بررسی فعالیت آنزیم سوپراکسید دیسموتاز، بتا-کاروتین، فنل کل و ظرفیت آنتیاکسیدانی در پوست میوه بیچ رقم مراکز در تیمار دمای کم

بهروز گلگینی، متصور محمدیان افشار و زینب مریمی

(تاریخ دریافت: 1390/12/14؛ تاریخ پذیرش: 1391/12/16)

چکیده
حسابی میوه مراکز به دمایهای کم و ثابت قرار داشت میوه با این سرد سال، تحقیق بیشتر روتی اثر فیزیولوژی آسیب‌های تنش سرما را ایجاد می‌کند. در این پژوهش، میوه بیچ رقم مراکز شاهل پرتفال خونی سانگینیلا، لیمیوترش مازندرانی، پرتفال بالسیا، نارنگی انتو و پرتفال محلی پس از پرداخت در مراحل قبل از رسیدگی و رسیدگی کامل به دمای 3 صفر، 3 و 6 درجه سلسیوس منفی گردید. از دمای 15 درجه سلسیوس به عنوان شاهد استفاده شد. تغییرات آنزیم فعالیت آنزیم سوپراکسید دیسموتاز (SOD)، بتا-کاروتین و فنل کل پوست میوه در مراحل قبل از رسیدگی و رسیدگی کامل و نیز ظرفیت آنتیاکسیدانی در مرحله رسیدگی میوه مورد ارزیابی قرار گرفت. نتایج نشان داد که برای مراکز انسیم آنزیم (SOD)، بتا-کاروتین و فنل در مرحله رسیدگی کامل به مرحله قبل از رسیدگی و نسبت به مرحله شاهد و تحت تیمار دمای کم، بیشتر است. ظرفیت آنتیاکسیدانی با اعمال تیمار سرمایی در ارتفاع مختلف، به‌جز لیمیوتراش، نا صفر درجه سلسیوس افزایش پایدار و سپس کلی ماند. افزایش آنتیاکسیدانی آنزیمی و غیر آنزیمی در پوست میوه در مرحله رسیدگی کامل نسبت به مرحله قبل از رسیدگی، شاید بایست بر متحمل بودن میوه در این مرحله به سرما باشد.

واژه‌های کلیدی: تنش سرما، تحمیل میوه، رسیدگی میوه

1. مؤسسه تحقیقات مراکز کشاورزی، رامسر
2. گروه زیست‌شناسی دانشگاه علوم دانشگاه گیلان، رشت
bgoleincitrus@yahoo.com

* مسئول مکاتبات، پست الکترونیکی
مقدمه

مرکبات گروه یوزپی از میوه‌ها شامل انواع پرتقال (Citrus reticulata), لیموترش (C. aurantiifolia) و (C. paradisi) هستند. (36) 

گیاهانی که مولکول‌های اکسیژن به‌عنوان گیرنده نهایی الکترون استفاده می‌کنند در نتیجه احیای یون‌ها و انتقال الکترون به سلول (Reactive oxygen species, ROS) به‌وجود می‌آید. (12) 

تولید می‌شود و گونه‌های فعال اکسیژن (ROS) نیز تولید می‌شود (13). به‌طور کلی، در اکسیژن بهبودی‌زا و روغن و فردی‌های در معرض نشان‌گیری می‌باشد. در این موارد، می‌توان امکان نشان‌گیری فعال اکسیداتیو را برای تولید می‌کند و تجویز ROS را به دنبال دارد. (15)

به‌طور کلی، با شناسایی شیعه مقاومت گیاهان نسبت به تنش‌های محسوب‌شده؛ توانایی جمع‌آوری سرمای میلیتری مثل اکسیژن نیاز، حالت امکان‌پذیر است از انتایژی که تاکنون شیاری بررسی می‌شود. (16) 

تولیدی گیاه برای جذب رادیکال‌های اکسیژنی دچار ROS نقص می‌شود. در سیستم دفاعی در پراکنده نعمت و سیستم آنتی اکسیدانی غیرانیزیمی شما آنتی اکسیدانی محول در جری (تلاکروبیون) و لیکوین (محول در آب آسکروپیک و کلورتیون) می‌باشد. سیستم آنتی اکسیدانی آنتی اکسیدانی گروه(36) 

