بررسی فعالیت آنزیم سورپراکسید دیسموتاز با کاروتئن، فتل کل و ظرفیت آنتی اکسیدنت در پوست میوه بنج رقم مربکات در تیمار دمای کم

بهروز گلینی،* منصور محمدمان افشار و زینب میرمی

(نامه دریافت: 12/16/1399؛ تاریخ پذیرش: 1399/12/27)

چکیده

حساسیت میوه مربکات به دماهای کم و تقارن فصل برداشت میوه با ایام سرد سال، تحقیق بیشتر رود از فیزیولوژی آسیب‌های نش سرما را ابزار می‌کند. در این پژوهش، میوه بنج رقم مربکات شبیه برداشت خونی سانگیتالا، لیموترس مازندرانی، برداشت و بالینی، نارگی انشو و پرتفال محلی پس از برداشت در مراحل قبل از رسیدگی و رسیدگی کامل به دمای 3 صفر و -6 درجه سلسیوس متغیر گردید. از دمای 15 درجه سلسیوس به عنوان شاهد استفاده شد. تغییرات آنزیم فعالیت آنزیم سورپراکسید دیسموتاز (SOD)، پتاس کاروتئن و فتل کل میوه در مراحل قبل از رسیدگی و رسیدگی کامل و نیز ظرفیت آنتی اکسیدنت در مرحله رسیدگی میوه مورد آزمایش قرار گرفت. نتایج نشان داد که سطح فعالیت آنژیم SOD، پتاس کاروتئن و فتل قبل از رسیدگی کامل به مرحله قبل از رسیدگی، در نمونه‌های شاهد و تحت تیمار دمای کم، بیشتر است. ظرفیت آنتی اکسیدنت با اعمال تیمار سرمایی در اثر مختلف، به‌جای لیموترس خا در دو دمای سلسیوس انفیشیشن بافت و سبب کتاب ماند. انفیشیشن آنتی اکسیدنت های آنزیمی و غیر آنزیمی در پوست میوه در مرحله رسیدگی کامل نسبت به مرحله قبل از رسیدگی، شاکی داشت. در بخش دیلی بر متحول بودن میوه در این مرحله به سرما بیان است.

واژه‌های کلیدی: نش سرما، تحمیل میوه، رسیدگی میوه

1. مؤسسه تحقیقات مربکات کشور، رامسر
2. گروه زیست‌شناسی دانشگاه علوم دانشگاه کیشان، رشت

* bgoleincitrus@yahoo.com

* مسئول مکاتبات: پست الکترونیکی
مقدمه

گیاهان از مولکول آکسیژن به عنوان گیرنه نهایی الکترون استفاده می‌کنند. در نتیجه احیاء، حاده واطه‌های خیالی فعال (Reactive oxygen species, ROS) و گونه‌های فعال آکسیژنی (19) نیز تولید می‌شوند (12). که به شکل‌های وارون از آکسیژن اتمسفری شامل رادیکال‌های سوپراکسیدر، پراکسید‌های هیدروژن و هیدروکسیل می‌باشند که مدرک واحدهای فعال در سطح مثل نفس، فتوسنتز و فسفریلاسیون آکسیدان‌گی تولید می‌شوند. اما گلوتات به طوری چنین بخشی به حملات میکروگانیسم‌ها، گیاه‌خواری و فرار گرفتن گیاهان در معرض نشته‌گری، بیماری‌های دیگر و رشته‌های فعال آکسیدان‌گی را به‌طور طبیعی گناه به حذف رادیکال‌های آکسیژنی دچار نقص می‌شود. دو سیستم دفاعی در برای تجمع و سوزن وجود دارد: آنتیزمی و غیرآنتیزمی. سیستم آنتی‌آکسیدانی غیرآنتیزمی شامل آنتی‌آکسیدان‌های محلول در چربی (پناکاروتین و لیکون) و محلول در آب (آسپروکسیدز، گلوکانن) می‌باشد. سیستم آنتی‌آکسیدانی آنتی‌آکسیدان‌های محلول در آب (Superoxide dismutase, SOD)، پراکسیدز (Catalase, CAT) (Peroxidase، POD)، آسپروکسیداز (Ascorbate peroxidase، APX) و پراکسیداز (Peroxidase، POD) می‌باشد که افزایش سطح آنها جهت مقابله با نشته آکسیدانی، توانایی احیای سلول حفظ می‌شود (5).

