بررسی فعالیت آنزیم سوپراکسید دیسموتاز، با-کاروتئن، فنل و ظرفیت آنتی اکسیدانی در پوست میوه پنج رقم مركبات در تیمار دمای کم

بهروز گلریون، متصرف محمدرضا افشار، و زینب میرمی

(تاریخ دریافت: 1390/12/16; تاریخ پذیرش: 1391/12/16)

چکیده

حساسیت میوه مركبات به دماهای کم و تقارن فصل برداشت میوه با ایام سرد سال، تحقیق بیشتر روی اثر فیزیولوژی آسیب‌های ناشی از دما و افزایش سرما را اجبار می کند. در این پژوهش، میوه پنج رقم مركبات شامل برداشت خونی سانگیتالا، لیموئرتش مازندرانی، پرتقال والنسیا، نارنجی گلن و پرتقال محلی پس از برداشت در مراحل قبل از رسیدگی و رسیدگی کامل به دما بالاتر از 3 درجه سلسیوس، تحقیق گردید. فنل و فنل کل (SOD) با-کاروتئن و فنل کل پوست میوه در مراحل قبل از رسیدگی و رسیدگی کامل و نیز ظرفیت آنتی اکسیدانی در مرحله رسیدگی میوه یک مرحله مورد آزمایش قرار گرفت. نتایج نشان داد که میزان فعالیت آنزیم SOD با-کاروتئن و فنل در مرحله رسیدگی کامل به مرحله قبل از رسیدگی، در نمونه‌های شاهد و تحت تیمار دمای کم، بیشتر است. ظرفیت آنتی اکسیدانی با اعمال بیمار در اثر مختلف، پژوهش در لیموئرتش، نا صفر درجه سلسیوس افزایش یافت و مسئله باقی ماند. افزایش آنتی اکسیدانی آنزیمی و غیر آنزیمی در پوست میوه در مرحله رسیدگی کامل نسبت به مرحله قبل از رسیدگی، شاید دلیل بر متحمل بودن میوه در این مرحله به سرما باشد.

واژه‌های کلیدی: نش سرما، تحمیل میوه، رسیدگی میوه

1. مسیر تحقیقات مركبات کلسیوم، رامیر
2. گروه زیست‌شناسی، دانشگاه، علوم دانشگاه گیلان، رشت

bgoleincitrus@yahoo.com

*: مسئول مکاتبات، پست الکترونیکی;

177
مقدمه

گیاهانی که در مولکول‌های کلسترول به‌عنوان گیرنده نهایی الکترون استفاده می‌کنند، در نتیجه احیای خالی خیلی فعال (Reactive oxygen species, ROS) و گونه‌های فعال اکسیژنی (ROS) نیز تولید می‌شوند (12). که شکل‌های ویژه‌ای از اکسیژن انتمسی فعال رادیکال‌های سوپراکسید، پراکسید هیدروژن و هیدروکسیلی می‌باشند که طی مراحل اکسیدان‌پردازی تولید می‌شوند. اما غلظت آنها در طول پرورش خیلی حساس به حملات میکروگانیسم‌ها، گیاه‌خواری و قرار گرفتن گیاهان در محیط نشین گیاه‌پرداز افزایش می‌یابد. دمای کم، نشین اکسیدان‌پردازهای برای تحمل ROS را به دنبال دارد (15).

به منظور تعیین مقاومت گیاهان نسبت به نشین‌های محیطی، تنوانی جمع آوری ارتفاع و ماده سبز مثل اکسیژن فعال، حالت امیت است. از آنجایی که تحت شرایط نشین مانند دمای کم، تنوانی گیاه برای حذف رادیکال‌های اکسیژنی دچار ROS تقص می‌شود، برای تجزیه و سازی بوده، سیستم دفاعی در برابر تجمع و سیستم فعال دارد. آنتی‌اکسیدان‌های غیرآنتی‌اکسیدان شامل آنتی‌اکسیدان‌های محلول در دمای کم (باتکارترن و پولیپنتون) و محلول در آب (آسکورب و گلکوتروف) می‌باشند. سیستم آنتی‌اکسیدانی آنزیم‌های سوپراکسید دیمتوژن (Superoxide dismutase, SOD)، پراکسیداز (Catalase, CAT) و (Peroxidase, POD)، آسکوربیات و پراکسیداز (APX) می‌باشد که از افزایش سطح آنها جهت مقابله با نشین‌های اکسیدان‌پردازهای توانایی انجام سلول حفظ می‌شود (5).

