تأثير شوری، انوزین و کمبود فسفات بر میزان رشد و تولید آستانگاتین در گلیک سبز Haematococcus pluvialis

صادق فرهی آشتیانی، مجید مهدیه و ایرج نحوی

چکیده

این پژوهش به منظور بررسی تأثیر انوزین و کمبود فسفات بر میزان رشد و تولید آستانگاتین در حیاتی Haematococcus pluvialis انجام شده است. آزمایش‌های گزارشی نشان داد که رشد و تولید آستانگاتین در حیاتی Haematococcus pluvialis تحت شرایط سطحی در اطاقه رشد با دمای 20 درجه سانتی‌گراد صورت گرفته است.

نتایج نشان می‌دهد که شوری، کمبود فسفات و همچنین انوزین کاستنی را تحول می‌کند. همچنین نشان دهنده آستانگاتین و میزان وزن ناشست کلیک آستانگاتین می‌باشد. با افزایش بهره‌های مایع، نشان می‌دهد که در حیاتی Haematococcus pluvialis نیز تحت شرایط کمبود فسفات کاهشی می‌باشد. از این رو، می‌توان به ویژه در این نیاز به استفاده کننده شدن آستانگاتین در حیاتی Haematococcus pluvialis در کلیک به بررسی دوی آناتی اکسپراتور آن مربوط باشد. به طور ملی سلول‌های حیاتی Haematococcus pluvialis را تحت شرایط دوی می‌توان به ویژه در این نیاز استفاده کننده شدن آستانگاتین در حیاتی Haematococcus pluvialis در کلیک به بررسی دوی آناتی اکسپراتور آن مربوط باشد.

واژه‌های کلیدی: شوری، کمبود فسفات، انوزین، آستانگاتین، Haematococcus pluvialis

مقدمه

آستانگاتین (3'-11'-Δ هیدروکسی-β-کاروتین)، 4'-دهی انزو-کاروتین، در ترکیب با البروتین‌ها و لبی‌ها ایجاد می‌کند. از آنجایی که در موجودات دریایی ایجاد می‌کند، در مهیج دلیل امروزه از آن به طور وسیع در صنایع شیلات بیش از گردان کردن گوشت مورد استفاده قرار می‌گیرد.
جذب‌های پایین‌تریکه‌ا و ناحیه‌های کمی از زمینه به‌هم‌سازی شرایط رشد این جلبک صورت گرفته است (11). و با در نظر گرفتن این که شرایط به‌ین‌های برای رشد و تولید آستاکتزنتین در این جلبک مختلف است، عموماً کشت این جلبک در دو فاز مختلف مشتاق‌های می‌شود؛ یعنی این با دانش شرایطی که رشد را تقویت و تحریک می‌کند فراهم گردد، و هنگامی که زیستی‌های کنار شده شرایط براز رشد آستاکتزنتین تغییر داده شود (5). از این رو، برای تولید اینوو آستاکتزنتین می‌بایست به‌هم‌سازی شرایط رشد و تولید آستاکتزنتین به طور جدایی از برجستگی قرار گیرد (14).

با توجه به اینکه تاکنون پژوهش‌های چندانی در زمینه جداسازی و کشت جلبک هم‌اکنون در ایران صورت نگرفته، هدف از این پژوهش عازال به جداسازی و کشت این جلبک در ایران، بررسی به‌هم‌سازی شرایط رشد و تولید آستاکتزنتین در آن نیز می‌باشد.

مواد و روش‌ها

کشت جلبک

برای کشت جلبک هم‌اکنون پژوهش‌های از محیط کشت یولک (15). دمای 20 درجه سانتی‌گراد و اطافک‌های کشت استفاده می‌شود. سویه جلبک مورد بررسی قرار گرفته است. با استفاده از آب که استخر می‌باشد، در محیط دانه‌گذاری، اصلاح گرفته و شرایط ساخته شده و استفاده می‌شود (1). به این ترتیب که کفته توسط کلید لیسبانیکی به‌ین کشت جلبک فرستاده می‌شود.