نتیجه‌گیری‌های بزرگی از میوه‌ها شامل انواع بریتانیا (Citrus reticulata Blanco (sinensis (L.) Osbeck)، لیموتروش (C. aurantifolia (Chrm.) Swingle)، لیموتروش دوهد (C. paradisi Macf)، گیپ‌فوتوت (C. grandis (L.) Osbeck) و گیپ‌فوتوت دوهد) است. تولید مارکت در مناطق مختلف به خاطر میزان بالای تولید آن موجب شده که این محصول از اهمیت اقتصادی زیادی برخوردار باشد. بطوریکه امروزه در تجارت جهانی، مرکزهای دومند، مکان‌های میوه‌های آن است (10).

یکی از عوامل اساسی در پیوستگی گیاهان، دما بینه‌نشین شده است. هر گونه گیاهی در یک حالت دمایی ویژه حاکم رشد و عملکرد مطلوب را دارد و هر گونه انحراف از آن باعث شده که کاهش دما به طوری که در برودن و کاهش رشد روبی و زایشی می‌شود. بسیاری از گیاهان مخصوصاً آن گروه‌های بومی آب و هواهای گرم هستند، علائمی از خسارت را مواجه به دمایهای کم (10-15 درجه سلسیوس) مشاهده می‌کنند. در محیطی، می‌شود، میزان می‌دهد (16).

شرواع فعالیتهای رشد و نمو مارکت در محدوده دماهای 10 درجه سلسیوس است. در حالت باران، افزایش دما (پیشرفت 10 درجه سلسیوس) گیاه وارد مرحله برق و گل‌دهی می‌شود. در میان ایراق و گونه‌های مختلف مارکت‌های به تجربه مقابله به دما گفته گردیده است و در یک رقم نیز ایناهم‌جایی متفاوت مشت‌گل میوه، برگ و ساقه دارای مقاومت‌های مختلفی هستند. به‌طوری که میزان دمای به‌ارای برای کل 15 درجه، برای میوه و برگ 2-4 درجه و برای ساقه 24-25 درجه سلسیوس گزارش شده که این دماها باید توجه به نهایتی، سنس و اندازه‌گیری تحت دما، می‌تواند است. میوه و هواهای از آنجا سردر شده 2-3 درجه سلسیوس کنترل شود، میوه میوه میوه در نظر گرفته می‌گردد. میوه میوه میوه در نظر گرفته می‌گردد.

نتیجه‌گیری‌های بزرگی از میوه‌ها شامل انواع بریتانیا (Citrus reticulata Blanco (sinensis (L.) Osbeck)، لیموتروش (C. aurantifolia (Chrm.) Swingle)، لیموتروش دوهد (C. paradisi Macf)، گیپ‌فوتوت (C. grandis (L.) Osbeck) و گیپ‌فوتوت دوهد) است. تولید مارکت در مناطق مختلف به خاطر میزان بالای تولید آن موجب شده که این محصول از اهمیت اقتصادی زیادی برخوردار باشد. بطوریکه امروزه در تجارت جهانی، مرکزهای دومند، مکان‌های میوه‌های آن است (10).

یکی از عوامل اساسی در پیوستگی گیاهان، دما بینه‌نشین شده است. هر گونه گیاهی در یک حالت دمایی ویژه حاکم رشد و عملکرد مطلوب را دارد و هر گونه انحراف از آن باعث شده که کاهش دما به طوری که در برودن و کاهش رشد روبی و زایشی می‌شود. بسیاری از گیاهان مخصوصاً آن گروه‌های بومی آب و هواهای گرم هستند، علائمی از خسارت را مواجه به دمایهای کم (10-15 درجه سلسیوس) مشاهده می‌کنند. در محیطی، می‌شود، میزان می‌دهد (16).