تنش سرمایه‌ای محصول اگهی و پیارهای جهانی این محصول را تحت تأثیر قرار می‌دهد. مسئله یک منبع کوچک جهانی نشان داده‌های بالایی از نظر اولویت آسیب‌های سنجیده به‌زایه مراکز وارد می‌کند. در ایران نیز مرگ‌های زیادی از میوه‌ها شامل انواع پرتقال (C. reticulata Blanco، نارنجی (sinensis (L.) Osbeck)، لیموترش (C. aurantiifolia (Chirim.) Swingle) و (C. paradisi Macf.) کیوبو نوائی (C. grandis (L.) Osbeck) است. در مراکز منطقه‌ای جهانی و میزان بالایی تولید آن موجب شده که این محصولات از اهمیت اقتصادی زیادی برخوردار باشند. بطوری که امر آن در تجارت جهانی، مراکز دومین صنعت بزرگ می‌باشد (6).

یکی از عوامل اساسی در بیولوژی گیاهان دمای بهینه رشد است. هر گونه گیاهی در یک دامنه دمایی وجود دارد و در هر گونه انحراف از آن بی‌پروزه کاهش می‌یابد. این امر به حذر از این رویه و راهکار بسیاری در گیاهان مختصر آن گروهی که بومی آب و هوا گرم هستند، علائمی از خسارت را مواجه که به دمایه‌ای کم (45-55 درجه سلسیوس) مواجه می‌شوند، نشان می‌دهد (16).

از مهم‌ترین فعالیت‌های رشد و نمو مراکز در محدوده دما نیز سلسیوس است. در فصل بهار، با افزایش دما (بیشتر از 10 درجه سلسیوس) گیاه وارد مرحله‌ی برگ و گل‌دهی می‌شود. در میان این صورت عوامل مختلف مراکز رشد می‌شود در یک رنگ نیز اندازه‌های هوا محلول می‌باشد. میوه، برگ و ساقه دیوار مقاوم‌های مختلف هستند. بطوری که حد آستانه دما به حال برای کل 15 درجه، برای میوه و برگ 25 درجه و برای ساقه کل 30 درجه سلسیوس گزارش شده که این دما به توجه به وضع زنده‌بودن، سن و اندازه گیاهی تحت نشین، تعیین است. موضعی که دمای هوا بیش از چهار ساعت از 20 درجه سلسیوس کمتر شود، میوه میوه خنثی می‌گردد. میوه میوه میوه در در پیض تأثیر ناکامی‌های ظاهری روي یوست از خود نشان
بررسی فعالیت آنزیم سوپراکسید دیسمنوتان، بیا-کاروتین، در کل و...

از رشیدگی و رسیدگی کامل میوه براساس استاندارد رشیدگی مركبات مصرف‌دو آزمایش‌های انجام گرفته و سپس صفات مانند فعالیت آنزیم، SOD، میزان بتا-کاروتین، فلک وال و طوفان آنتی اکسیدانی در پوست اندازه‌گیری شد.

برداشت اول پرفتال و نسباً از آواز آدر و برای ارقام دیگر در آنان ماه بود. استاندارد رشیدگی معمولاً میزان پذیرفته شده‌ای از نسبت موارد جامد کل بسیار قابلیت بیش (TSS/TA) تا 8-9 برای ارقام نارنجی و پرفتال، حداکثر درصد آب میوه (عوامل برای لایم و لونمود) و حداکثر رنگ قابل قبول (برای همه ارقام) می‌باشد (6). از نظر زمان باری پرفتال و نارنجی ماهی به فرمول ریشه دوم در نظر گرفته شد. که زمان باری پرفتال والنسیا ماه خرداد و برای کویاوهای دیگر از ماه بود.

