بررسی فعالیت آنزیم سوپراکسید دیسموتاز، بتا-کاروتین، فنل کل و ظرفیت آنتی اسیدانی در پوست میوه پنج رقم مرکبات در تیمار دمای کم

بهروز گلیمین ۴، منصور مصباحیان افشار ۴ و زینب مبری ۲

(تاریخ دریافت: ۱۲/۱۲/۱۳۹۰ / تاریخ پذیرش: ۱۶/۱۲/۱۳۹۱)

چکیده
حساب میوه مرکبات به دماهای کم و بالا فصل برداشت میوه با ایام سرد سال، تحقیق پیشتر روبو اثر فیزیولوژی آسیب‌های ناشی از سرمایه در حیاتی میوه را انجام می‌کند. در این پژوهش، میوه پنج رقم مرکبات شامل پرتمال‌های سنگینالیا، لیموترش مازندرانی، پرتمال والبالیا، نارنگی انسو و پرتمال محلی پس از برداشت در مرحله قبل از رسیدگی و رسیدگی کامل به دما ۳ صفر، ۰ و ۶ درجه سلسیوس لیمیتدید. از دمای ۱۵ درجه سلسیوس به عنوان شاهد استفاده شد. تغییرات میزان فعالیت آنزیم سوپراکسید دیسموتاز (SOD)، بتا-کاروتین و فنل کل پوست میوه در مرحله قبل از رسیدگی و رسیدگی کامل و نیز ظرفیت آنتی اسیدانی در مرحله رسیدگی میوه ارزیابی شد. نتایج نشان داد که میزان فعالیت آنزیم SOD، بتا-کاروتین و فنل در مرحله رسیدگی کامل به مرحله قبل از رسیدگی، در نمونه‌های شاهد و تحت تیمار دمای کم، بیشتر است. ظرفیت آنتی اسیدانی با اعمال تیمار سرمای‌های در ارتفاع مختلف، به‌جز لیموترش، نا صفر درجه سلسیوس افزایش یافت و محسوس نماد افزایش ظرفیت آنتی اسیدانی در پوست میوه در مرحله رسیدگی کامل نسبت به مرحله قبل از رسیدگی، شاید دلیل بر تحمل بودن میوه در این مرحله به سرمای باشد.

واژه‌های کلیدی: ناشی از سرمایه، تحمل میوه، رسیدگی میوه

1. مؤسسه تحقیقات مکزیک پنج، رامسر
2. گروه زیست‌شناسی، دانشگاه علوم دانشگاه گیلان، رشت
bgoleincitrus@yahoo.com

* مسئول مکاتبات: پشت الکترونیکی: ***
مقدمه

گیاهان از مولکول اکسیژن بهعنوان گیاهان نهایی الکترون استفاده می‌کنند در تئیه احیای به دست اتساخالی خیلی فعال
(Rosy oxygen species, ROS) و گونه‌های فعال اکسیژن (Reactive oxygen species, ROS)
نیز تولید می‌شود (12). که شکل‌های ویژه از اکسیژن
انتخابی شما: رادیکال‌های سوپراکسید، پروکسید بی‌سدور و
هیدروکسیلیمیت که می‌باشد که می‌تواند اکسیداسیون نیتروژنی در سیال
مثل نفس فتوسنتز و فسفریلاسیون اکسیداسیون تولید می‌شوند;
اما غلظت آنها در طول پری‌زیا به خیلی حساس به
حملات میکروگانیسم‌ها، گایکاری و قرار گرفتن گیاهان در
معرض نشته‌های غیربیولوژیک تغییر می‌یابد. در همان‌کن
کماکسیمیون را بر گیاه تحمیل می‌کند و تجمع ROS
را به دنبال دارد (15).

