دوره زایشی هر گیاه است، با افزایش کاهش مشخص علائم دانه در بونه، دانه‌ها به عنوان مقادیر مهم شروع به دریافت و ذخیره مقداری از مواد فتوسنتزی می‌کنند. می‌بایست این وزن هزار دانه، هنگامی که گیاه در حال نشان دهنده وضعیت و طول دوره زایشی هر گیاه است، با کاهش گل‌دهی و مشخص علائم دانه در بونه، دانه‌ها به عنوان مقادیر مهم شروع به دریافت و ذخیره مقداری از مواد فتوسنتزی می‌کنند. می‌بایست این وزن هزار دانه، هنگامی که گیاه در حال نشان دهنده وضعیت و طول دوره زایشی هر گیاه است، با کاهش گل‌دهی و مشخص علائم دانه در بونه، دانه‌ها به عنوان مقادیر مهم شروع به دریافت و ذخیره مقداری از مواد فتوسنتزی می‌کنند. می‌بایست این وزن هزار دانه، هنگامی که گیاه در حال نشان دهنده وضعیت و طول دوره زایشی هر گیاه است، با کاهش گل‌دهی و مشخص علائم دانه در بونه، دانه‌ها به عنوان مقادیر مهم شروع به دریافت و ذخیره مقداری از مواد فتوسنتزی می‌کنند. می‌بایست این وزن هزار دانه، هنگامی که گیاه در حال نشان دهنده وضعیت و طول دوره زایشی هر گیاه است، با کاهش گل‌دهی و مشخص علائم دانه در بونه، دانه‌ها به عنوان مقادیر مهم شروع به دریافت و ذخیره MCDXVII.418.

<table>
<thead>
<tr>
<th>عنصر غذایی</th>
<th>درصد موسلزا</th>
<th>وزن هزار دانه</th>
<th>شاخص تورم</th>
<th>مقدار تورم</th>
<th>درصد موسلزا</th>
<th>وزن هزار دانه</th>
<th>شاخص تورم</th>
<th>مقدار تورم</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سپر
جدول 2: مقایسه میانگین طول سیله، وزن هزار دانه، درصد موسیلاز، شاخص تورم و عناصر غذایی اسپرزه

<table>
<thead>
<tr>
<th>شوری (میلی مولار کاری کردن سدیم)</th>
<th>طول سیله (تریلی متر)</th>
<th>وزن هزار دانه (گرم)</th>
<th>درصد موسیلاز (سانتی متر)</th>
<th>شاخص تورم (میلیتر)</th>
<th>پتاسیم (کاری کردن سدیم)</th>
<th>کلسیم (کاری کردن سدیم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/165</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15/246</td>
<td>12/246</td>
<td>1/215</td>
<td>1/215</td>
<td>1/215</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/246</td>
<td>12/246</td>
<td>1/215</td>
<td>1/215</td>
<td>1/215</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10/246</td>
<td>12/246</td>
<td>1/215</td>
<td>1/215</td>
<td>1/215</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10/246</td>
<td>12/246</td>
<td>1/215</td>
<td>1/215</td>
<td>1/215</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10/246</td>
<td>12/246</td>
<td>1/215</td>
<td>1/215</td>
<td>1/215</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

در هر ستون و برای هر پارامتر، میانگین های دارای حروف مشابه تفاوت معنی‌داری براساس آزمون دانکن ندارند.

بدون تنش تفاوت وجود داشته باشد. اما با دلیل تابعیت وزن هزار دانه از عوامل زیانکی، نسبت به عوامل محیطی، به نظر می‌رسد که تنها محتویاتی در ژنراتیون زندگی و وزن دانه را از نظر محیطی کنترل کند. از آنجا که کاهش تعداد دانه، حداقل مواد مورد نیاز برای دانه‌های تکامل شده را تأمین می‌کند (8).

درصد موسیلاز و شاخص تورم بر محاسبه تناوب خاص از توجیه وارونگ اجماعها در جدول 3 نشان داد که شوری تنها باعث می‌شود تابعیت وزن هزار دانه و درصد موسیلاز و شاخص تورم باشد. در این پیچ، تاثیر تابعیت نیتروژن و پروتئین آنها را در صفت معنی‌دار نمی‌بیند. مقایسه میانگین داده‌ها نشان می‌دهد که درصد موسیلاز و شاخص تورم باعث می‌شود تا وزن هزار دانه و درصد موسیلاز کاهش یابد (جدول 3). به همین دلیل، تاثیر تابعیت نیتروژن و پروتئین می‌تواند باعث کاهش وزن هزار دانه و درصد موسیلاز و شاخص تورم گردد.

میزان پونها

نتایج تجزیه وارونگ داده‌ها در جدول 3 نشان می‌دهد که شوری تنها باعث می‌شود تابعیت وزن هزار دانه، پتاسیم و کلسیم در بخش هواپیمایی افزایش دارد. مقایسه میانگین داده‌ها نشان می‌دهد که درصد موسیلاز و شاخص تورم به ترتیب معادل 15/87، 1/59 و 1/244 به ترتیب می‌باشد (جدول 3). در نتیجه، تاثیر تابعیت نیتروژن و پروتئین می‌تواند باعث کاهش وزن هزار دانه و درصد موسیلاز و شاخص تورم گردد.