به منظور انجام تیمار سرمایی، همه میوه‌ها، به‌جز نمونه‌هایی کنترل (0-15)، به دستگاه اکوتوبان ویژه سرمایی منتقش شدند. بررسی های انجام شد در این تحقیق در تیمارهای دمای 3، 6، 9 و 12 درجه سلسیوس بود. دمای نمونه‌ها به‌طور مشخص و در طول مدت 60 ساعت به دمای 0 درجه سلسیوس رسید و حداکثر 10 ساعت در این دمای ثابت ماندند. برای اعمال سایر تیمارهای دمایی عبور از هر دمای کمتر طی دو ساعت و مدت میانگینی در هر دمای بیش از 10 ساعت انجام شد. غیر از این که، نمونه‌برداری در دمای صفر درجه سلسیوس، 12 ساعت بعد از نمونه‌برداری در دمای 3 درجه سلسیوس صورت گرفت.

بعد از تیمار سرمایی، پوست میوه‌ها جداسازی شد و بالاصله با استفاده از آنتی‌زون مایع فریز شده و نا زمان استخراج در فرایند 80 درجه سلسیوس نگهداری شدند.

استخراج آنزیم و سنجش فعالیت آنزیمی

به منظور استخراج عصاره سلولی جهت سنجش آنزیمی، 5/6 گرم از پوست میوه هر رنگ با آنتی‌زون مایع به روش‌پیو در شد. با توجه به نوع آنزیم مورد مطالعه، با استفاده از آزمایش‌های تهیه شد. یک میلی‌لیتر از بافر مورد نظر را به عصاره تهیه شده اضافه کرد.
نتایج و بحث
SOD
سنجش فعالیت آنزیم
سنجش SOD با استفاده از روش آزمونانه و همکاران (17) انجام شد که با استفاده از حلال فولین-سیکالیوژ و استاندارد گالیک اسید است. برای انجام این کار، ابتدا 1/250 گرم از بافت پوست میوه بیا 5 میلی لیتر منحل SOD مخلوط گردن و پس از ساترفنیزور محلول روزی جدای شد. برای استخراج از پارکن اسیدس فسفات 50 میلی مولار با pH=7 شامل SOD 5/6 میلی مولار استفاده شد. فعالیت SOD جایگزینی و ریس (9) و از مرحله استیکتوفتوئری در طول موج 650 نانو متر اند از گریی شد.

استخراج و سنجش با-کاروتئن
به منظور استخراج عصاره بافت میوه جهت سنجش با-کاروتئن از گرم از بافت 24 میلی لیتر استون-هگوژ بی‌نسبه 4 تکیب شد. بنابراین جاده نمونه در تاریکی و ایجاد دود فاز محلول نمونه در طول موج‌های 445، 450، 505 و 645 همبسته مربوط به رنگ‌های با-کاروتئن، لیکوئین، کاروتئین و کاروتئین امکان‌پذیر بود. این نمونه در جاده که از نمونه‌ها و قرار دادن در معاونت 1، غلظت با-کاروتئن هر نمونه بر حسب میکروگرم بر میلی لیتر به دست آمد:

\[
\beta - \text{carotene} = -\frac{A_{645} - A_{445}}{A_{450} + A_{650}}
\]

سنجش فن تام
سنجش فن تام با استفاده از روش مکانداخ و همکاران (7) انجام شد که نیازمند استفاده از حلال فولین-سیکالیوژ و استاندارد گالیک اسید است. برای انجام این کار، ابتدا 1/250 گرم از بافت پوست میوه بیا 5 میلی لیتر منحل SOD مخلوط گردن و پس از ساترفنیزور محلول روزی جدای شد. برای استخراج از پارکن اسیدس فسفات 50 میلی مولار با pH=7 شامل SOD 5/6 میلی مولار استفاده شد. فعالیت SOD جایگزینی و ریس (9) و از مرحله استیکتوفتوئری در طول موج 650 نانو متر اند از گریی شد.

