توجه کنید که فشرده فاسکوتیلیزاسیون بر اثر ترتیب دادن همه تغییرات تأثیر گذاشته است.

Cucurbita pepo L. (تیره گل‌کوبانان)

جواد حمزه‌نژاد، سابعه نجفی، فرشید صادقی‌فرد، می‌آبادی، گودرز احمدوند و جلال سلطانی

(تاریخ دریافت: 1391/1/18؛ تاریخ پذیرش: 1391/4/13)

چکیده

تحقیق حاضر به منظور بررسی واکنش صفات زراعی، عملکرد و اجزای عملکرد کوده‌های بر ازای عملکرد کوده‌های بوست کاغذی به کود زیستی حل کننده فسفات و سطوح مختلف کود شیمیایی فسفره اجرای گردیده است. آزمایش به‌صورت تکنیکی در قالب طرح بلوک‌های کامل تصادفی با دو عامل کود زیستی (فلقی و ععم تلفیق بذر) و کود شیمیایی فسفره در دو سطح (۲۵ و ۷۵ درصد) انجام گرفت. توصیه شده براساس آزمون خاک در سه تکرار انجام گرفت. نتایج تحقیق نشان داد که مصرف کود شیمیایی فسفره بیشترین افزایش صفات تعداد پرگ در بوته (۲۱/۶/۷۵ گرم) و وزن خشک بوته (۵۷/۶/۷۵ گرم) را در بخش اختصاص داد. تلفیق با کود زیستی حل کننده فسفات در مقایسه با تیمار ععم تلفیق، بیشترین تعداد ساقه فرعی و وزن خشک پرگ در بوته را در اواست مرحله بوته‌دهی تولید کرد. با افزایش مصرف کود شیمیایی فسفره، تعداد بوته در بوته افزایش یافت. همچنین، تیمار استفاده از کود زیستی حل کننده فسفات و مصرف ۵۰٪ توصیه شده کود شیمیایی فسفره، عملکرد دانه بهتری داشت. که این نتیجه‌ای می‌تواند نشانگر از افزایش کارایی باکتری‌های حل کننده فسفات در مقادیر کمتر کود شیمیایی فسفره باشد.

واژه‌های کلیدی: حل کننده فسفات، عملکرد بوته، عملکرد بذر

1. گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان
2. گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

j.hamzei@basu.ac.ir

* مسئول مکاتبات، پست الکترونیکی: *
مقدمه
هدف اصلی کشش‌پزشکی پایداری، کاهش نهاده‌های مصرفی، افزایش
چربی داخلی عناصر غذایی علاج از طریق کاهش خانگی در رژیم‌های
و استفاده از قواعدی زیستی به جای کوده‌های سه‌ماهه در جهت
افزایش عملکرد مصرفات کشاورزی و تولید غذای پیشتر
است. امروزه زیستارهای اقتصادی و زیست‌محیطی ناشی از
استقلال بی‌رویهاز کوده‌های سه‌ماهه در کشاورزی در سطح
جهانی شناخته شده و بدین‌های است که باید گروه‌گرایی مناسبی
برای این نوع کودها در نظر گرفته شود (1). کوده‌های زیستی
مشابه از میکروگانیسم‌های مفید محسوب که هر یک به
منظر خاصی مانند تثبیت نیتروژن، رهازی کردن یونه فسفات،
پهن‌شدن و غیره تولید می‌شوند. از جمله این کودها، کود
زیستی فسفات بارون 2 است. این کود حاوی دو نوع باکتری از
گونه‌های باسلاموس لتوس (سونهای پی) که به تولید اسیدهای آنی
باعث رهازی فسفات از ترکیبات معدنی می‌شود و
سودوماناس بوتیدا (سونهای 13) که تولید آنزیم فسفاتاز می‌کند.
باید این میکروگانیسم‌ها معمولاً در اطراف ریشه مستقر
شده و گیاه را در جذب عناصر باری می‌کنند (2).