شرواع فعالیتهای رشد و نمو مارکت در محدوده دماهای 10 درجه سلسیوس است. در حالت باران، افزایش دما (پیشرفت 10 درجه سلسیوس) گیاه وارد مرحله برق و گل‌دهی می‌شود. در میان ایراق و گونه‌های مختلف مارکت‌های به تجربه مقابله به دما گفته گردیده است و در یک رقم نیز ایناهم‌جایی متفاوت مشت‌گل میوه، برگ و ساقه دارای مقاومت‌های مختلفی هستند. به‌طوری که میزان دمای به‌ارای برای کل 15 درجه، برای میوه و برگ 2-4 درجه و برای ساقه 24-25 درجه سلسیوس گزارش شده که این دماها باید توجه به نهایتی، سنس و اندازه‌گیری تحت دما، می‌تواند است. میوه و هواهای از آنجا سردر شده 2-3 درجه سلسیوس کنترل شود، میوه میوه میوه در نظر گرفته می‌گردد. میوه میوه میوه در نظر گرفته می‌گردد.
بررسی فعالیت‌های سرپاکسید دیسموتان، ۱-کاروتین، فل، کل و... در چند دهه گذشته، به فاصله‌های ۵-۱۰ سال، باعث‌های مرگ‌های شماری و جنبه‌های دیگری در سرمازدگی شده‌اند (۲). در طول دوره سرما، تغییرات عمده فیزیولوژیک، بیوشیمیایی و متانولیک در گیاه می‌دهد. رابطه ویژه‌ای میان بروتون‌های تخییری شده و توزیع میزان تنش در سرمازدگی وجود دارد. یک موضوع کمک می‌کند تا شناسایی نا- حداکثر نتایج بین قابلیت‌های ابری و زئیکی، میزان تحمل به سرما را افزایش داد. براساس گزارش‌ها موجود، افزایش یک دو درجه سلسیوس می‌توان مقاومت دمایی ارقام تجاری موجود، خصطرات انتی‌بادی وارد به درختان میوه را اسید کند. در درصد نیاز استفاده میزان کاهش خواهان داد (۲۰). از آنجایی که از مهم‌ترین مکانیسم‌های گیاهان برای افزایش قابلیت ده‌باده و افزایش فعالیت انزیم‌های آنزیم‌کاهن‌دان و غیرانزیم‌کاهن‌دان مشابه با توجه به حسابی مرکبات با دمای و تقارن فصل برداشت میوه با ایام سرد سال، باید این پژوهش، سنجش فعالیت انزیم‌های سرپاکسیدس دیسموتان (SOD) میزان تنا-کاروتین، فل کل و طرفت آنتی‌کاهن‌دانی کل پس از میوه نهایی شرحین‌دهی آزمایش‌های دیگر میوه بود. به منظور اندازه‌گیری سرمازدگی خود، به‌صورت سه‌تایی (۳–۴) به دست‌آوردن ویژگی‌های سرمازدگی منطقی و شادته‌روی یک رشته‌های انجام شده در این طرح به تیمارهای دامی، ۳ فصل، ۲-۵ درجه سلسیوس بود دمای نمونه‌ها با تغییر و در طول مدت ۲۰ ساعت به دمای ۳ درجه سلسیوس رسید و حدود ۱۰ ساعت در هر دمای گرمایشی که در این طرح به دمای کمتر یا دو ساعت و مانندگری در هر دمای به‌طور گسترده در دمای صفر درجه سلسیوس، ۱۲ ساعت بعد از نمونه برداری در دمای ۳ درجه سلسیوس صورت گرفت. بعد از تیمار سرمایی، پوست میوه‌ها ژاداگی شد و بلافاصله به استفاده از تیمار مانع برخورد شده و تا زمان استخراج در فریزور ۵۰ درجه سلسیوس نگهداری شدند.

به منظور استخراج عصاره سلولی جهت سنجش آنزیم، ۵/۰ گرم از پوست میوه در مقدار ۱۲ میکرو لیتر به خویری پودر شد. با توجه به نوع آزمیز مورد مطالعه، با استخراج آنزیم‌های هره شد یک میکرو لیتر از بایور مورد نظر را به عصاره‌های شده اضافه کرده.

مواد و روش‌ها

مواد گیاهی و تیمار سرمایی

برای انجام این پژوهش، آزمایشگاه به‌صورت فاکتوریل با دو عامل متغیر شامل پسپری زمین مرکبات (برداشت محلی سیپاروز، C. sinensis cv. Local siavaraz) و (C. unshiu), (C. sinensis cv. Sanguinello) و پرتقال (C. limon cv. Local lemon) فراست و نیز آنها کلکسیون ایستگاه تحقیقات مرکبات کا و پنج تیمار دامای در قابل طرح کامل‌تر تصادفی در سه تکرار (۵۰ میوه برای هر تیمار در هر تکرار) انجام شد. نمونه‌برداری در دور مرحله‌های قبل...
تعیین ظرفیت آنتی اکسیدانی
برای سنجدی میزان جمع آوری رادیکال آزاد و تعیین ظرفیت آنتی اکسیدانی از سنجدی (DPPH، یک اکسید رادیکال به رنگ نارنجی توسط بلبوس (2) استفاده شد. برای این منظور، 200 میکرولیتر عصاره منالی با 600 میکرولیتر محلول pH 7.0 میلیمارل میکروسکوپی در سیستم جذب کنترل و نمونه در طول موج 517 نانومتر خوانده شد. با قرار دادن جذب هر کدام در فرمول 1 درصد مجموع آزمون رادیکال آزاد به درصد مطلق آنتی اکسیدانی تبدیل می‌شود.