180
جدول 1. مقایسه فعالیت آنزیم SOD در پوست بیبو پنج رقم رکوردهای در مرحله قبل از رسیدگی و رسیدگی کامل (U/g FW) فعالیت

<table>
<thead>
<tr>
<th>رقم</th>
<th>برگرسیون خود</th>
<th>مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>47889/3* 2818/5*</td>
<td>8694/5* 29785/1*</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>7673/1* 2413/8*</td>
<td>9682/45* 3312/2*</td>
<td>9</td>
</tr>
<tr>
<td>پرتقال خوئنی</td>
<td>78393/6* 2873/5*</td>
<td>7828/52* 2746/7*</td>
<td>8</td>
</tr>
<tr>
<td>-3</td>
<td>6666/1* 18 + 10 99/6*</td>
<td>7774/1* 2477/8*</td>
<td>6</td>
</tr>
<tr>
<td>-6</td>
<td>9729/18* 2196/3*</td>
<td>8716/18* 2328/5*</td>
<td>6</td>
</tr>
<tr>
<td>کنترل</td>
<td>46738/2* 2478/3*</td>
<td>7184/3* 2912/2*</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>9708/49* 559/6*</td>
<td>7335/9* 3619/9*</td>
<td>4</td>
</tr>
<tr>
<td>انسو</td>
<td>88511/27* 2212/6*</td>
<td>930/92* 3312/6*</td>
<td>6</td>
</tr>
<tr>
<td>-3</td>
<td>9441/6* 2478/6*</td>
<td>7522/9* 2478/0/9*</td>
<td>6</td>
</tr>
<tr>
<td>-6</td>
<td>9502/0* 31812/2*</td>
<td>7442/5* 2482*7</td>
<td>6</td>
</tr>
<tr>
<td>کنترل</td>
<td>76737/129* 2528/9*</td>
<td>7930/1* 2450/9*</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3023/4* 5512/0*</td>
<td>5530/5* 2655/6*</td>
<td>6</td>
</tr>
<tr>
<td>پرتقال محقی</td>
<td>52015/61* 2551/1*</td>
<td>5624/91* 2578/4*</td>
<td>6</td>
</tr>
<tr>
<td>-3</td>
<td>4434/91* 2578/4*</td>
<td>5512/0* 2324/9/4*</td>
<td>6</td>
</tr>
<tr>
<td>-6</td>
<td>4434/91* 2578/4*</td>
<td>5512/0* 2324/9/4*</td>
<td>6</td>
</tr>
<tr>
<td>کنترل</td>
<td>10412/5/8* 1851/2*</td>
<td>101884/9* 2293/8*</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>10216/9/6* 3118/9*</td>
<td>101884/9* 2293/8*</td>
<td>6</td>
</tr>
<tr>
<td>لیمو</td>
<td>0</td>
<td>10029/1/0* 2534/6*</td>
<td>1030/99* 2364/6*</td>
</tr>
<tr>
<td>-3</td>
<td>8851/82* 233/6*</td>
<td>1030/99* 2364/6*</td>
<td>6</td>
</tr>
<tr>
<td>-6</td>
<td>8523/79* 2925/1*</td>
<td>10497/6* 2364/6*</td>
<td>6</td>
</tr>
<tr>
<td>کنترل</td>
<td>10002/9* 2534/6*</td>
<td>9569/93* 2178/6*</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5274/97* 2111/2*</td>
<td>10002/9* 2534/6*</td>
<td>6</td>
</tr>
<tr>
<td>پرتقال والنسیا</td>
<td>10002/9* 2534/6*</td>
<td>9569/93* 2178/6*</td>
<td>6</td>
</tr>
<tr>
<td>-3</td>
<td>9569/93* 2178/6*</td>
<td>9569/93* 2178/6*</td>
<td>6</td>
</tr>
<tr>
<td>-6</td>
<td>9569/93* 2178/6*</td>
<td>9569/93* 2178/6*</td>
<td>6</td>
</tr>
</tbody>
</table>
جمع آوری رادیکال‌هاي سوپرکسید توسط این آنزیم مهمترین مراحل مقاومت در پرایم تیمارهای سرمايی است. تغییرات فعالیت در گیاهان با مقاومت سرمايی مرتبط است و دمای کم به پوتاسیوم فعالیت این آنزیم را افزایش می‌دهد.