در بررسی‌ها مشخص شده که استفاده از یک‌تکیه‌های محکم
رشد به عنوان کود زیستی موجب کنترل زیستی آفات و
بیماری‌ها و بهبود ساختمان خاک و در نتیجه تحریک بیشتر
گیاه و افزایش کمی و کیفی محسوب می‌شوند (18 و 19).
گیاهان دارویی که محسوبات کمی می‌باشند، گرینه مناسبی
برای سبیم کشاورزی پیامبر محسوب می‌شود و به نظر
مرسد دارند در چنین شرایطی، حداکثر رشد و عملکرد از آنها
حaland کرده (20). از بین گیاهان دارویی می‌توان به کدوی
پوست کافیل یا (Cucurbita pepo L) اشاره کرد که یکی از
گیاهان دارویی بسیار ارزشمند در صنایع دارو‌سازی، انرژی
کشورهای توسیع پاته به حساب می‌آید و سال‌های اخیر
وارد فوری کاهش انرژی است. کدوی پوست کافیل، متعاقب
به خانواده کدوپتیون می‌باشد و گیاهی علفی، پکسال، سلاد
خزندب و کردکارد است که گل‌های نر و ماده آن روی یک پایه
نمونه‌گیری در این آزمایش، مقدار 100 کیلوگرم در هكتار کود شیمیایی فسفره از منبع سوپر فسفات تری پریل در حالت 100/1 کود و 100/2، انتفاضه شد و سپس برای هر تیمار مورد به‌صورت نواری مصرف شد. کود ارزی نیز به میزان 450 کیلوگرم در هکتار براساس نتایج آزمون شکاف به‌طور یک‌بار برای هر کیلوتیمارها در از دو مرحله کاشت و کلیافت مصرف شد. در هر کر، 5 ردیف کشت به طول 4 متر با فاصله رفاه‌های کاشت 140 سانتی‌متر و فاصله بین دو بوته روز ریفی 30 سانتی‌متر در گرفتگی شد. تراکم مورد نظر در این آزمایش 177727 بوته در هکتار بود. رطوبت قابل اطمینان و قابل پذیرش نیز نسبت به بارش در طی محدوده و سطح از دستگاه شناخت کارولفیل برگ در مرحله گل‌دهی و با استفاده از دستگاه کارولفیل متر اندازه‌گیری شد. در مراحل گل‌دهی و اواست سطح میوه‌های نوزادی و زراعی در سطح و در متریک از هر کرتن از بوتیاردی بوده. یکس از رشته‌ای کامل میوه‌ها به‌قطب بوته از سطح و در متریک از هر کرتن به‌قطب میوه‌ها انجام گرفت. در این مرحله، تعداد میوه‌ها در بوته متوسط وزن میوه به‌قطب 100 شامل میوه از اندازه‌گیری و SAS مقایسه‌ی معنی‌داری انجام بود و از آزمون با سیاست حاصله در سطح LSD احتمال 5% انجام گرفت.

نتایج و بحث

تایید و بحث

زیست سازمانی در مرحله گل‌دهی با توجه به نتایج تجزیه واریانس (جدول 1)، اثر کود زیستی حاصل از صفات نسبت به صفات تعداد بزرگ، تعادل کرده و وزن صفات زراعی در مرحله گل‌دهی با توجه به نتایج تجزیه واریانس (جدول 1)، اثر کود زیستی حاصل از صفات نسبت به صفات تعداد بزرگ، تعادل کرده و وزن

<table>
<thead>
<tr>
<th>جدول 1</th>
<th>نتایج آزمون نمونه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>فسفر قابل جذب (mg/L)</td>
<td>کربن آکسید (mg/L)</td>
</tr>
<tr>
<td>كردن/تیمار</td>
<td>كردن/تیمار</td>
</tr>
<tr>
<td>1/12</td>
<td>8/2</td>
</tr>
<tr>
<td>استاندارد</td>
<td>استاندارد</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

با توجه به آنکه روش‌های جدیدی در تولید گیاهان دارویی در استاندارد فیزیکی از صورت ارائه شده در می‌باشد و کود شیمیایی فسفره در این مطالعه مورد توجه نیست، بهترین مقدار مصرف کود زیستی براساس دستورالعمل شرکت نامبرده.