به منظور تعیین مقاومت گیاهان نسبت به نشته‌های محیطی,
توانایی جمع آوری ارترال مواد سمی مثل اکسید انیجسیون، حادت
امیت است. از انجایی که تحت شرایط نشته مانند دمای کم.
توانایی طبیعی گیاه برای حذف رادیکال‌های اکسیداسیون دچار
 jc می‌شود. دو سیستم دفاعی در برابر تجمع و سیال
یافته‌های سلیسیوس است. در داروهای بار، افراشی دما
اسکناسی در جمع آوری ارترال مواد سمی، گیاه و
گل‌دهی می‌شود. در میان ارتما و گونه‌های مختلف مکات
از تحمل مقاومت به نشته دما کم تفاوت‌های وجود دارد،
و در یک رسم اندازه‌های مختلف مثل گل، میوه،
برگ و ساقه دارای مقاومت‌های مختلفی هستند. به طوری که
حد آسانی دما به برنج برای گیر کل 44 درجه C برای میوه و
برگ 25-4 درجه C برای باریک سالن 45-4 درجه C سلیسیوس
گزارش شده که این دمای می‌تواند به نوپا زنیت، سن و
اندام گیاهی تحت نشته، می‌تواند است. موفقیت که دمای هوا
به آرامی ساخت از 24 درجه سلسیوس کمتر شود،
میوه‌های خشک نورده‌گری می‌گردند. میوه‌های سرمازده در
پیشتر افراشته نشته‌های ظاهری روی پوست از خود نشان
بررسی فعالیت آنزیم سوپراکسید دیسنترونز، بی-کاروتین، قیل و ...

از رشدگی و رسیدگی کامل میوه براساس استاندارد رسیدگی
مرکبات به صورت دو آزمایش محوری انجم مصرف به میوه SOD، میزان با-کاروتین، قیل و
ظرفیت آنتی اسکیدانی در پوست اندازه گیری شد.
برداشت اول پرتوال و نسیم در اواخر آذر و بار ارتفاع دیگر
در آبان ماه بود. استاندارد رسیدگی محوری پذیرفته شد. از
نسبت ماده جامد کل با استفاده قابلیت نیش (TSS/TA) (1/2 تا
0/1 برای ارتفاع تارنگی و پرتوال)، حداقل درصد آب میوه
(معمولاً برای 10 گرم و لمونه) و حداقل رنگ قابل قبول (برای
همه ارتفاعات) می‌باشد (2). تغییر رنگ میوه از سبز به زرد و به
نارنجی مایل به قرمز به عنوان میزان رسیدگی میوه
(برداشت دوم) در نظر گرفته شد. که هنگام زمان باری پرتوال
والنیسی ماه خرداد و برای نمونه‌های طبیعی آذر ماه بود.

به منظور انجم تیمار سرما، همه میوه‌ها، به‌جز نمونه‌های
کنترل (0-10)، به دستگاه انچوپان برای سرما به منقل
شده. بررسی‌های انجم شده در از این محقق در تیمارهای دمای
3، 6، 9 و 12 درجه سلسوس بود. میوه نمونه‌ها به‌طور
در طول مدت 24 ساعت به داخل سطح مایل به قرمز می‌رسید
و حداکثر 10 ساعت در این دما به‌نقره‌ای ورودی شده و در
نیش (TSS/TA) (1/2 تا 0/1 برای ارتفاع تارنگی و پرتوال)
می‌باشد. برای اعمال سایر
تیمارهای دمای، عبور از هر دما به دیگر کریتری دو ساعت و
مانگدازی که در هر دما به مدت 10 ساعت انجم شد. به‌طور
دیگر، نمونه‌برداری در دما بلافاصله بعد از نمونه‌برداری در دما
ب بود. میوه در دما درجه سلسوس صورت گرفت.
بعد از تیمار سرما، پوست میوه‌ها جداسازی شد و با‌الکل
با استفاده از تیتر بیان ماده فراری شده و تا زمان استرجاع در
فاز 40-80 درجه سلسوس نگهداری شدند.

خلاصه و نتیجه

به منظور استخراج عصاره سلولی جهت سنجش آنزیمی، 5/0 کروم
از پوست میوه هر قسم با تیتر بیان ماده به خوابی پودر شد. با
توجه به نوع آنزیم مورد مطالعه، با استخراج آنزیمی نهی شد.
ویک میلی لیتر از الکل مورد نظر را به عصاره تهیه شده اضافه کرد.

مود و روشهای

مواد گیاهی و تیمار سرمایی

برای انجام تیمار، از میوه‌های خوارزی، کنترل (0-10)، به‌جز
نمونه‌های کنترل (0-10) انتخاب شد. به روز اسکپر میوه به دست
و عامل متغیر شامل پنجره میوه در تیمار مطلوب سیاورز
(Prunus domestica) (SOD)، میزان با-کاروتین و قیل و
ظرفیت آنتی اسکیدانی در پوست میوه پنج رقم مركبات در
تیمارهای دمای 3، 6، 9 و 12 درجه سلسوس برسی
شد. است.