(18). فعالیت بیشتر آنژیم SOD در استفزایه گندم ساختاری به سرمای نسبت به گیاهان غیرساختاری در دمای کم گزارش شده است (25). بنابراین، می‌توان نتیجه گرفت که در ارتفاع مورد مطالعه در مرحله رشد بیشتر کامل، سپس در مرحله رادیکال‌های سوپرکسید توسط SOD کارآمدتر است.

سنگش بنا- کاروتین

تغییرات میزان پتا-کاروتین در پوست میوه پنج رنگ اکسنت در تیمارهای سرمايی (3) صفر. 3، 6- درجه سلسیوس، در زمان قابل از رسدیگی و رسدیگی کامل مورد بررسی قرار گرفت (جدول 2). غلظت p-کاروتین با اعمال تیمار سرمايی در زمان قبل از رسدیگی، در ارتفاع مختلف صفر درجه سلسیوس روند افزایشی و سپس کاهش نشان داد. مقاومت بیشتر نشان داد. مقاومت بیشتر کاروتین در انتهای نسبت به سایر ارقام کامل مشاهده شد و رنگ مذکور بیشترین مقادیر پتا-کاروتین را در هر تیمار دارا می‌باشد. بعد از آن، بیشتر در ارتفاع پرداخت خونی، محلی، و نسبتاً لیموتروش بیشترین مقادیر پتا-کاروتین دیده شد. نازارک‌ها در شدت رنگ به مقدار زیادی متنوع هستند و توسه رنگ در آنها وابسته به دمای کم است (7). کاروتونیدها درای و پیژفگی های مهم چون فعالیت برویومنین A و جمع کننده رادیکال آزاد هستند. مرکبات منب مصنوعی از کاروتونیدها هستند که (ROS) غلظت آنها در واریه‌های مربوط به اثرات بیشتره‌ها متفاوت بوده و به شرایط رشد بستگی دارند. مطالعات قبلی نشان داد که غلظت کاروتونید به طور مشخصی در نازارک انگیزه بیشتر از پریکال است (1). همچنین، مرکبات نوع نازارکی مقادیر بیشتر کاروتونید نسبت به موارد نوع پریکال و پوئلو دارد (6) که تأیید نکرده پیوسته حاضر است. میزان پتا- کاروتین در مرحله در جمع آوری رادیکال‌های سوپرکسید در تمام تیمارهای دمایی و همچنین دمای کنترل باندل، با مقایسه بین ارقام در مرحله رسیدگی کامل، بیشترین میزان فعالیت آنژیم SOD در دمای 3 C دارا بود و با کاهش همکاوش، فعالیت دیده شد. درون رود کاهش تا دمای 3 C 3 ادامه یافت، اما در دمای 3 C 5 میزان فعالیت آنژیم SOD به مقادیر اولیه خود، بسنده در حالی کنترل بر می‌گردد. این مشاهده احتمالاً به دلیل ساختاری این رنگ از این دو سرماهای 64 ساله می‌باشد. در پوست میوه انتظار می‌رود سرما به درجه ۵ C SOD در نمونه کنترل و تیمار معمول در هر شرایط و روند فعالیت آنژیم به بالاترین مقدار خود رسید و در تیمارهای دمایی (زیر صفر درجه سلسیوس)، کاهش فعالیت در حدا نمونه‌های کنترل دیده شد. اولین محل پذیرش سرما و به دنبال آن اسپیکه سرما، پوست میوه‌ها است. در نتیجه، باعث بودن میزان فعالیت آنتی‌کسیدانی بوده‌یا SOD در این بخش حائز اهمیت می‌باشد. گیاهان مناطق گرم‌سیری و نیمه گرم‌سیری شامل حساس به سرما هستند و از اسپیکه‌های سرما (پره زدگی) در دمای صفر تا ۱۵ Cصدم می‌پیشیند (8). عمکار آنزیم SOD که رادیکال‌های خطرناک سوپرکسید و پراکسید SOD هیدروژن را جمع آوری می‌کند، بسیار حائز اهمیت بوده و توازن بین فعالیت آنژیم مذکور برای بقای سلول در دوره‌های سرمايی مهم است (2). شناسی سرما و توان توازن بین تولید ROS (روبای) و میکروبرای دفاعی را به برمی‌خور (13).