مواد و روش‌ها

این تحقیق در سال زراعی 1390 در مرزه‌ای اموزشی تحقیقات دانشگاه دانشگاه بین‌المللی می‌باشد. کود شیمیایی فسفره از منبع سوپر فسفات تری پریل در حالت 100/1 کود و 100/2، انتفاضه شد و سپس برای هر تیمار مورد به‌صورت نواری مصرف شد. کود ارزی نیز به میزان 450 کیلوگرم در هکتار براساس نتایج آزمون شکاف به‌طور یک‌بار برای هر کیلوتیمارها در دو مرحله کاشت و کلیافت مصرف شد. در هر کر، 5 ردیف کشت به طول 4 متر با فاصله رفاه‌های کاشت 140 سانتی‌متر و فاصله بین دو بوته روز ریفی 30 سانتی‌متر در گرفتگی شد. تراکم مورد نظر در این آزمایش 177727 بوته در هکتار بود. رطوبت قابل اطمینان و قابل پذیرش نیز نسبت به بارش در طی محدوده و سطح از دستگاه شناخت کارولفیل برگ در مرحله گل‌دهی و با استفاده از دستگاه کارولفیل متر اندازه‌گیری شد. در مراحل گل‌دهی و اواست سطح میوه‌های نوزادی و زراعی در سطح و در متریک از هر کرتن از بوتیاردی بوده. یکس از رشته‌ای کامل میوه‌ها به‌قطب بوته از سطح و در متریک از هر کرتن به‌قطب میوه‌ها انجام گرفت. در این مرحله، تعداد میوه‌ها در بوته متوسط وزن میوه به‌قطب 100 شامل میوه از اندازه‌گیری و SAS مقایسه‌ی معنی‌داری انجام بود و از آزمون با سیاست حاصله در سطح LSD احتمال 5% انجام گرفت.
جدول 2 تجزیه واریانس صفات مورد ارزیابی در مرحله گل‌دهی

<table>
<thead>
<tr>
<th>مانند مرعبات</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص وزن خشک کاروائل</td>
<td>8/15</td>
<td>10/85</td>
</tr>
<tr>
<td>وزن خشک پوشه</td>
<td>27/34</td>
<td>14/05</td>
</tr>
<tr>
<td>تعادل سایه برگ در پوشه</td>
<td>25/05</td>
<td>18/76</td>
</tr>
<tr>
<td>تعداد گره در پوشه</td>
<td>5/25</td>
<td>14/05</td>
</tr>
<tr>
<td>رنگ</td>
<td>5/15</td>
<td>10/85</td>
</tr>
</tbody>
</table>

نتیجه به تیمار شاهد (Ch_{P0}) به ترتیب 25/15 و 30/15 درصد برتر بودند. همچنین، تیمار Ch_{P1} کمترین مقدار وزن خشک برگ (11/18 گرم) و وزن خشک پوشه (24/18 گرم) را به خود اختصاص داد. بر طبق این نتایج، احتمالاً مصرف 75/100 توصیه کود شیمیایی فسفره به عنوان مصرف کود زیستی حل کننده صفات قابل توجهی دارد.

لیست و همکاران (16) گزارش کردند که مصرف کود شیمیایی فسفره اثر مثبتی داری بر صفات آماری کودهای پوست كاشفی در مرحله گل‌دهی ندارد.

بخش 3.7 صفات مورد بررسی در استادی تولید بذر

نتایج حاصل از تجزیه واریانس داده‌ها در اواست مرحله نیلیه (Ch_{P1}) حاکی از آن است که تیمار تلفیق بذر با کود زیستی حل کننده صفات پرحیل صفات اثرکننده فسفره بر تعداد سایه فطری در بوته معنی‌دار است. اثر مقایسه کود زیستی حل کننده صفات در کود شیمیایی فسفره به ترتیب 75/100 درصد توصیه مصرف کود شیمیایی فسفره نیز از نظر صفات تعداد گره و تعداد گره در بوته در سطح احتمال 5/100 معنی‌دار شد (جدول 3).

در مقایسه با

أ. کود زیستی حل کننده صفات (Ch_{P0})

ب. تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمار Ch_{P0} و وزن خشک برگ در بوته Ch_{P0} (شکل 2) نشان داد که کود زیستی حل کننده صفات (Ch_{P0}) اثر مشابهی به تیمارس
تاثیر کود زیستی حل گیاهان و کود شیمیایی فسفر بر واکنش

شکل 1. استفاده کود زیستی حل گیاهان و کود شیمیایی فسفر در سطوح‌کشی شیمیایی فسفر (درصد میزان توصیه شده) بر صفات وزن خشک برگ و وزن خشک بوته در مرحله گل‌دهی