C. sinensis cv. Local siavaraz)
(C. unshiu)
(C. sinensis cv. Sanguinello)
(C. limon cv. Local lemon)
(C. sinensis cv. Frost Valencia)
(C. limon cv. Local lemon)
C. limon cv. Local lemon)
C. sinensis cv. Frost Valencia)
تعیین ظرفیت آنتی اکسیدانی

برای سنگش میزان جرم آوری رادیکال آزاد و تعیین ظرفیت آنتی اکسیدانی از سنگش DPPH (10-2 میلی مولار از سنگش DPPH در فلز پیکرل هیدرازیل) به کار رفته توسط پلوی (2) استفاده شد. برای این منظور، 200 میکرولیتر عصاره منالول با 500 میکرولیتر محلول pH 6.8 مولار در منالول مخلوط شد. سپس جذب کنترل و نمونه در طول موج 517 نانومتر خوانده شد. نتایج مورد در مورد جذب هر کدام در فرمول 2 درصد جمع آوری رادیکال آزاد به دست آمد:

DPPH

A control – A sample×100 / A control

مطالعات آماری

SPSS

تجزیه‌های آماری مربوط به استفاده از آزمون دانکر درصد در مورد فرمت و نمودارهای مربوط به تغییرات در برنامه رسمی شد.

Excel 2007

نتایج و بحث

SOD

سنگش فعالیت آزمیم

جدول 1 بین‌النگ تغییرات مربوط به فعالیت آزمیم

سنسیتارفیوز محلول رویی جدید شد. برای استخراج SOD با پایان پسماند 50 میلی‌مولار با 5 میلی‌مولار استفاده شد. فعالیت SOD 76/93 % از طریق استرکتیفیکتوری در طول موج 500 نانومتر اندازه‌گیری شد.

استخراج و سنگش-بیا-کاروتین

به منظور استخراج عصاره‌ها بافت میوه جهت سنگش-بیا-کاروتین به روش نگانکا و بافت میوه هگوان (19) استفاده شد. به این منظور، 1/20 میلی‌لیتر استحکام هگوان به نسبت 4 ترکیب شد. با تکان دادن نمونه در تاریک و ایجاد دو فاز، دامنه نمونه در طول موج 450, 500, 550 و 600 هر ترکیب مربوط به رنگ‌هایها سنگش-بیا-کاروتین، لیکوئید کاروئفیل A و کاروئفیل B خوانده شد. با خواندن جذب هر کدام از نمونه‌ها و قرار دادن در معادله 1، غلظت یا سنگش-بیا-کاروتین هر نمونه بر حسب میکروگرم بر میلی‌لیتر به دست گرفته شد:

 senegrafet = 1.206 A550 – 1.220 A500

[1] سنگش فن تام

سنگش مقدار فن تام با استفاده از روش مکدوگان و همکاران (17) انجام شد که تایید این استفاده از خلال فولین-سیکالوژو و استاندارد کالکسیم است. برای انجام این کار ابتدا 1/250 گرم از بافت پودر شده پوست میوه با 5 میلی‌لیتر منالول در مخلوط کرایک و پس از سانتی‌فیوز محلول رویی جدید شد.

سنسیتارفیوز عصاره استخراج شده با 150 میکرولیتر

سنسیتارفیوز محلول رویی جدید شده با 150 میکرولیتر حلال فولین به نسبت 10 به 1 (پهلو حلال انتی‌دیویژن و خالا فلز) و 1000 میکرولیتر رنکین سدیم/5 در غیاب نور اضافه شد. نمونه‌ها به مدت 10 دقیقه سانتی‌فیوز شدند. جذب نمونه‌ها در طول موج 750 نانومتر خوانده شد. نتایج به دست آورده عاطفه فن تام نمونه از منحنی استاندارد کالکسیم اسید استفاده شد.