نتایج این پژوهش نشان می‌دهد که بطورکلی میزان فعالیت آنتی‌کسیدانی SOD در تمام ارقام در مرحله رسیدگی کامل نسبت به مرحله قبل از رسیدگی در نمونه‌های تحت تیمار کنترل و تیمار سرمایی، بیشتر بود و با توجه به اینکه آنزیم SOD اولین خط دفاعی در پرایم آسیب‌پذیری ناشی از تولید ROS می‌باشد.
جدول 2 مقایسه غلظت با-کاروتین در پوست میوه پنج رقم مربیت در مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (°C)</th>
<th>مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل 1</td>
<td>0/156±0/014 d</td>
<td>0/154±0/05 b</td>
<td></td>
</tr>
<tr>
<td>پرتقال خوئین</td>
<td>0/142±0/18 d</td>
<td>0/205±0/07 b</td>
<td></td>
</tr>
<tr>
<td>انسو</td>
<td>0/38±0/08 i</td>
<td>0/55±0/10 b</td>
<td></td>
</tr>
<tr>
<td>پرتقال محلی</td>
<td>0/22±0/34 d</td>
<td>0/32±0/41 d</td>
<td></td>
</tr>
<tr>
<td>لیمو</td>
<td>0/36±0/10 b</td>
<td>0/45±0/10 a</td>
<td></td>
</tr>
<tr>
<td>پرتقال والنسیا</td>
<td>0/15±0/08 d</td>
<td>0/17±0/08 b</td>
<td></td>
</tr>
</tbody>
</table>

افراشی می‌دهد، که دقتاً مربوط با کیفیت خروکی میوه است. به طوری که گاهی اوقات در مناطق گرم‌بیزان یا آب و هوای مختلف، میوه‌های اکستروپورت انتخاب نمی‌شود. از افرایش دیده شده در میزان با-کاروتین با اعمال تیمار سرمایه‌ای می‌تواند به نقش انسوکسی‌اسیدیاتی آن و کاهش آن به تجربه

رسیدگی کامل میوه نیز مانند مرحله قبل از رسیدگی در ارقام پرتقال خوئین، محلی، ویلیسا و نارگسی آن‌ها تسکین درجه سلسیوس روند افزایشی و سپس کاهشی نشان داد. در لیموشی، اعمال تیمار سرمایه‌ای اثر بر مقادیر با-کاروتین نداشت. دماهای زمستان و افت، سرمایه رنگ پوست مربیت را
بینت-کاروتین در تثبیت حضور بیشتر ROS مربوط شود. بنابراین، افزایش بینت-کاروتین در پوست میوه مربوطک به صرف درجه سلسیوس نشان دهنده این است که بینت-کاروتین تا دمای صفر درجه سلسیوس در فنی تولید شده و به عنوان بخشی از سیستم آنتی اکسیدانی برای جمع آوری ROS عمل کند.