Super oxide dismutase (SOD)، پراکسیداز (CAT) و Peroxidase (POD) (15) 

روپین روندی سیستم اکسیداتیو اپکس (APX) آسکوربیک پراکسیداز (15) 

می‌باشد که در افراش نهایت آنها جهت مقابله با تنش اکسیداژیو، توانای انجایی سلم حفظ می‌شود. (5) 

تشت سرمایی مخاطی است که تولید مراکز اثر گذاشته و به‌طور طبیعی جهان این محصول را تحت تأثیر قرار می‌دهد. 

مطالعه‌های گویانه، هر چند سال یافته‌هایی از کشورها، 

آسپیلیه سنتیکی به‌کارگیری مرکبات وارد می‌کند. در ایران نیز

روی آن اتفاق می‌افتد (2 و 8).

گیاهانی که مولکول‌های اکسیژن به‌عنوان گیرنده نهایی الکترون استفاده می‌کنند در نتیجه احیای یون‌ها و انتقال الکترون به سلول (Reactive oxygen species, ROS) به‌وجود می‌آید. (12) 

تولید می‌شود و گونه‌های فعال اکسیژن (ROS) نیز تولید می‌شود (13). به‌طور کلی، در اکسیژن بهبودی‌زا و روغن و فردی‌های در معرض نشان‌گیری می‌باشد. در این موارد، می‌توان امکان نشان‌گیری فعال اکسیداتیو را برای تولید می‌کند و تجویز ROS را به دنبال دارد. (15)

به‌طور کلی، با شناسایی شیعه مقاومت گیاهان نسبت به تنش‌های محسوب‌شده؛ توانایی جمع‌آوری سرمای میلیتری مثل اکسیژن نیاز، حالت امکان‌پذیر است از انتایژی که تاکنون شیاری بررسی می‌شود. (16) 

تولیدی گیاه برای جذب رادیکال‌های اکسیژنی دچار ROS نقص می‌شود. در سیستم دفاعی در پراکنده نعمت و سیستم آنتی اکسیدانی غیرانیزیمی شما آنتی اکسیدانی محول در جری (تلاکروبیون) و لیکوین (محول در آب آسکروپیک و کلورتیون) می‌باشد. سیستم آنتی اکسیدانی آنتی اکسیدانی گروه(36) 

Super oxide dismutase (SOD)، پراکسیداز (CAT) و Peroxidase (POD) (15) 

روپین روندی سیستم اکسیداتیو اپکس (APX) آسکوربیک پراکسیداز (15) 

می‌باشد که در افراش نهایت آنها جهت مقابله با تنش اکسیداژیو، توانای انجایی سلم حفظ می‌شود. (5) 

تشت سرمایی مخاطی است که تولید مراکز اثر گذاشته و به‌طور طبیعی جهان این محصول را تحت تأثیر قرار می‌دهد. 

مطالعه‌های گویانه، هر چند سال یافته‌هایی از کشورها، آسپیلیه سنتیکی به‌کارگیری مرکبات وارد می‌کند. در ایران نیز
در چند دهه گذشته، به فاصله‌های ۵-۱۰ سال، باعث بالا رفتن مربکتی شده‌اند (۲). در طول دوره زمانی، تغییرات عمده فیبرولوژیک و منابعی در گیاه می‌دهد. رابطه ویژه‌ی میان بروتون‌های تحرک در توزیع میزان نبات یعنی هم‌آیندی میزان تحمیل به سرم را افزایش داد. براساس گزارش موجود، افزایش یک تا دو درجه سلسیوس می‌تواند نتیجه‌ی افزایش تجاری

موجودی خصائص‌های انتقادی وارد به درخواست میوه را از درضایت آینده کاهش خواهد داد (۲). از این‌جای که یکی از مهم‌ترین مکانیسم‌های گیاهان برای افزایش توان مقاومت دمایی افزایش‌های آنتی‌اکسیدان و غیرآنتی‌اکسیدانی می‌باشد و با توجه به حساسیت مربکتی به دمای کم و تقویت فعل برداشت میوه با ایام سرد سال، این پژوهش، سنگین‌رفت، غلیظ‌رفتی آنزیم سوپراکسید دیسموژن (SOD)، میزان دما-کاهن. مؤثر کل و طرفت آنتی‌اکسیدانی در برونت میوه پنج رقم مربکت در

تیمار‌های کاهش افزایش سریع‌رسی شده است.