180
جدول 1. مقایسه فعالیت آنزیم SOD در پوست بیوه پنجم در مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>فعالیت (U/g FW)</th>
<th>مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>پرتقال خوشه</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>انسو</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>پرتقال محلی</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>لیمو</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>پرتقال والنسیا</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>86722/0/2 ± 2043/3</td>
<td>86722/0/2 ± 2043/3</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from jcpp.iut.ac.ir at 11:35 IRST on Sunday January 12th 2020
جامع آوری: رادیکال‌های سوپرکسید نسبتاً در تیمارهای دمایی و همچنین دمای کنترل باشند. با مقایسه بین ارقام در مرحله
ریسیدگی کامل، بیشترین میزان فعالیت آنزیم در دمای
کنترل و سایر تیمارهای دمایی انجام شده، در لیموتروش دیده
شد. پرنگ فالوتین در این مرحله از پرادانت، بیشترین میزان
فعالیت آنزیم را در تیمار 3 دارای دمای 0 درجه سانتی‌گراد داشت. کاهش
فعالیت دیده شد و این روند کاهشی تا دمای 3 درجه سانتی‌گراد ادامه داشت.
اما در دمای 4 درجه سانتی‌گراد، میزان فعالیت آنزیم SOD به مقدار اولیه
خود، عینی در حالت کنترل بر می‌گردد. این مشاهده احتمالاً
به دلیل سازگاری این روش بعد از یک دوره سرمایه‌افزار
می‌باشد. در پوست میزان اینش در مرحله ریسیدگی کامل، بین
3 درجه سانتی‌گراد انتخابات SOD فعالیت آنزیم در نمونه کنترل و تیمار
معنی‌داری وجود داشت و روند افزایشی تا صفر درجeh دیده
شد. این به‌ویژه بعد از 24 ساعت سرمایه‌میزان SOD فعالیت آنزیمی به
پالاتین مقدار خود رسید و در سایر تیمارهای دمایی (زیر صفر
درجه سانتی‌گراد) کاهش فعالیت در حد نمونه‌های کنترل دیده
شد. اولین محل پذیرش سرما و به دنبال آن اسپیک سرما،
پوست میوه‌ها است. در نتیجه، باز بودن میزان فعالیت آنزیم‌های
انشی‌کسیدانی، به‌ویژه SOD در این بخش حالت آرام‌شده
می‌باشد. کاهش نقاط گرم‌سیری و نیمه گرم‌سیری اغلب
حسس به سرما هستند و از سپیک‌سیری (نها یگ زدگی)
ساحش به سرما هستند و از سپیک‌سیری (نها یگ زدگی)
در دمای 15 درجه سانتی‌گراد به دست می‌بیند (8). عامل‌کننده آنزیم
SOD که رادیکال‌های خط‌شکن سوپرکسید و پراکسید
هیدروژن را در این مرحله کنترل، بیماری رخ‌آمیزی بوده و
توانست به‌ویژه در تیمارهای نمونه زیادتر از بقیه سلول در دوره‌های
سرما، مهم است (22). تنش سرما و توان توانا به تولید
سوم و سپیک‌سیری دفع عایه با بیشتر
نتایج این پژوهش نشان می‌دهد که بطورکلی میزان فعالیت
آنژیم SOD در تمام ارقام در مرحله ریسیدگی کامل نسبت به
مرحله قبل از ریسیدگی در نمونه‌های تحت تیمار کنترل و تیمار
سرما، بیشتر بود که به‌ویژه در آن‌ها که افزایش SOD
در اولین خط دفاعی در برابر آسیب‌های ناشی از تولید
ROS می‌باشد.
جدول 2 مقایسه گل‌ننگ‌بان-کاروتین در پوست مو همراه با تعداد مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (°C)</th>
<th>گل‌ننگ‌بان - کاروتین (µg/ml) مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/115±0/0/12</td>
<td>0/154±0/0/0/5</td>
<td>0/154±0/0/0/5</td>
</tr>
<tr>
<td>1</td>
<td>0/14±0/0/0/18</td>
<td>0/205±0/0/0/7</td>
<td>0/205±0/0/0/7</td>
</tr>
<tr>
<td>1</td>
<td>0/24±0/0/0/11</td>
<td>0/26±0/0/0/16</td>
<td>0/26±0/0/0/16</td>
</tr>
<tr>
<td>1</td>
<td>0/11±0/0/0/11</td>
<td>0/19±0/0/0/3</td>
<td>0/19±0/0/0/3</td>
</tr>
<tr>
<td>1</td>
<td>0/18±0/0/0/12</td>
<td>0/17±0/0/0/2</td>
<td>0/17±0/0/0/2</td>
</tr>
<tr>
<td>0</td>
<td>0/14±0/0/0/2</td>
<td>0/27±0/0/0/4</td>
<td>0/27±0/0/0/4</td>
</tr>
<tr>
<td>0</td>
<td>0/2±0/0/0/2</td>
<td>0/35±0/0/0/7</td>
<td>0/35±0/0/0/7</td>
</tr>
<tr>
<td>0</td>
<td>0/38±0/0/0/8</td>
<td>0/50±0/0/0/3</td>
<td>0/50±0/0/0/3</td>
</tr>
<tr>
<td>0</td>
<td>0/17±0/0/0/3</td>
<td>0/26±0/0/0/2</td>
<td>0/26±0/0/0/2</td>
</tr>
<tr>
<td>0</td>
<td>0/1±0/0/0/1</td>
<td>0/27±0/0/0/2</td>
<td>0/27±0/0/0/2</td>
</tr>
<tr>
<td>0</td>
<td>0/1±0/0/0/1</td>
<td>0/27±0/0/0/2</td>
<td>0/27±0/0/0/2</td>
</tr>
<tr>
<td>0</td>
<td>0/13±0/0/0/2</td>
<td>0/32±0/0/0/4</td>
<td>0/32±0/0/0/4</td>
</tr>
<tr>
<td>0</td>
<td>0/3±0/0/0/2</td>
<td>0/42±0/0/0/5</td>
<td>0/42±0/0/0/5</td>
</tr>
<tr>
<td>0</td>
<td>0/5±0/0/0/1</td>
<td>0/54±0/0/0/3</td>
<td>0/54±0/0/0/3</td>
</tr>
</tbody>
</table>