سنجد فنل تام
جدول ۳ تغییرات میزان فنل تام در پوست میوه پنجم رفع مركبات در تیمارهای سرمایی (۳ صفر، ۳ و ۶ درجه سلسیوس)، در زمان قبل از رسیدگی و رسیدگی کامل را نشان می دهد. نتایج نشان دهنده که با اعمال تیمار سرمایی، میزان فنل در زمان قبل از رسیدگی فنل در ارقام مختلف بیشتر از کنار می‌گردد. همچنین مقدار فنل در درجه سلسیوس و در رفع لیمونت روش کمترین مقدار آن در پرکاش خونی دیده شد. در زمان رسیدگی کامل میزان فنل با اعمال تیمار سرمایی در ارقام اندو، پرکاش خونی و محلی ابتدا افزایش و سپس کاهش نشان داد. در ارقام والنسیا و لیمونت روش ابتدا بندون تغییر و سپس با روند افزایش همراه بود. در مقایسه مقدار فنل مربوط به ارقام مختلف در هر تیمار دمایی، بیشترین مقدار آن در ارقام والنسیا و لیمونت روش در تیمار سلسیوس ۶-درجه سلسیوس و در ارقام اندو، پرکاش محلی و خونی در تیمار سلسیوس صفر درجه سلسیوس دیده شد.

در روش استفاده شده برای سنجد فنل تام در این تحقیق ممکن است مدل‌برداری ترکیباتی که سیراها قابلیت اکسیداسیون دارند مانند فنی در اسکیروکسیسیون که نتیجه گرفت. فنل بیشتر از مقدار واقعی نشان دهنده و این تداخل وابستگی به غلظت ترکیبات مراحم است (۲۲). تغییرات آنتی اکسیدانی ترکیبات فنل عمداً ناشی از ویژگی‌ها و خصایص آنتی اکسیدانی که می‌تواند نقش مهمی در جذب و خشی در کردن رادیکال‌های آزاد داشته باشد (۲۳). متابولیسم فنل پرپانولین

۱۸۴
جدول 3. مقایسه عملکرد نمونه‌های تأم در پوست میوه پنگ رقم آزمایش در مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (°C)</th>
<th>مرحله قبل از رسیدگی (mg/L)</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20±4.4±2.0 a</td>
<td>16.2±7.1±1.6 d</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30±5.4±2.0 a</td>
<td>18.4±6.1±1.4 d</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50±3.4±1.0 a</td>
<td>18.4±4.8±1.0 d</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>90±4.5±3.0 a</td>
<td>20.9±3.1±1.6 c</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>84±5.2±0.9 a</td>
<td>17.1±3.1±2.4 d</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>84±5.4±1.0 a</td>
<td>12.6±0.5±0.3 b</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>75±5.5 a</td>
<td>8.9±4.1±0.5 c</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>79±5.6±0.7 a</td>
<td>8.3±2.5±0.4 c</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>118±7.5±1.8 f</td>
<td>21.7±2.6±0.4 gb</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>118±7.5±0.5 e</td>
<td>22.7±2.5±0.4 gb</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29±5.5 b</td>
<td>1.9±2.4±0.4 gb</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>59±5.6±1.8 b</td>
<td>1.1±2.6±0.4 gb</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>181±3.7±1.8 c</td>
<td>13.5±6.7±0.8 c</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20±4.4±0.7 a</td>
<td>17.3±6.4±1.2 d</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>188±3.1±1.8 f</td>
<td>22.3±6.3±1.3 f</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85±4±1.0 a</td>
<td>18.4±1.3.5 a</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>84±5.5 c</td>
<td>18.1±3.1±0.3 db</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>97±3.1±3.0 d</td>
<td>18.7±6.7±0.4 d</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13±3.3±0.3 c</td>
<td>2.1±17.4±0.8 c</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>159±3±1.3 b</td>
<td>2.1±3±2.4 d</td>
<td></td>
</tr>
</tbody>
</table>

لیمو، سر و سیب، نیز درجات دمودرسوس افزایش یافته و سپس نابینا

مرکب فنی و فعالیت آنتی اکسبیدانی متغیر، ممکن است با

دیده شده در این تحقیق در مرحله رسیدگی مشابه تشکیل تغییرات

میزان فنی بوده و با اعمال تیمار سرمایه ای ارقام مختلف، به‌جز

185
جدول ۴ مقایسه ظرفیت آنتی اسیدانی در پوست میوه یک رنگ مرکبات در مرحله رسدگی کامل