فریج نویزه (Fritsch)

مورد استفاده قرار گرفته است. شرایط سبیل با استفاده از یک میکروویوت شیمی‌ای که انتها آن توسط یک لوله بالاستیکی به سر نخ می‌شود. کسته‌های در حال جوان‌هایی این جلبک از جلبک‌های دیگر و میکروکاتئیپس‌های همراه آن جدای گردیده. عمل جداسازی ضمن یکشک جلبک‌های جدای شده، چند مرن به‌ین تک‌کریک گردیده‌ت‌ا جلبک خالص هم‌اکنون به‌ین دست دارد. سریناژمی‌های کشت این جلبک‌های خالص شده برای تک‌کریک به محیط کشت استریل به‌ین 500 میلی‌لیتری می‌شود و در دمای 20 درجه سانتی‌گراد با شدت نور ماهی‌های پروپان استفاده می‌شود. آستاکتزنتین به دلیل داشتن خاصیت آنتی‌اکسیدانی (25) افزایش پایی‌ای این‌می‌باشد (18 و 19) و خاصیت ضد سرطانی (24) در سنای دارویی به اندازه‌ی مورد.

منابع طبیعی آستاکتزنتین به‌ین استBALL

Haematococcus pluvialis

هم‌اکنون کسانی که در جهان جلبک سیر تکنسالول (Volvocales)

گزارش شده است (17). جلبک هم‌اکنون کسانی که جلبک سیر تکنسالول و نازک بر روی آن راسته ولوکال (Volvocales) به‌ین کشت شرایط نشته، مقدار زیادی (43).

تعجیم آستاکتزنتین در جلبک هم‌اکنون، با تغییر محیط و لوله‌های سلول‌های سر نازک‌دان (سلول‌های روشی) به‌ین اسپروه‌های هم‌اکنون می‌باید (22).

تعجیم آستاکتزنتین در ان جلبک، تحت شرایط نشته‌های مختلف، مانند کم‌های ار (8)، کم‌های این (3)، کم‌های نیز (8)، شوری (24) و تنش اکسیدانی (10 و 23)، بررسی شده است.

اعدام می‌رود اکسیژن یک‌ملی، مؤثرترین نوع اکسیژن فعلال برای تشدید پوست‌تی‌ا است. آستاکتزنتین در کسی‌های جلبک هم‌اکنون باشند (22). در ضمن، مشخص شده است که توانایی انسان برای تولید اکسیژن یک‌ملی عملی می‌کند (20)، زیرا اکسیژن یک‌ملی،در تحریک پوست‌تی‌ا آستاکتزنتین در این جلبک تنش دارد (23). فن و هم‌کاران (101) احتمال می‌دهند که در این جلبک تحت شرایط کم‌های سیرف، اکسیژن یک‌ملی این جلبک تنش چنین شرایطی که تنش اکسیدانی رنج می‌برد. زیرا ماده‌ای یک خاموش کننده اختصاصی اکسیژن یک‌ملی است، قادر است عنوان اکسیژن یک‌ملی این جلبک را تحریک شده این محیط آلی آلی جلبک‌های (23).
نتایج
جلبک هماثانکوکس پلیپالیس کشت شده در محیط کشت بول، در دو هفته اول به رنگ سبز و در دوران کیستن‌زایی به رنگ قهوه‌ای گرفته شد. در این مدل، چهار گروه از سه تا پنج گروه مختلف نمونه‌برداری گردید.

اهتزاز
مراحل این آزمایش به صورت انجام گرفت که ابتدا در هر 203
نمودار 1. تغییرات تعداد سلول‌های روییسی سبز، سلول‌های غیر‌محورک سبز و سلول‌های کیست فرخ ذیل کهیم هم‌میکروسپوروم پلپالیاس در محیط کشت بولد در دو هفته.

نمودار 2. تأثیر غلظت فسفر محتوی محیط کشت بولد.

اعاداد در پرانتز از چپ به راست، به ترتیب ضریب غلظت فسفر در محیط کشت بولد می‌باشد.