مواد و روش‌ها

مواد گیاهی و تیمار سرمایگی

برای انجام این پژوهش، آزمایشگاه بصنوت فاکتوریل با دو عامل متغیر شامل پنجم رقم مربکت (پرتقال مخلوط سیاوارز (C. sinensis cv. Local siavaraz) یا (C. unshiu), نواره‌ی کوکیه (C. sinensis cv. Sanguinellol) و لیموش مازندرانی (C. limon cv. Local lemon) فراست و نیک‌تیا کلکسیون این‌ها تحقیقات مربکت کاپیت یا پنج تیمار دما-کاهن در قابل طرح کاملاً معادل در تکرارت (۱۵) میوه برای هم تیمار

در هر تکرار انجام شد. تیمار‌های در دو مرحله شامل قیل
نتایج و بحث

SOD

سنجش فعالیت آنزیم

جدول 1 بیانگر تغییرات مربوط به فعالیت آنزیم SOD

در SOD بافت پیش رنگ ریز مراکز در تیمارهای سرمایه (3، صفر، 3 و 4 درجه سلسیوس)، در زمان قبل از سیدیگژ و ریزیدیگژ کامل است در مرحله قبل از سیدیگژ، پرتفال خونی، لیمیتروس و ویژنیا فعالیت آنزیم را در C تا دانه و بعد از این دامنه، روشن فعالیت آنزیم افزایشی بوده و در دانه مانند مقدار آنزیم مربوط به انویژن. در مرحله سیدیگژ کامل می‌باشد، در ارقام لیمیتروس و ویژنیا تیمارهای سرمایه تأثیر چندانی در میزان فعالیت آنزیم نداشده ولی در سایر ارقام، رابطه معنی‌دار بین دما و مقدار فعالیت آنزیم حاکم می‌باشد. به این صورت که با کاهش دما از حالت کنترل، افزایش فعالیت آنزیم وجود دارد. در ارقام لیموتروس و والنسیا، این امر یافته‌ای به دلیل عاملی مناسب‌تر این آنزیم

و پس از سنتثای‌بوئی محلول رویی جدید شد. برای استخراج از بافر پایین فسفات 50 میلی‌مولار با pH 7 شما SOD می‌باشد. طبق سند SOD می‌باشد. فعالیت SOD جاونیلیپیدس و ریس (9) و از طریق سینتی‌تکنیک در طول موج 540 نانومتر افزایش گردید.

استخراج و سنجش با-کاروئن

به منظور استخراج عصاره بافت میوه جهت سنجش با-کاروئن به روش ناگتاکا و بانامیتانا (19) استفاده شده. به این منظور، 100 گرم از بافت با 6 میلی‌لیتر اسکان-هگوال به دست 4 یک کیپ. بنا به نکات دان نامه در تاریک و ایجاد تب، محلول رویی در طول موج 540 نانومتر، با کاروئن، و اسکدنول گردیده، به‌طور خواندن جذب ترکیب از نامه‌ها و قرار دادن در متانول از 1 غلظت با-کاروئن هر نمونه بر حسب میکروگرم بر میلی لیتر بوده است. آزمایش:

\[
[\beta -


carotene] = -\frac{A_{450} - A_{660}}{260 A_{450}} - \frac{A_{660}}{260 A_{450}} \times 3.5
\]