DPPH

A control – A sample / A control

۱۷

مطالعات آماری

SPSS

تجزیه آماری مربوط به استفاده از آزمون دانکر در صورت گرفتن نتایج مربوط به تغییرات در برنامه Excel 2007

نتایج و بحث

SOD

سنجدی فعالیت آنزیم

سنجش فعالیت آنزیم در ۲۰۰ میکرولیتر محلول‌های تیمارهای سرمایی (C)، (B) و (A) موجود در فیلتر چسبیده و سپس در محلول‌های تیمارهای سرمایی (A) و (B) پر کرده و ۵ میلی‌لیتر محلول‌های تیمارهای SOD و مطلوب به انسداد و بعد از این دما به فعالیت آنزیم افزایشی بوده و در دمای کنترل، کمترین مقدار فعالیت آنزیم مربوط به انسداد بوده. در محلول‌های سرمایی کاملاً میوه، در ارقام لیموتروس و والنسیا، تیمارهای سرمایی نشان دهنده در میزان فعالیت آنزیم تندارد و در سایر ارقام، رابطه معناداری دمای و مقدار فعالیت آنزیم حاکم می‌باشد. به این صورت که با کاهش دما از حالت کنترل، افزایش فعالیت آنزیم وجود دارد. در ارقام لیمو ترش و والنسیا، این امر شاید به دلیل عملکرد مناسب این آنزیم

و پس از ساترپتویز محلول روی جیدا شد. برای استخراج SOD با pH 7.0 میلی‌لیتر محلول‌های تخمیر قارچ (5) و EDTA (۲) و ۳ میلی‌لیتر محلول‌های تخمیر قارچ (۴) و از طریق اسپرتوزیون در طول موج ۵۴۰ نانومتر اندازه‌گیری شد.

استخراج و سنجدی با-کاروتین

به‌منظور استخراج عصاره دانه‌ای ناقص و با-کاروتین (۹) استفاده شد. به این منظور، ۲.۵ گرم از بافت با ۲ میلی‌لیتر هستون- هگواس به نسبت ۴ ترکیب. با تکان دادن نمونه در تاریکی و ایجاد دو فاز مخلوط روبی نمونه در طول موج‌های ۵۶۵، ۵۵۰ و ۴۸۰ به‌نتیجه مربوط به رنگ‌های با-کاروتین، الکوین، کارافول و کارافول a خوانده شد. با خواندن جذب هر کدام از نمونه‌ها و قرار دادن در معادله ۱، غلظت با-کاروتین هر نمونه بر حسب میکروگرم بر میلی‌لیتر به دست آمد.

[β-carotene] = -/۲۴۴ A۵۴۰ - ۱/۲۰۰ A۵۵۰

-/-۲۰۰A۵۵۰ + +/۲۵۰ A۵۴۰

سنجدی فنل تام

سنجدی فنل تام با استفاده از روش مکندلوند و همکاران (۱۷) انجام شد که نیازمند استفاده از حلال فولین- سیکالیور و استاندارد گالک کتاب است. برای انجام این کار، ابتدا ۲۵ گرم از بافت پودر شده پوست میوه با ۵ میلی‌لیتر محلول رنگ‌های جیدا شد. سپس ۲۵۰ میکرولیتر عصاره استخراج شده به ۱۵۰ میکرولیتر حلال فولین، به نسبت ۱ به ۱ (به‌نتیجه آب دیوتیوزه و حلال فولین) و ۱۰۰۰ میکرولیتر کننده سدیم (۵/۳ در گیسکور) و ۲۰۰ میکرولیتر کننده سدیم (۵/۳ در گیسکور) اضافه شد. نمونه‌ها به‌نتیجه ۱۰ دقیقه ساترپتویز شدند. جذب نمونه‌ها در طول موج ۵۵۰ نانومتر خوانده شد. جهت به‌دست آوردن غلظت نفل تام نمونه از استاندارد گالک کتاب استفاده شد.