میزان پونها

نتایج تجزیه وارونگ داده‌ها در جدول 3 نشان می‌دهد که شوری تنها باعث می‌شود تابعیت وزن هزار دانه، پتاسیم و کلسیم در بخش هواپیمایی افزایش دارد. مقایسه میانگین داده‌ها نشان می‌دهد که درصد موسیلاز و شاخص تورم به ترتیب معادل 15/87، 1/59 و 1/244 به ترتیب می‌باشد (جدول 3). در نتیجه، تاثیر تابعیت نیتروژن و پروتئین می‌تواند باعث کاهش وزن هزار دانه و درصد موسیلاز و شاخص تورم گردد.
این تأثیر با گزارش ارایه و همکاران (9) مطابقت دارد. یو و فلوروز (20) گزارش کردن که عامل اصلی خرسارت ناشی از تنش شوری در بینج، افزایش میزان سدیم و کلر در بخش هواپی از این است. آنها بیان کرده که میزان سدیم افزایش می‌یابد، اثربخشی آن منجر به تغییرات در فشار اسکرو سولون می‌شود. این عامل موجب بلسمولیز و کاهش جذب انتخابی سلول‌ها خواهد شد و در نتیجه آن از جذب عناصر همانند پتاسیم و کلسیم کاسته خواهد شد.

تیمار نوع تغذیه نیتروز نیز تأثیر معنی‌داری بر میزان تجمع عناصر سدیم، پتاسیم و کلر در بخش هواپی گیاه اسفزه داشت (جدول 3). دریافت میزان سدیم (با میانگین 183 میلی‌گرم در گرم ماده خشک) از تیمار آمونیوم، پتاسیم (با میانگین 107 میلی‌گرم در گرم ماده خشک) و کلر (با میانگین 181 میلی‌گرم در گرم ماده خشک) از تیمار نیتروژن حاصل شد (جدول 4). نتایج برخی از بررسی‌ها نشان داده که نوع کود نیتروژن بر جذب سدیم و پتاسیم در گیاه زراعی تحت شرایط تأثیر نیتروز می‌گذارد. لیدی و همکاران (9) کارزار گزارش کرده که نوع نیتروژن باید بردن غلظت سدیم و پتاسیم در بخش هواپی گیاه می‌شود. افزایش غلظت پتاسیم در اثر این نوع نیتروژن می‌تواند مربوط به بالا رفتن گروه انسامی بین مبدأ تولیدکننده ماده فتوسنتزی (برگ‌ها) و مقصدواری در کیفیت محصولات کربن دی‌اکسید نیتروز می‌گردد. این گروه گاز هنگام بررسی سلزون پلی‌سپاروده در دانه نيز
در این بین، استفاده از نوع تغذیه نیتروژن سبب تغییراتی در نحوه جذب و تجمع عناصر در بخش‌های هوایی و زیرزمینی گیاهان می‌شود. عدلزاده و همکاران (1) گزارش کردند که در گیاهان تیمار شده با امونیم و تحت شوری، پونه‌های سدیم و کلر بیشتر در پره‌ها و شاخه‌ها و در گیاهان تیمار شده با نیترات بین یکی از ریشه‌اشته‌ها می‌شوند.

نتیجه‌گیری

از نتایج بدست آمده در این آزمایش می‌توان نتیجه‌گیری کرد که شوری تأثیر معنی‌داری بر گیاه دارویی اسفرزه داشته.

شکل ۲. برهمکنش شوری و نیتروژن بر میزان سدیم در بخش هوایی گیاه

شکل ۳. برهمکنش شوری و نیتروژن بر میزان کلر در بخش هوایی گیاه

تیمارهای نیتروژن گردید. بیشترین میزان پنشاسیم بخش هوایی اسفرزه در تیمار امونیم و شوری شاهد دیده شد (شکل ۲). کاهش مقدار پنشاسیم جذب شده توسط گیاه اسفرزه در محیط شور نیاز می‌توان تا ۹ تا ۱۰ ناشی از اثر ناهماهنگی بین پونه‌های سدیم و پنشاسیم دانست. میزان بالایی پونه سدیم موجود در این محیط، جذب پونه پنشاسیم توسط ریشه گیاه را تحت تأثیر قرار داده است. این روابط در غلظت‌های زیاد شوری ضبط شده‌اند. گزارش‌های معمولاً (۲) نشان دهنده اینکه جذب و تجمع پنشاسیم نیز کاهش رشد و ساخت ترکیبات آن بهدلیل فقدان K کافی را گزارش نموده‌اند.
تیمار شوری ۲۰۰ میلی‌مولار کاربید سدیم و نیتروژن از منع امینوم حاصل گردید. بیشترین میزان پتاسیم نیز در شرایط عدم وجود شوری (شاهد) و با استفاده از کود نیتروژن از منع امینوم به‌دست آمد. اما در بالاترین سطح شوری (۲۰۰ میلی‌مولار)، کود نیتروژن با بیشترین نیتروژن از کاراپی بیشتری در خروجی بود. چرا که بیش‌ماندگی بیشتری از جذب سدیم و کلر توسط گیاه گردید. همچنین این منع نیتروژن سبب بهبود جذب پتاسیم و افزایش طول سبزه در این شرایط گردید.

نمونه ویژه استفاده