SOD

سنجش فعالیت آنزیم

سنجش Fetal Tom نام

سنجش مقدار فعالیت بافت باستفاده از روش مکاتون و همکاران

البتا کاروتین که تا زمان یافته‌های از خلال فولیو-سیکولکو و استاندارد کالیک اسکن است. برای انجام این کار ابتدا 15 گرم از بافت پیش از Fetal Tom با 5 میلی لیتر محلول متانول/۵ میکروگرم سنجش فعالیت SOD در SOD با 6 میکروگرم عصاره استخراج شده به 250 میکروگرم ۰.۱ میکروگرم حلال فولین به نسبت 1 یک حلال آب دیتانول و حلال دیتانول و 1000 میکروگرم کرتن سدیم/۷/۰ در غیاب نور اضافه شده. نمونه‌ها به‌طور دقت سنتثای‌بوئی شدند. جذب نامه‌ها در طول موج 540 نانومتر خوانده شد. جهت به‌دست آوردن غلظت ۵ نانومتر استفاده کرده است. ایجاد ۱۸۰
جدول ۱. مقایسه فعالیت آنزیم SOD در پوست میوه پنگ رقم مرحله قبل و بعد از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (۰°C)</th>
<th>مرحله قبل از رسیدگی (U/g FW)</th>
<th>مرحله رسیدگی کامل (U/g FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>۰</td>
<td>۶۷۸۸۸/۶۳ ± ۷۴۵۶/۵۴</td>
<td>۷۸۹۴۰/۵۲ ± ۳۵۴۴/۱۶</td>
</tr>
<tr>
<td></td>
<td>۳</td>
<td>۸۳۷۷۷/۱۵ ± ۴۶۷۷۴/۸۵</td>
<td>۹۶۸۹/۵۲ ± ۳۳۱۲/۳۵</td>
</tr>
<tr>
<td>پرتابل خوئی</td>
<td>۰</td>
<td>۷۸۸۸۸/۶۳ ± ۷۳۷۷۴/۸۵</td>
<td>۸۸۸۸۸/۶۳ ± ۷۴۴۴/۵۲</td>
</tr>
<tr>
<td></td>
<td>۳</td>
<td>۶۶۶۶۶/۱۸ ± ۴۹۹۵/۹۶</td>
<td>۷۸۷۸۸/۱۹ ± ۴۹۹۵/۹۶</td>
</tr>
<tr>
<td></td>
<td>۵</td>
<td>۹۴۴۴۴/۵۲ ± ۴۴۴۴۴/۵۲</td>
<td>۸۴۴۴۴/۳۴ ± ۴۴۴۴۴/۵۲</td>
</tr>
<tr>
<td>اشنو</td>
<td>۰</td>
<td>۸۸۸۸۸/۶۳ ± ۷۴۵۶/۵۴</td>
<td>۹۸۸۸۸/۵۲ ± ۷۴۴۴/۵۲</td>
</tr>
<tr>
<td></td>
<td>۳</td>
<td>۶۶۶۶۶/۱۸ ± ۴۹۹۵/۹۶</td>
<td>۷۸۷۸۸/۱۹ ± ۴۹۹۵/۹۶</td>
</tr>
<tr>
<td>پرتابل محلی</td>
<td>۰</td>
<td>۵۵۴۵۴/۱۵ ± ۴۵۴۵۴/۱۵</td>
<td>۴۵۴۵۴/۱۵ ± ۴۵۴۵۴/۱۵</td>
</tr>
<tr>
<td></td>
<td>۳</td>
<td>۶۶۶۶۶/۱۸ ± ۴۹۹۵/۹۶</td>
<td>۷۸۷۸۸/۱۹ ± ۴۹۹۵/۹۶</td>
</tr>
<tr>
<td>لیمو</td>
<td>۰</td>
<td>۱۰۱۰۱۰/۸۵ ± ۱۸۱۸۱/۸۵</td>
<td>۱۰۱۰۱۰/۸۵ ± ۱۸۱۸۱/۸۵</td>
</tr>
<tr>
<td></td>
<td>۳</td>
<td>۶۶۶۶۶/۱۸ ± ۴۹۹۵/۹۶</td>
<td>۷۸۷۸۸/۱۹ ± ۴۹۹۵/۹۶</td>
</tr>
<tr>
<td>پرتابل وانسیا</td>
<td>۰</td>
<td>۹۵۸۵۸/۱۵ ± ۱۸۵۸/۱۵</td>
<td>۹۵۸۵۸/۱۵ ± ۱۸۵۸/۱۵</td>
</tr>
<tr>
<td></td>
<td>۳</td>
<td>۶۶۶۶۶/۱۸ ± ۴۹۹۵/۹۶</td>
<td>۷۸۷۸۸/۱۹ ± ۴۹۹۵/۹۶</td>
</tr>
<tr>
<td></td>
<td>۵</td>
<td>۷۸۷۸۸/۱۹ ± ۴۹۹۵/۹۶</td>
<td>۷۸۷۸۸/۱۹ ± ۴۹۹۵/۹۶</td>
</tr>
</tbody>
</table>