۱۸۰
جدول 1. مقایسه فعالیت آنزیم SOD در پوست بیوه پنجه مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (°C)</th>
<th>مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>۶۸/۸۹/۳/۹۳ ± ۲۸/۱۶/۵</td>
<td>۶۸۵/۹۰/۲/۶ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۶/۰۷/۳۳/۵/۸ ± ۳۱/۱۳/۸</td>
<td>۶/۸۴/۸/۵/۸ ± ۴۳/۳۲/۲</td>
<td></td>
</tr>
<tr>
<td>پرتابل خونی</td>
<td>۷۸/۹۳/۶/۹ ± ۴۵/۷۵/۲</td>
<td>۷۸/۹۳/۶/۹ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>-۳</td>
<td>۶۶/۷۵/۹/۱ ± ۳۹/۹/۶</td>
<td>۶۶/۷۵/۹/۱ ± ۳۹/۹/۶</td>
<td></td>
</tr>
<tr>
<td>-۲</td>
<td>۹/۸۴/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td>۹/۸۴/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>کنترل</td>
<td>۳۸/۲۲/۳/۴ ± ۴۵/۷۵/۲</td>
<td>۳۸/۲۲/۳/۴ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۸/۸۵/۱/۲/٧ ± ۴۵/۷۵/۲</td>
<td>۸/۸۵/۱/۲/٧ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>پرتابل محلی</td>
<td>۴/۱۰/۲/۳/۴ ± ۴۵/۷۵/۲</td>
<td>۴/۱۰/۲/۳/۴ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۵/۰۷/۳۳/۵/۸ ± ۴۵/۷۵/۲</td>
<td>۵/۰۷/۳۳/۵/۸ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>۹/۰۳/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td>۹/۰۳/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کنترل</td>
<td>۱/۰۹/۲/۳/۴ ± ۴۵/۷۵/۲</td>
<td>۱/۰۹/۲/۳/۴ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۵/۰۷/۳۳/۵/۸ ± ۴۵/۷۵/۲</td>
<td>۵/۰۷/۳۳/۵/۸ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>پرتابل والنسیا</td>
<td>۹/۸۴/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td>۹/۸۴/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>-۳</td>
<td>۹/۸۴/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td>۹/۸۴/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>-۲</td>
<td>۹/۸۴/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td>۹/۸۴/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>-۱</td>
<td>۹/۰۳/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td>۹/۰۳/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
<tr>
<td>-۰</td>
<td>۹/۰۳/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td>۹/۰۳/۸/۶/۹ ± ۴۵/۷۵/۲</td>
<td></td>
</tr>
</tbody>
</table>
سنجش با- کارونت

تغییرات میزان بنا-کارونت در پوست میوه بندگی ممکن است تاثیراتی در تیمارهای سرمازده (363 کم- 6، 5- مدل ملیسوسیوسی در زمان گرفتگیری سرمازده و سیبستگی کامل باعث تغییر در تعادل و بهبود اثرات در هر ۳ تیمار سرمازده می‌باشد.

در این بخش بررسی مقدار بنا-کارونت را در هر تیمار دارای می‌باشد. بعد از آن، بر پایه تغییر در پرتابل کشت خونی، مخلوط، و نتایج و لیموترش بیشترین مقدار بنا-کارونت دیده شد. نتایج ها در شدت رنگ و مقدار بازو مادهکاهی و تغییر رنگ در آنها وابسته به دمای کم است (7).

کارونوتودیه، در مدلینبنا-کارونت را در هر ۳ تیمار دارای می‌باشد.

در این بخش بررسی مقدار بنا-کارونت را در هر ۳ تیمار دارای می‌باشد. بعد از آن، بر پایه تغییر در پرتابل کشت خونی، مخلوط، و نتایج و لیموترش بیشترین مقدار بنا-کارونت دیده شد. نتایج ها در شدت رنگ و مقدار بازو مادهکاهی و تغییر رنگ در آنها وابسته به دمای کم است (7).

کارونوتودیه، در مدلینبنا-کارونت را در هر ۳ تیمار دارای می‌باشد.

در این بخش بررسی مقدار بنا-کارونت را در هر ۳ تیمار دارای می‌باشد. بعد از آن، بر پایه تغییر در پرتابل کشت خونی، مخلوط، و نتایج و لیموترش بیشترین مقدار بنا-کارونت دیده شد. نتایج ها در شدت رنگ و مقدار بازو مادهکاهی و تغییر رنگ در آنها وابسته به دمای کم است (7).

کارونوتودیه، در مدلینبنا-کارونت را در هر ۳ تیمار دارای می‌باشد.