جدول 3. تجزیه و تحلیل صفات مورد ارزیابی در اواسته مرحله میوه‌دهی

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه</th>
<th>آزادی</th>
<th>تعداد گره در بوته</th>
<th>تعداد ساقه فرعی در بوته</th>
<th>وزن خشک برگ در بوته</th>
<th>میانگین مربوطات</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td></td>
<td>12/57**</td>
<td>0/57**</td>
<td>6/57**</td>
<td></td>
</tr>
<tr>
<td>کود زیستی حل گیاهان (P)</td>
<td>1</td>
<td></td>
<td>71/87**</td>
<td>71/87**</td>
<td>71/87**</td>
<td></td>
</tr>
<tr>
<td>کود شیمیایی (Ch)</td>
<td>3</td>
<td></td>
<td>0/57**</td>
<td>0/57**</td>
<td>0/57**</td>
<td></td>
</tr>
<tr>
<td>P+Ch</td>
<td>3</td>
<td></td>
<td>17/63**</td>
<td>17/63**</td>
<td>17/63**</td>
<td></td>
</tr>
<tr>
<td>خطای آزمایش</td>
<td>15</td>
<td></td>
<td>37/63**</td>
<td>37/63**</td>
<td>37/63**</td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>**</td>
<td></td>
<td>0/83</td>
<td>0/83</td>
<td>0/83</td>
<td></td>
</tr>
</tbody>
</table>

تیمار عدم تلفیق (P0)، تعداد ساقه فرعی و وزن خشک برگ در بوته بیشتری را تولید کرد. به‌طوری‌که تلفیق با کود زیستی نسبت به عدم تلفیق آن، تعداد ساقه فرعی در بوته و وزن خشک برگ در بوته را بهتری به‌طوری‌که در مرحله گل‌دهی وزن خشک برگ در بوته را بهتری به‌طوری‌که در مرحله گل‌دهی وزن خشک برگ در

کرده‌اند. همچنین، نتایج حمایتی و همکاران (32) نشان داد که کاربرد باکتری‌های افزایشی رشد گیاه، وزن تر بوته، تعداد گره، های باعث بیشتر شدن وزن تر بوته و تعداد گره و وزن خشک برگ در بوته شد. در بررسی اثر سطوح کود شیمیایی فسفر بر تعداد ساقه فرعی در بوته، بیشترین مقدار با میانگین 7/5 ساقه فرعی در بوته در سطح کود 75/87% توصیه شده (Ch) به‌دست آمد (شکل 5). صحیح و همکاران (21) گزارش کردند مصرف 50 کیلوگرم در

چکشی که و همکاران (7) افزایش تعداد و وزن خشک برگ در

چند اند فرا یا کاربرد باکتری‌های حل گیاهان، فسفات گنزا...
جدول تولید و فرآوری محصولات زراعی و پنیر / سال سوم / شماره هشتم / 1392

مکانی کود فسفره خالص، باعث افزایش تعداد ساقه‌های جاتی کدوری پوست کاغذی می‌شود.

براساس مقایسه میانگین اثر متقابل تیمارها، بیشترین تعداد برگ در بونه (0/25) و کمترین آن (0/25) به ترتیب به تیمارهای P_{2} و P_{1} تیمار شاهد: عدم تلفیق بذر به P_{0} همراه مصرف P_{2}/کود شیمیایی فسفره تعلق گرفت (شکل 6). تیمارهای کروآژ و همکاران (24) کروآژ کردن به مصرف کودهای زیستی علاوه بر افزایش راندمان محصول، کاهش مصرف کودهای شیمیایی را نیز در بی‌خوادی داشت. چنین تأثیری توسط شارکات و همکاران (22) نیز کروآژ شده سفیده. همچنین، با مقایسه میانگین تعداد گره در بونه مشخص گردید که تیمار P_{2} کروآژ بر میانگین 71/25 گره در بونه، بیشترین و تیمار P_{0} (تیمار شاهد) بر میانگین 2/30 گره در بونه را تولید کرده است (شکل 6).