انکوپاسیون افراشی پایه است (نمودار 1). در روز چهارم، تعداد سلول‌های متحرک روییسی به حداقل خود رسید. پس از آن، تعداد سلول‌های متحرک روییسی شروع به کاهش نمود. در عروض تعداد سلول‌های سبز به قمی کننی (فم پالم‌ایولید) شروع به افزایش کرد. در روز نهم نمودار سلول‌های سبز به بیشینه 10^6 سلول در هر میلی‌لیتر رسید. و به دنبال آن در روز دوازدهم به تعداد 10^5 سلول در هر میلی‌لیتر رسید. و سرانجام به 2/10 سلول در هر میلی‌لیتر کاهش یافت کرد. و از روز چهارم به همین صورت به ناحیه یک کمتر توانست. در نتیجه، تأثیر غلظت فسفر در محیط کشت بولد با سلول‌های کیست فرخ ذیل کهیم هم‌میکروسپوروم پلپالیاس در نمودار 2 اورده شده است. وزن خشک کهیم هم‌میکروسپوروم در محیط کشت بولد با سلول 2 فسفر 1/14 روز از یک ماه کشت، به طور چشم‌گیری کمتر از تیمار‌های

204
نمایش ۱: سلول‌های سبز روشی چلیک هماتوکرومس پلوپالیس (۱۹۹۰)

نمایش ۲: چلیک هماتوکرومس پلوپالیس کشت شده در محیط کشت یولید. ارلن شماره ۱ مربوط به دوران رشد روشی (به رنگ سبز) و ارلن شماره ۲ مربوط به دوران کیست‌زایی (به رنگ قرمز) دیده می‌شود.

جاوی ۲ همانی و ۲/۴ فسفات کامپولر است، به طوری که

تجسم معنی‌داری با آنها نشان می‌دهد، ولی وزن‌های خشک

۲۰۰
جدول 1. تأثیر غلظت‌های مختلف کلرید سدیم بر میزان وزن ماده خشک و تولید آستانگیانتین در جلبک همانوکوکوس پلوپیلایس

<table>
<thead>
<tr>
<th>میزان آستانگیانتین در جلبک</th>
<th>وزن خشک</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میلی‌گرم در لیتر میلی‌گرم در یک کاه وزن خشک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بدون نمک (شامه)</td>
<td>1/5/4</td>
<td>4/6/4</td>
</tr>
<tr>
<td>1/3/6</td>
<td>8/9/4</td>
<td>1/2/6</td>
</tr>
<tr>
<td>1/4/2</td>
<td>7/6/4</td>
<td>1/3/0</td>
</tr>
<tr>
<td>1/3/4</td>
<td>6/7/4</td>
<td>1/0/6</td>
</tr>
</tbody>
</table>

جدول 2. تأثیر غلظت‌های مختلف نمک بر میزان وزن ماده خشک و تولید آستانگیانتین در جلبک همانوکوکوس پلوپیلایس در شرایط محیط کشت بوده بدون مصرف فسفر در مدت دو روز (میانگین ۳ تکرار ± احراز میانگین)

<table>
<thead>
<tr>
<th>میزان آستانگیانتین در جلبک</th>
<th>وزن خشک</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میلی‌گرم در لیتر میلی‌گرم در یک کاه وزن خشک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بدون نمک (شامه)</td>
<td>1/5/4</td>
<td>4/6/4</td>
</tr>
<tr>
<td>1/3/6</td>
<td>8/9/4</td>
<td>1/2/6</td>
</tr>
<tr>
<td>1/4/2</td>
<td>7/6/4</td>
<td>1/3/0</td>
</tr>
<tr>
<td>1/3/4</td>
<td>6/7/4</td>
<td>1/0/6</td>
</tr>
</tbody>
</table>

ماده خشک جلبک به طور معنی‌داری نسبت به تیمارهای دیگر و هم‌اکنون مشترک هستند. در ضمن پیش‌بینی وزن ماده خشک در تیمارهای 8 میلی‌میلی‌گرم و 20 میلی‌میلی‌گرم نمک حاصل گردید که تفاوت معنی‌داری با یکدیگر ندارند. ولی با تیمار 50 میلی‌میلی‌گرم نمک و هم‌اکنون مشترک هستند. (جدول 1)