در این بخش بررسی مقدار بنا-کارونت را در هر ۳ تیمار دارای می‌باشد. بعد از آن، بر پایه تغییر در پرتابل کشت خونی، مخلوط، و نتایج و لیموترش بیشترین مقدار بنا-کارونت دیده شد. نتایج ها در شدت رنگ و مقدار بازو مادهکاهی و تغییر رنگ در آنها وابسته به دمای کم است (7).

کارونوتودیه، در مدلینبنا-کارونت را در هر ۳ تیمار دارای می‌باشد.

در این بخش بررسی مقدار بنا-کارونت را در هر ۳ تیمار دارای می‌باشد. بعد از آن، بر پایه تغییر در پرتابل کشت خونی، مخلوط، و نتایج و لیموترش بیشترین مقدار بنا-کارونت دیده شد. نتایج ها در شدت رنگ و مقدار بازو مادهکاهی و تغییر رنگ در آنها وابسته به دمای کم است (7).

کارونوتودیه، در مدلینبنا-کارونت را در هر ۳ تیمار دارای می‌باشد.

در این بخش بررسی مقدار بنا-کارونت را در هر ۳ تیمار دارای می‌باشد. بعد از آن، بر پایه تغییر در پرتابل کشت خونی، مخلوط، و نتایج و لیموترش بیشترین مقدار بنا-کارونت دیده شد. نتایج ها در شدت رنگ و مقدار بازو مادهکاهی و تغییر رنگ در آنها وابسته به دمای کم است (7).

کارونوتودیه، در مدلینبنا-کارونت را در هر ۳ تیمار دارای می‌باشد.

در این بخش بررسی مقدار بنا-کارونت را در هر ۳ تیمار دارای می‌باشد. بعد از آن، بر پایه تغییر در پرتابل کشت خونی، مخلوط، و نتایج و لیموترش بیشترین مقدار بنا-کارونت دیده شد. نتایج ها در شدت رنگ و مقدار بازو مادهکاهی و تغییر رنگ در آنها وابسته به دمای کم است (7).

کارونوتودیه، در مدلینبنا-کارونت را در هر ۳ تیمار دارای می‌باشد.
<table>
<thead>
<tr>
<th>رنگ</th>
<th>تیمار (°C)</th>
<th>مرحله غلظت با-کاروتین</th>
<th>مرحله بی‌کاروتین</th>
<th>رمکات در مرحله</th>
<th>رمکات در غلظت با-کاروتین</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>0/115±0/014</td>
<td>0/150±0/05</td>
<td>0/150±0/05</td>
<td>0/145±0/014</td>
<td>0/150±0/05</td>
</tr>
<tr>
<td>پرتقال خونی</td>
<td>0/44±0/18</td>
<td>0/24±0/04</td>
<td>0/24±0/04</td>
<td>0/44±0/18</td>
<td>0/24±0/04</td>
</tr>
<tr>
<td>پرتقال محلی</td>
<td>0/177±0/11</td>
<td>0/195±0/04</td>
<td>0/195±0/04</td>
<td>0/177±0/11</td>
<td>0/195±0/04</td>
</tr>
<tr>
<td>لیمو</td>
<td>0/38±0/08</td>
<td>0/30±0/03</td>
<td>0/30±0/03</td>
<td>0/38±0/08</td>
<td>0/30±0/03</td>
</tr>
<tr>
<td>پرتقال والنسیا</td>
<td>0/132±0/03</td>
<td>0/132±0/03</td>
<td>0/132±0/03</td>
<td>0/132±0/03</td>
<td>0/132±0/03</td>
</tr>
</tbody>
</table>

افراشی می‌دهد، چه دقیقاً مرتبط با کیفیت خروکی میوه است. بهطوری که گاهی اوقات در مناطق گرم‌تری نیز آب و هوای مختلف، میوه رنگ مطلوب خود را نوسیه نمی‌دهد (۶). افزایش دیده شده در میزان با-کاروتین با اعمال تیمار سرم‌آزمایی می‌تواند به‌نیت‌نشینی کاسیداتی آن و کاهش آن به‌جریبه رشدگی کامل میوه نیز مانند مرحله قبل از رشدگی در ارقام پرتقال خونی، محلی، والنسیا و نارنگی انسی ناصر درجه سلسیوس روند افزایشی و سپس کاهشی نشان داد. در لیموش، اعمال تیمار سرم‌آزمایی اثری بر مقیض با-کاروتین نداشت. دماهای زمستان و افت سرم رنگ پوست مرکبات را
بیانات-کاروتن در نتیجه حضور بشر ROS مربوط شود. بنابراین،
افزایش یافته-کاروتن در پوست میوه-مرکبات تا صفر درجه
سلسیوس نشان دهنده این است که-کاروتن تا دمای صفر
درجه سلسیوس می تواند به عنوان یک حاصل از سیستم
آنی-اکسیدازی پرای جمع آوری ROS عمل کند.