تعداد گره در بونه

اثر تیمار کود شیمیایی فسفره بر تعداد گره در بونه در سطح احتمال 0/05 معنی‌دار نبود (جدول 4). کدام کود شیمیایی فسفر در سطح سوم (0/25 میزان توصیه شده) با میانگین وزن میوه 1/45 کیلوگرم، بیشترین و تیمار شاهد (0/25 میزان توصیه شده) با متوسط وزن میوه 1/21 کیلوگرم، کمترین مقادیر را به خود اختصاص داد (شکل 8). استفاده و لاس (11) گزارش کردنی که مصرف کودهای شیمیایی، متوسط وزن میوه کودی پوست

متوسط وزن میوه

تیمار کود شیمیایی فسفره از نظر متوسط وزن میوه در سطح احتمال 0/05 معنی‌دار نبود (جدول 4). تیمار کود شیمیایی فسفر در سطح سوم (0/25 میزان توصیه شده) با میانگین وزن میوه 1/45 کیلوگرم، بیشترین و تیمار شاهد (0/25 میزان توصیه شده) با متوسط وزن میوه 1/21 کیلوگرم، گزارش کردنی که مصرف کودهای شیمیایی، متوسط وزن میوه کودی پوست

شکل‌ها

شکل 2: اثر تلفیق و عدد تلفیق بذر با کود زیستی حل کننده فسفات بر وزن خشک بذر بونه در اواست مرحله میوه‌دهی

شکل 3: اثر تلفیق و عدد تلفیق بذر با کود زیستی حل کننده فسفات بر تعداد ساقه فرعی بونه در اواست مرحله میوه‌دهی

نداشت (شکل 7)، این نتیجه به‌تنهایی حاصل و در حالت عدم کاربرد کود زیستی، مصرف 75/2 کود فسفره توصیه شده در افزایش تعداد میوه در بونه و در تدریج افزایش عملکرد میوه مناسب می‌باشد. با افزایش تعداد میوه در بونه، افزایش میوه‌ها کاهش یافت. اثر کود زیستی حل کننده فسفات و اثر متقابل کود زیستی حل کننده فسفات در کود شیمیایی فسفره بر تعداد میوه در بونه معنی‌دار نشد (جدول 4). نتیجه‌ای این را تضمین باید با

سازه و همکاران (21) هم‌اواز است. چرا که نامردگان نباید بررسی اثر سطح مختلف کود فسفر بر کودی پوست کاغذی گزارش کردنی که تعداد میوه در بونه با کاهش میزانی نسبت به سطح کود شیمیایی فسفره از دست دهد. به‌طوری‌که آنها بیشترین تعداد میوه در بونه را در تیمار مصرف 0/25 کود فسفره گزارش کردنی.
تأثیر کود زیستی حل کننده قطعات و کود شیمیایی فسفر بر واکنش...

شکل ۵ اثر متقابل کود زیستی حل کننده قطعات و کود شیمیایی فسفر (درصد میزان توده) بر تعداد ساقه فرعی در بوته در روزهای میوه‌دهی

جدول ۶ تجزیه واریانس صفات اجرایی عملکرد و عملکرد دانه و میوه کدوی بوست کاغذی

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>تعداد میوه بوته</th>
<th>تعداد میوه دانه</th>
<th>عملکرد دانه</th>
<th>عملکرد میوه</th>
<th>متوسط وزن میوه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۰۷۷۰۰</td>
<td>۵/۰۱۱۰۰</td>
<td>۳/۱۵۰۰۰</td>
<td>۷/۰۵۰۰۰</td>
<td>۱۷/۸۲۷۰۰</td>
<td>۱/۵۱۰۰۰</td>
</tr>
<tr>
<td>۲/۵۹۰۰۰</td>
<td>۳/۱۰۵۰۰</td>
<td>۳/۳۲۷۰۰</td>
<td>۳/۵۰۷۰۰</td>
<td>۱/۲۵۹۷۶۰</td>
<td>۱/۱۴۰۰۰</td>
</tr>
<tr>
<td>۲/۸۴۰۰۰</td>
<td>۳/۲۹۰۰۰</td>
<td>۴/۲۳۰۰۰</td>
<td>۴/۳۰۰۰۰</td>
<td>۱/۷۳۱۲۰۰</td>
<td>۱/۱۰۰۰۰</td>
</tr>
<tr>
<td>۱/۷۰vised</td>
<td>۱/۲۳۵۰۰</td>
<td>۱/۳۲۵۰۰</td>
<td>۱/۲۵۰۰۰</td>
<td>۱/۱۷۳۲۰۰</td>
<td>۱/۱۶۲۰۰</td>
</tr>
</tbody>
</table>

**، * و ns به ترتیب معنی‌دار در سطح احتمال ۱، ۵ و بدون اختلاف معنی‌دار کاغذی را افزایش می‌دهد. تجربه کود زیستی حل کننده قطعات و اثر متقابل کود زیستی حل کننده قطعات و کود شیمیایی فسفر (Sch) به‌دست آمر (شکل ۷) آن با کود کود شیمیایی فسفر بایدن ویرگی معنی‌دار نشد. نتایج این تحقیق با بیان‌هایی در میانگین و شاخص نتایج بوشهری (۳) همراه بود.