سند: فعالیت آنزیم سوپرکاسید دیسموناز در پودر پوست میوه پنگ رقم مرحله قبل و بعد از رسیدگی و رسیدگی کامل.
سنجش بنا- کاروتین

تغییرات میزان بنا- کاروتین در پوست میوه پنج رمک‌های در تیمارهای سرمایی (۳۳) در میزان کاهش در ۱۸ فعالیت بیشتر آنزیم سادات سیالیک‌آکسیدری بود (۲۳). زمان کاهش در رنگ و رنگ سرمه‌ای کامل مورد بررسی قرار گرفت (جدول ۲). فعالیت بنا- کاروتین در اعمال تیمار سرمایی در زمان عرضه و سپس کاهش نشان داد. مقدار فعالیت بنا- کاروتین در انتهای بررسی قرار داده شد و پنج رمک و پنج رمک اصلی کاهش می‌کرد. کاهش بیشترین مقدار بنا- کاروتین را در برگ اصلی می‌پدیدا. بعد از آن، برتری در ارتفاع برگ خونی، محلی، و لیموترش بیشترین مقدار بنا- کاروتین دیده شد. نتایج مشابه در مدخل پیش‌بینی (۶) عامل اصلی آنزیم SOD که رادیکال‌های خطرناک سیالیک‌آکسیدری و پراکسید به هدف و هدف هدف در تمام ارتفاع در مرحله ریسیدگی کامل نسبت به SOD آنزیم مقدار بود (۲۵). سایر در تیمارهای تحت تیمار کنترل و تیمار آنزنیم مقدار بیشتری بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به سرما و آبی‌خاکی در اثر SOD آنزنیم مقدار بوده و توانست به SOD آنزنیم مقدار بوده و توانست به SOD آنزنیم مقدار BOD, بناش.
جدول ۲ مقایسه غلظت پنا-کاروتین در پوست میوه پنج رقم مرکبات در مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (°C)</th>
<th>غلظت پنا-کاروتین (μg/ml)</th>
<th>مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ارایش می‌دهد، که دقیقاً مربوط با کیفیت خوراکی میوه است. به طوری که گاهی اوقات در مناطق گرمسیری با آب و هوای مختلف، میوه رنگ مطلب خود را توسه نمی‌دهد (۶). اگرایش دیده شده در میزان پنا-کاروتین با اعمال تیمار سرمایی می‌تواند به نفع آنتی-کسیدانی آن و کاهش آن به تجربه رسیدگی کامل میوه واکنش مانند مرحله قبل از رسیدگی در ارقام پرتقال خوئی، مخلوط، و نارنگی نشان دهنده سلسیوس روند افزایشی و سپس کاهش نشان داد. در لیموتروش، اعمال تیمار سرمایی اثری بر مقیاس پنا-کاروتین نداشت. دماهای زمستان و افت سرمایه رنگ پوست مرکبات را
سنحش فنل نام

جدول ۳ تغییرات میزان فنل نام در پوست میوه پنیر رقم میوه مرکبات در تیمارهای سرمازده (۳) صفر، ۳-۰ و ۶-۰ درجه سلسیوس) از زمان قابل دیدن را تیمار سرمازده می‌دهد. نتایجاقی نشان می‌دهد که با اعمال تیمار سرمازده، میزان فنل در زمان قابل دیدن میوه، در ارقام مختلف ابتدا بدون مربوط به ارقام مختلف در هر تیمار دمایی بیشترین مقدار فنل در تیمار صفر، ۳-۰ و ۶-۰ درجه سلسیوس و در رقم لیموتروش و کمترین مقدار آن در پرتقال خونی دیده شد. در زمان رسیدگی کامال، میزان فنل با اعمال تیمار سرمازده در ارقام انشو، پرتقال خونی و محلی ابتدا افزایش و سپس کاهش نشان داد. از ارقام ونسیا و لیموتروش ابتدا بدون تغییر و سپس با روند افزایشی همرسم. در مقایسه مقدار فنل مربوط به ارقام مختلف از هر تیمار دمایی، بیشترین مقدار آن در ارقام ونسیا و لیموتروش در تیمار سرمازده ۶-۰ درجه سلسیوس و در ارقام انشو، پرتقال محلی و خونی در تیمار سرمازده صفر درجه سلسیوس دیده شد.