سنجه فن تام

جدول 3 تغییرات میزان فن تام در پوست میوه پنجم رقم
مرکبات در تیمارهای سرمازدگی (صفر)، صفر-6 و صفر-6 درجه
سلسیوس، در زمان قبل از رسیدگی و رسیدگی کامل را نشان
میدهد. نتایج نشان می دهد که با اعمال تیمار سرمازدگی، میزان
فن تام در زمان قبل از رسیدگی، میوه در ارقام مختلف ابتدا بدور
مربوط به ارقام مختلف در هر تیمار دمایی، بیشترین مقدار
فنل در تیمار صفر، 3-6 درجه سلسیوس و در رقم
لیموئرکت و کمترین مقدار آن در پرتنقل خوینی دیده شد. در
زمان رسیدگی کامل، میزان فنل با اعمال تیمار سرمازدگی در
ارقام انشو، پرتنقل خوینی و مخلل ابتدا افزایش و سپس کاهش
نتیجه داد. در ارقام انشو و لیموئرکت، ابتدا بدور تغییر و
سپس با روند افزایش همرود بود. در مقایسه مقدار فنل مربوط
به ارقام مختلف در هر تیمار دمایی، بیشترین مقدار آن در
ارقام انشو و لیموئرکت افزایش 6-7 درجه
سلسیوس و در ارقام انشو، پرتنقل محلل و خوینی در تیمار
سرمازدگی صفر درجه سلسیوس دیده شد.

در روش استفاده شده برای سنجه فن تام در این
تحقیق، ممکن است بدین گونه ترکیبی را که سیرا
قابلیت اکسیداسیون داشته مانند قندزا و آسکورbusیک است،
غلطی فن تام یافته در مقدار واقعی نشان دهن و این تداخل
 واپسین به نظر می گیرد، این انتخاب (22) فعالیت
آنی-اکسیدازی ترکیبات فنل عمداً مانند ویژگی های احیایی
نیازمند که می تواند نقش مهمی در جذب و خشک کردن
رادیکالهای آزاد داشته باشد (22). متابولیسم فنل پروپانیونید

184
جدول 3. مقایسه غلظت فنول تام در پوست میوه ی نهج رقم مركبات در مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (C)</th>
<th>فنل کل (mg/L) مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>0</td>
<td>86.2 ± 0.4 b</td>
<td>90.4 ± 0.4 c</td>
</tr>
<tr>
<td>2</td>
<td>107.2 ± 0.4 a</td>
<td>110.4 ± 0.4 b</td>
<td></td>
</tr>
</tbody>
</table>

لیمو

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (C)</th>
<th>فنل کل (mg/L) مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>0</td>
<td>56.9 ± 0.4 b</td>
<td>60.4 ± 0.4 c</td>
</tr>
<tr>
<td>2</td>
<td>87.9 ± 0.4 a</td>
<td>91.4 ± 0.4 b</td>
<td></td>
</tr>
</tbody>
</table>

پرتقال خوئی

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (C)</th>
<th>فنل کل (mg/L) مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>0</td>
<td>75.1 ± 0.4 b</td>
<td>78.4 ± 0.4 c</td>
</tr>
<tr>
<td>2</td>
<td>106.1 ± 0.4 a</td>
<td>109.4 ± 0.4 b</td>
<td></td>
</tr>
</tbody>
</table>

پرتقال محلی

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (C)</th>
<th>فنل کل (mg/L) مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>0</td>
<td>49.1 ± 0.4 b</td>
<td>52.4 ± 0.4 c</td>
</tr>
<tr>
<td>2</td>
<td>70.1 ± 0.4 a</td>
<td>73.4 ± 0.4 b</td>
<td></td>
</tr>
</tbody>
</table>

پرتقال والنسیا

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (C)</th>
<th>فنل کل (mg/L) مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>0</td>
<td>97.9 ± 0.4 b</td>
<td>101.4 ± 0.4 c</td>
</tr>
<tr>
<td>2</td>
<td>128.9 ± 0.4 a</td>
<td>132.4 ± 0.4 b</td>
<td></td>
</tr>
</tbody>
</table>