<table>
<thead>
<tr>
<th>رقم مرحله رسدگی کامل</th>
<th>ظرفیت آنتی اسیدانی (I)</th>
<th>تیمار (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرتقال خونی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کنترل</td>
<td>۸۲/۲±۰/۴۸۶ a</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۸۸/۴±۰/۲۲۶ b</td>
<td></td>
</tr>
<tr>
<td>۰</td>
<td>۹۳/۶±۰/۲۰۲ c</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۰/۶±۰/۱۱۱ d</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۵/۹±۰/۰۹۳ e</td>
<td></td>
</tr>
<tr>
<td>پرتقال محلی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کنترل</td>
<td>۸۸/۳±۰/۴۴۳ b</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۸۹/۱±۰/۰۱۱ b</td>
<td></td>
</tr>
<tr>
<td>انسو</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰</td>
<td>۹۷/۱±۰/۰۹۴ b</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۵/۲±۰/۰۵۲ b</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۵/۳±۰/۰۹۴ b</td>
<td></td>
</tr>
<tr>
<td>پرتقال وانسی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کنترل</td>
<td>۹۴/۲±۰/۰۶۹ b</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۵/۱±۰/۰۶۶ b</td>
<td></td>
</tr>
<tr>
<td>لیمو</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰</td>
<td>۹۷/۲±۰/۰۱۷ b</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۶/۳±۰/۰۳۳ b</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۵/۸±۰/۰۵۶ b</td>
<td></td>
</tr>
<tr>
<td>پرتقال وانسی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کنترل</td>
<td>۸۸/۵±۰/۰۵۵ b</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۸۸/۲±۰/۰۳۷ b</td>
<td></td>
</tr>
<tr>
<td>۰</td>
<td>۸۹/۷±۰/۰۲۵ b</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۱/۱±۰/۰۲۹ b</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۱/۳±۰/۰۹۸ b</td>
<td></td>
</tr>
</tbody>
</table>

آنتی اسیدانی بیشتر است با مطوب مشابه تحمیل سرمایی با ROS افزایش ظرفیت آنتی اسیدانی الق می شود. دقت تولید توسط رش سرمایی بک و سری از فرآیند های محور مادر کلایاسیون لیپید، تجزیه بروتئین ها و اسیدهای نوکلئیک در سلول را به راه می اندازد. این برای تحمیل سرمایه در گیاهان می باشد.
است که این نشان می‌دهد فاکتورهای دیگر، علاوه بر فنل نام، ممکن است در تحلیل سرمایگرایی در مراکز نفی دانه‌ها بیشتر باشد (33). بازاریان، افزایش شده در میزان ترکیبات فنل ناسی از دمای کم ممکن است ارزش تغذیه‌ای و درآمدی بخش‌های مختلف مراکز را افزایش دهد. اگرچه سرمای‌شده مکن

نتیجه‌گیری

نتش‌های محیطی اصلی یک عامل محدود کننده تولیدات گیاهی می‌باشد. مکانیسم‌های مقاومت‌های مختلفی برای سیر و نگهداری فیزیولوژیک و بیوشیمیایی مختلفی با آزمایش‌های آزمایش‌های بی‌سیاری برای انجام داده شده است (21). شواهد زیادی وجود دارد که نشان دهد این است که آنتی‌کسیدان‌های آنتی‌و گیاه‌های عوامل اصلی در

جولگیری از نشش آنتی‌کسیدان‌های گیاه‌های مسئوله این نشان می‌دهند که نشش‌های محیطی می‌تواند نجاتی

بنیان‌گذاری

از مؤسس تقسیمات مربوط کشور و دانشگاه گیلان جهت

فراهم نمودن مواد گیاهی و در اختیار قرار دادن تجهیزات،

تشکر و قدردانی می‌شود.