در روش استفاده شده برای سنحش فنل نام در این تحقیق، ممکن است برخی اثرات ترکیباتی که اسپید در داده‌های مربوط به ارقام مختلف در هر تیمار دمایی، بیشترین فعالیت آناتی اکسیدانی در تیمار سرمازده صفر درجه سلسیوس در ارقام انشو، پرتقال خونی و محلی دیده شد.

فعالیت آناتی اکسیدانی بیشتر در فنل میوه پنیر مربوط به ارقام مختلف در هر تیمار دمایی، بیشترین فعالیت آناتی اکسیدانی در تیمار سرمازده صفر درجه سلسیوس در ارقام انشو، پرتقال خونی و محلی دیده شد.

فعالیت آناتی اکسیدانی یک ترکیب می‌تواند از طریق مانع‌کننده از تشکیل رادیکال یا از طریق جریان آوری آنها در یک سیستم تولیدکننده رادیکال تعیین شود (۳۳). تیمار سرمازده باعث تجمع ترکیبات فنل و به‌طور مشابه افراشی در فعالیت آناتی اکسیدانی می‌شود. با این وجود، به‌دلیل تفاوت با ساختار شیمیایی
جدول 3 مقایسه غلظت فنول تام در پوست میوه پنج رقم مركبات در مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (°C)</th>
<th>مرحله رسیدگی کامل</th>
<th>مرحله قبل از رسیدگی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20/8±4/20 a</td>
<td>162/7±5/14/40 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30/4±5 a</td>
<td>187/5±6/30 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53±4.1 a</td>
<td>197/4±5/0 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90/5±0.3 a</td>
<td>209±3±6 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84/5±4.1 a</td>
<td>176±4±7/40 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87±4.5±4/20 a</td>
<td>129±5±7/30 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>138±2±13 a</td>
<td>236±2±8/5 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>135/0±5/7 a</td>
<td>225/0±4,9 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130/5±0/1 a</td>
<td>228/5±8/0 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>118/5±1/3 a</td>
<td>172±2±1/0 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75±5 a</td>
<td>89/5±15/4 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80/5±6 a</td>
<td>91/5±0/8 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94/6±0/7 a</td>
<td>111±3±7/4 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>118/5±4 a</td>
<td>110±5/18/4 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>117/5±0/1 a</td>
<td>113±6±1/0 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105/0±1/8 a</td>
<td>111±2±0/4 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55/9±0/1 a</td>
<td>135/4±12/8 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>181/9±2±7/6 a</td>
<td>173±8±12/2 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>182/5±2±1/0 a</td>
<td>223±9±12 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85/4±0/1 a</td>
<td>198±8±15/0 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80±5±0/4 a</td>
<td>181±3±7/4 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91±0±4 a</td>
<td>180±6±9/4 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123±0±3±3 a</td>
<td>29±8±17/5 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>159/4±1±2 a</td>
<td>21±0±4 a</td>
</tr>
</tbody>
</table>