تـرکیبات فنلی و فعالیت آنتی‌اکسیدانی متغیر، ممکن است بر اثر مقادیر فنل زیاد و با ظرفیت آنتی‌اکسیدانی کم فعالیت آنتی‌اکسیدانی کم باشد (124). تغییرات ظرفیت آنتی‌اکسیدانی دیده شده در این تحقیق در مرحله رسیدگی مشابه تغییرات میزان فنل بوده و با اعمال تیمار سرمایی در ارتفاع مختلف، به‌جز

لیموترش. نا صفر درجه سلسیوس افزایش یافته و سپس ناپیدا ماند. فعالیت آنتی‌اکسیدانی و ویژگی جمع آوری رادیکال آزاد، مرتبط با مقادیر ترکیبات فنلی و گروه‌های هیدروکسیل موجود در ساختار شیمیایی آنهاست که به عنوان جمع‌کننده رادیکال آزاد است. مقادیر بیشتر ترکیبات فنلی نام مرتبط با فعالیت

185
جدول ۱: مقایسه ظرفیت آنتی‌اکسیدانی در یوست میوه بین رنگ مرکبات در مرحله رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (°C)</th>
<th>ظرفیت آنتی‌اکسیدانی (‰) مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>کنترل</td>
</tr>
<tr>
<td>۱</td>
<td>۸۷/۲±۰/۰۰۹</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۹۰/۵±۰/۰۰۹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>پرداخت خونی</td>
</tr>
<tr>
<td>۰</td>
<td>۹۲/۳±۰/۰۰۹</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۵/۵±۰/۰۰۹</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۸/۹±۰/۰۰۹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>اتشف</td>
</tr>
<tr>
<td>۱</td>
<td>۸۸/۲±۰/۰۱۰</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۹۵/۱±۰/۰۱۹</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۰/۴±۰/۰۳۶</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۹/۱±۰/۰۹۱</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>پرداخت محلی</td>
</tr>
<tr>
<td>۱</td>
<td>۹۸/۳±۰/۰۳۶</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۹۷/۲±۰/۰۰۸</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۴/۹±۰/۱۷۳</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۳/۹±۰/۰۲۹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>لیمو</td>
</tr>
<tr>
<td>۱</td>
<td>۹۷/۲±۰/۰۱۱</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۹۷/۵±۰/۰۶۴</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۶/۳±۰/۰۲۳</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۵/۴±۰/۰۵۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>پرداخت والنسی</td>
</tr>
<tr>
<td>۱</td>
<td>۸۸/۵±۰/۰۳۷</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۹۸/۷±۰/۰۳۸</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۹۱/۲±۰/۰۱۳</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۹۱/۲±۰/۰۸۸</td>
<td></td>
</tr>
</tbody>
</table>

منابع: های نانوه مانند فیلم‌ها ناسازی و می‌پایند. نانوه، سرعت برشکت به علت نش سرمازدگی به حفاظت آنتی‌اکسیدانی و اثربخشی بین ظرفیت آنتی‌اکسیدانی و تحمیل سرمایی، به جمع آوری رادیکال آزاد نسبت داده می‌شود. اگرچه ظرفیت آنتی‌اکسیدانی تا اندماه مربوط با تحمیل سرمازدگی آنتی‌اکسیدانی باعث است، بی‌طرفی می‌شود، تحمیل سرمایی با ROS افزایش ظرفیت آنتی‌اکسیدانی می‌شود. این یافته توسط نش سرمایی یک سری از آنتی‌اکسیدان‌های محرک مانند پراکسیداسیون لیپید، تجزیه پروتئین‌ها و اسیدهای نوکلئیک در سلول را به راه می‌اندازد. برای تحمیل سرمازدگی در گیاهان.
نتیجه‌گیری
نتش‌های محیطی اصلی ترین عامل محدودمکننده تولیدات گیاهی می‌باشند. مکانیسم‌های مقاومتی مختلفی برای جلوگیری از تشکیل SOD را افزایش دهنده این انتخابات و سپس‌بازیسی از تنش‌های آنزیمی و غیرآنزیمی عامل اصلی در چرای هستند (11). این شواهد نشان می‌دهند که تشکیل‌های محیطی می‌تواند تحمل افزایش‌های ROS سبب‌سازگاری آنزیمی یا غیرآنزیمی افزایش و سپس تشکیل تنش‌های محیطی کافی ناشد و همچنین گیاهان می‌باشد.

متن‌بندی مورد استفاده