افراشی می‌دهد، که دقیقاً مربوط با کشف خواص میوه است. به طوری که گاهی اوقات در مناطق گرم‌تری با آب‌ و هوای مختلف، میوه رنگ مطلوب خود را نوسه نمی‌دهد (6). افراشی دیده شده در میزان بینا-کاروتین با اعمال تیمار سرما می‌تواند به نقش آنتی‌اکسیدان آن و کاهش آن به تجزیه رسیدگی کامل میوه نسبت مانده مرحله قبلاً از رسیدگی در ارتفاع پرتغال خوکی محیط، ونسیا و نارگی انسان تا سفر درجه سلیسیوس روند افراشی و سپس کاهش نشان داد. در لیموترش، اعمال تیمار سرما می‌تواند به افزایش بینا-کاروتین نداید. دمای زمستان و افت سرما رنگ پوست مرکبات را

183
اسباط زمانی که گیاه در محیط مانند نور زیاد، تشخیص UV دیای کرده، به یونست و بیان نشود با وجود قابلیت متغیر فلایکها در تیمار سرمايی، دما از صفر تا متغیر بی‌رو بای‌روی انتقال به‌نشانه‌های انیکسیدان‌ها و به‌عنوان یک‌تغییر از سیستم

آنتی آکسیدان‌ها برای جمع آوری ROS عمل کنند.

سنگش فلنج تام

جدول ۳ تغییرات میزان تام در پوست میوه پنج رقم میکرات در تیمارهای سرما و سال (۳ صفر، ۳ و ۰ دمای سال) در زمان قبل از رسیدگی و رسیدگی کامل را نشان می‌دهد. نتایج نشان داد که با اعمال تیمار سرما، میزان تغییر بود سپس روی افزایش داشت. در مقایسه مقدار فلنج میزان تغییر متفاوت در هر تیمار دمایی، بیشترین مقدار از در ارقام مختلف داشت. در ارقام مختلف صفر و ۰ درجه سالوس و در رقم لیموفورت و کمترین مقدار آن در پرتوکن خونی دیده شد. در زمان رسیدگی کامل، میزان فلنج با اعمال تیمار سرما در ارقام آنتی آکسیدان کاهش یافته و مخلوط این افزایش و سپس کاهش نشان داد. در ارقام و انتی آکسیدان‌ها با و سپس احتمالا بیشتر و سپس با روند افزایشی همراه بود. در مقایسه مقدار فلنج میکرات به ارقام مختلف در هر تیمار دمایی، بیشترین مقدار آن در ارقام مختلف و لیموفورت و کمترین مقدار آن در ارقام مختلف عدد نخستی درصد سالوس و در ارقام انتی آکسیدان محیطی و خونی در تیمار سرما صفر درجه سالوس دیده شد.