وزن ۱۰۰ دانه

وزن ۱۰۰ دانه به طور معنی‌داری (۵%) تحت تأثیر کود

۱۴۳
شکل 7. اثر سطح مختلف کود شیمیایی فسفره (درصد مقدار توصیه شده) بر تعداد میوه در بوته کدوی پوست کاغذی

شکل 8. اثر سطح مختلف کود شیمیایی فسفره (درصد مقدار توصیه شده) بر متوسط وزن میوه کدوی پوست کاغذی

عملکره دانه
عملکره دانه کدوی پوست کاغذی در سطح احتمال 5% تحت تأثیر تلقیح بذر با کود زیستی حل کننده فسفات قرار گرفت (جدول 4). عملکره دانه از 14/37 گرم در مترمیکر در تیمار بدون تلقیح به 88/95 گرم در مترمیکر در تیمار تلقیح با کود زیستی افزایش یافت (نتایج ارائه نشده است). در زمان و همکاران (8) با مطالعه خود روی گیاه دارویی رازیات، تأثیر گازهای کودهای زیستی حل کننده فسفات را تایید کردند. همچنین، در بررسی سطح مختلف کود فسفره، مناسب‌ترین گرده که با افزایش کود فسفره مصرفی از 2/75 توصیه شده، عملکره دانه کاهش یافته و همکاران (16) نیز در تحقیق خود 100 کیلوگرم در هكتار کود شیمیایی فسفره را بهترین سطح کودی در زراعت کدوی پوست کاغذی گزارش کردند و اظهار داشتند.
تأثیر کود زیستی حل کننده فسفات و کود شیمیایی فسفر بر واکنش...

شکل 9 اثر سطوح مختلف کود شیمیایی فسفره (درصد مقدار توصیه شده) بر وزن 100 دانه کدی روست کافذی

شکل 10 اثر مقایل کود زیستی حل کننده فسفات در سطوح مختلف کود شیمیایی فسفره (درصد مقدار توصیه شده) بر عملکرد دانه کدی روست کافذی

عملکرد پرتنگری می‌شود. در این امر ممکن است به خاطر افزایش فعالیت باکتری‌های حل کننده فسفات موجود در کود زیستی در خاک‌های فیبر از نظر فسفر قابل جذب و برعکس باشد. همچنین، رودریگز و ریتنلدو (200) بین کردن دکتهای با امر ممکن است به خاطر ارگانیزیستری بیشتر کود زیستی در خاک‌های با فسفر قابل جذب به اشت.

تحقیقات فرآیند در ارتباط با تأثیر کودهای زیستی حاوی باکتری‌های حل کننده فسفات بر عملکرد گیاه‌های زراعی انجام شده است. آثار مثبت تلفیق محصولات و افزایش عملکرد دانه توسط دفریباس (10) روی گندم و شاهین و همکاران (22) روی جو و چغندر فردی گزارش شده است. این امر ممکن است به دلیل اثرهای مفید کودهای زیستی

عملکرد میوه

نتایج تجربه واریانس ارائه شده در جدول 4 نشان می‌دهد که فقط تیمار کود شیمیایی فسفره بر عملکرد میوه معنی‌دار است. همچنین، تیمار کود زیستی (شکل 11) بطوری که با افزایش مصرف کود شیمیایی فسفره تا سطح 75% توصیه شده، عملکرد میوه نزدیک افزایش یافته (شکل 11).

مواد و همکاران (16) نیز در بررسی اثر کود شیمیایی فسفره بر ویژگی‌های زراعی کودی روست کافذی، به تتابع مشابه دست یافتند. همچنین، ساجد و همکاران (21) گزارش کردند که مصرف 50 کیلوگرم در هكتار کود فسفر خالص
مانند مورد استفاده