لیموترش، تا صفر داره سلسله افراشی پاکت و سپس ناست مانند. فعالیت آنتی اکسیدانی و ویژگی جمعیت آوری رادیکال آزاد، مرطوب با مقادیر ترکیبات فنلی و روابط های هیدروکسیل موجود در ساختار شیمیایی آنهالست هک به عنوان جمع کندن رادیکال آزاد است. مقادیر بیشتر ترکیبات فنلی تام مربوط با فعالیت ترکیبات فنلی و فعالیت آنتی اکسیدانی متفاوت، ممکن است با وجود مقدار فنل زیاد و روش انتی اکسیدانی گرم، فعالیت آنتی اکسیدانی کم باشد (14). تغییرات فرآیند آنتی اکسیدانی دیده شده در این تحقیق در مرحله رسیدگی مشابه تغییرات میزان فنل و به وسیله اعمال تیمار سرمایی در ارقام مختلف، به‌جز
جدول 4 مقایسه ظرفیت آنتی‌اکسیدانی در پوست میوه پنیر مرحله رسمی‌گی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (C)</th>
<th>آنتی‌اکسیدانی (I)</th>
<th>مرحله رسمی‌گی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>84/2±/0.26</td>
<td>82/2±/0.22</td>
<td>80/2±/0.26</td>
</tr>
<tr>
<td>پرتقال خوی</td>
<td>0</td>
<td>96/9±/0.09</td>
<td>96/9±/0.09</td>
</tr>
<tr>
<td>عش</td>
<td>0</td>
<td>97/9±/0.19</td>
<td>97/9±/0.19</td>
</tr>
<tr>
<td>پرتقال محلی</td>
<td>0</td>
<td>98/7±/0.24</td>
<td>98/7±/0.24</td>
</tr>
<tr>
<td>لیمو</td>
<td>0</td>
<td>97/2±/0.11</td>
<td>97/2±/0.11</td>
</tr>
<tr>
<td>پرتقال والنسیا</td>
<td>0</td>
<td>82/6±/0.37</td>
<td>82/6±/0.37</td>
</tr>
</tbody>
</table>

آنتی‌اکسیدانی بیشتر است، به‌طور مشابه، تحمیل سرمایی با افزایش ظرفیت آنتی‌اکسیدانی الق می‌شود. افزایش تیمار تولید توسط نش سرمایی یک سری از فرآیند‌های محرک مانند پراکسیداسیون لیپید، تجزیه پروتئین‌ها و اسیدهای نوکلئیک در سلول را به راه می‌اندازد. برای تحمیل سرموزاژی در گیاهان.
کمتری نسبت به گونه‌های حساس به سرم رشد بیشتری نشان می‌دهد. (13). در این پژوهش، انرژی مصرفی سدیم‌های آنزیمی SOD در نتیجه بیشتر بود در سرما در طول دوره سرم، آنتیکسیدان‌هایی بیشتری و بالاتری.

ROS

تبار کاروتن و فلژ در پوست میوه در مرحله رسیدگی کامل نسبت به مرحله قبل از رسیدگی می‌تواند نیلی بیر متحمل بودن میوه در این مرحله به سرما باشد. تبار کاروتن و فلژ در پوست میوه در مرحله اولیه رسیدگی کامل، سیستم‌های آنزیمی و غیرآنزیمی جمع‌آوری رادیکال‌های آزاد، کارآمدتر هستند. از این رو می‌توان این آمار اساس سرم‌مایی در پوست میوه رسیدگی کامل ظاهر نشود. اما در مرحله قبل از رسیدگی میوه، اینثرها دیده شود. به همین دلیل، در معنی یک نمونه به عنوان بیو تقویت یا حساس به سرما، علاوه بر مهم‌ترین فصل برداشت، بیان بهبود زمان مصادف شدن با دمای کم، میزان فعالیت آنتیکسیدان‌های آنزیمی و غیرآنزیمی در پوست میوه مركبات نیز مهم می‌باشد.

نتایج

نتش‌های محیطی اصلی ترین عامل محدودکننده تولیدات گیاهی می‌باشد. میکائسیم‌های مقاومتی مختلفی تهیه غیره تغییرات فیتوپژیک و بیوشیمیایی مرتبط با آسپرمایی بیشتر شده است. (۱۱) شواهد زیادی وجود دارد که نشان‌دهنده این است که آنتیکسیدان‌های آنزیمی و غیرآنزیمی عامل اصلی در جلوگیری از نشان‌کردن آنتیکسیدان در گیاهان هستند. (۱۱) این شواهد نشان می‌دهند که نشش‌های محیطی می‌توانند تحریک سیستم‌های آنزیمی گیاهی را افزایش دهند و این افزایش حفاظت در یا را فرآور می‌آورد. ولی به نظر می‌رسد میکائسیم‌های آنتیکسیدان‌های برای حفاظت گیاهان در برابر نشش‌های محیطی کافی نباشند و همچنین گیاهان مقاوم به

منابع مورد استفاده