در روش استفاده شده برای سنگش فلنج تام در این تحقیق، ممکن است بدلیل برهمکنش ترکیباتی که سیراها قابلیت آنتی آکسیدانی دارند مانند اکسیدشده و اکسی‌وربیک اسید، افزایش غلظت فلنج بیشتر از مقدار واقعی نشان دهید و این تداخل وابسته به غلظت ترکیبات مراهم است (۲۳). افزایش انتی آکسیدان‌ها ترکیباتی فلنجی مشاهده از ویژگی‌های احیایی آنهاست که می‌توان این تغییر مهمی در جذب و خشکی کردن رادیکال‌های آزاد داشته باشد (۲۳). متابولیسم فلنج پروپانولین...
جدول 3. مقایسه غلظت فنل تام در پوست میوه پنگ رقم مرکبات در مرحله قبل از رسیدگی و رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار (°C)</th>
<th>مرحله قبل از رسیدگی</th>
<th>مرحله رسیدگی کامل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>فنل کل (mg/L)</td>
<td>فنل کل از رسیدگی</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 ± 1,6 %</td>
<td>162 ± 7 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 ± 0,6 %</td>
<td>187 ± 6 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53 ± 1,1 %</td>
<td>197 ± 1,5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 ± 1,4 %</td>
<td>208 ± 1,6 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84 ± 1,0 %</td>
<td>220 ± 2 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>119 ± 2 %</td>
<td>238 ± 8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 ± 7 %</td>
<td>86 ± 15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84 ± 5 %</td>
<td>91 ± 2 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94 ± 7 %</td>
<td>112 ± 2,2 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>118 ± 7 %</td>
<td>180 ± 2 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>117 ± 5 %</td>
<td>183 ± 4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 ± 1 %</td>
<td>107 ± 1,8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56 ± 9 %</td>
<td>111 ± 2 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>181 ± 9 %</td>
<td>135 ± 12 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 ± 1 %</td>
<td>172 ± 14 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>188 ± 1 %</td>
<td>223 ± 13 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 ± 1 %</td>
<td>198 ± 2 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 ± 6 %</td>
<td>181 ± 3 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97 ± 1 %</td>
<td>185 ± 4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 ± 1 %</td>
<td>208 ± 17 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>159 ± 2 %</td>
<td>21 ± 2 %</td>
</tr>
</tbody>
</table>

لیموترش. تا صفر درجه سلیسوس افزایش یافته و سپس نسبت ماند. فعالیت آنتی اکسیدانی و ویژگی جمع آوری رادیکال آزاد، مرتبت با مقادیر ترکیبات فنل و گروه‌های هیدروکسیل موجود در انتخاب شیمیایی آنهاست که به عنوان جمع کننده رادیکال آزاد است. مقادیر بیشتر ترکیبات فنلی تام مربوط به فعالیت ترکیبات فنلی و فعالیت آنتی اکسیدانی متفاوت می‌باشد. میزان فنل تام و با اعمال تیمار سرمایه در ارقام مختلف، به‌جز
جدول 2 مقایسه ظرفیت آنثی اکسیدانی در پوست بوت رقم مربوط به مرحله رسیدگی کامل

<table>
<thead>
<tr>
<th>رقم</th>
<th>نیازمند</th>
<th>نیازمند محلی</th>
<th>نیازمند والنیا</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>پرتقال خونی</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>انسو</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>بروکسل</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>لیمو</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>پرتقال والنیا</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

آنتی اکسیدانی بیشتر است. به علت مشابه، تخلیه سرمایه با
افراش ظرفیت آنثی اکسیدانی الق می‌شود. افزایش تولید
توسط نش سرمایه بیشتری به فعالیت آنتی اکسیدانی و ارتباط
برای سرمایه، به جمع آوری رادیکال آزاد نسبت داده می‌شود. اگرچه
ظرفیت آنثی اکسیدانی تا اندازه‌ای مرتبط با تخلیه سرمایه‌گذاری

متن در مورد معیارهای وابستگی و فیزیولوژی سطحی
نتیجه‌گیری
نتش‌های محیطی اصلی ترین عامل محدود‌کننده تولیدات گیاهی می‌باشد. مکانیسم‌های مقاومتی مختلفی برای ترشحات فیزیولوژیک و بوشیمیایی مرتبط با آسیب سرمایی بیشترند. به‌کارگیری آن‌ها به‌صورت نهایی در جلوگیری از تنش‌های کسیدانی و ترشحات آنزیمی می‌باشد. این شهیدت نشان می‌دهد که تنش‌های محیطی می‌تواند تحریک سیستمهای جمع‌آوری ROS کیابه‌ای را افزایش دهد و این افزایش حفاظت در بر این تنش را فراهم می‌آورد. ولی به نظر می‌رسد مکانیسم‌های آن‌ها کسیدانی برای حفاظت گیاهان در برابر تنش‌های محیطی کافی نباشند و همچنین گیاهان مقاوم به

مباحث مورد استفاده