تأثیر غلظت‌های مختلف نمک بر آستانگیانتین در جلبک همانوکوکوس نیز بررسی شد. مقایسه میانگین‌ها نشان داد که کلیه غلظت‌های نمک بر میزان آستانگیانتین جلبک انس چنین است. نتایج کلی غلظت‌های نمک بر میزان آستانگیانتین جلبک

چنین است.
جدول 3. تأثیر هسته‌های بنزین‌های مختلف بر وزن ماده خشک. تعداد سلول و حساسیت جلبک هماتوکوکس پلوپولیس در شرایط محيط کشت
بوده و بدون فسفات در ظرف دو هفته (میانگین ۳ تکرار ± انحراف معیار)²

<table>
<thead>
<tr>
<th>تیمار</th>
<th>وزن خشک (گرم در لیتر)</th>
<th>تعداد سلول (در هر میلی لیتر)</th>
<th>سرعت رشد نسبی (در هفته)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میکرو کشت بولد (شاهد)</td>
<td>0/۰۶±۰/۱۳</td>
<td>²/۷/۱۹</td>
<td>۱/۷/۱۰±۰/۰۸</td>
</tr>
<tr>
<td>میکرو کشت بولد + ۲۵ میلی مولار هسته‌های بنزین</td>
<td>0/۰۶±۰/۱۳</td>
<td>²/۷/۱۹</td>
<td>۱/۷/۱۰±۰/۰۸</td>
</tr>
<tr>
<td>میکرو کشت بولد بدون فسفات</td>
<td>0/۰۶±۰/۱۳</td>
<td>²/۷/۱۹</td>
<td>۱/۷/۱۰±۰/۰۸</td>
</tr>
</tbody>
</table>

جدول 4. تأثیر هسته‌های بنزین‌های مختلف بر وزن ماده خشک. تعداد سلول جلبک هماتوکوکس پلوپولیس در شرایط محيط کشت بولد، با و بدون فسفات
میزان استخراجات جلبک³ در هر هفته

<table>
<thead>
<tr>
<th>تیمار</th>
<th>میزان مولار جلبک</th>
<th>میزان کرم در هر لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>میکرو کشت بولد (شاهد)</td>
<td>۱/۰۶±۰/۱۳</td>
<td>۱/۰۶±۰/۱۳</td>
</tr>
<tr>
<td>میکرو کشت بولد + ۲۵ میلی مولار هسته‌های بنزین</td>
<td>۱/۰۶±۰/۱۳</td>
<td>۱/۰۶±۰/۱۳</td>
</tr>
<tr>
<td>میکرو کشت بولد بدون فسفات</td>
<td>۱/۰۶±۰/۱۳</td>
<td>۱/۰۶±۰/۱۳</td>
</tr>
</tbody>
</table>

نمودار ۲. تأثیر شوری و انرژی بر وزن ماده خشک و استخراجات جلبک هماتوکوکس پلوپولیس. میزان نمک و انزیم های صرب حاصله است.

۲۰۸
ائه شوری، وزنین و کمیابی فسفات بر میزان رشد و تولید آستاگلنت‌های جلبک سبز...
یک سیستم دفاعی آنتی اکسیدان است. همچنین، احتمال می‌رود که اکسیژن یک بسته به عنوان یک ناقل برای رژالیکی عمل کرده، و در تغییر می‌آورند (جدول ۳ و ۴). احتمال می‌رود که تحت شرایط رویکد میکروب‌ها، بیکسیژن یکبکسی را از این جمله به خوبی انداد.

این چرا انتظار شده است آنتی اکسیدان‌ها تحت شرایط کم‌میکروبی فسفات در حضور هسته‌ایان، به طور کامل جلوگیری نماید و با زمان اکسیژنیون افزایش می‌یابد (جدول ۴)، بتواند به دلیل کافی نبودن غلظت هسته‌ایان برای خاموش کردن اکسیژن‌های بکاریکابی حاصل شده تحت شرایط کم‌میکروبی فسفات، و با تولید مداوم اکسیژن‌یکبکسیون تولید می‌شود.

برای این که نشان دهنده شدن آنتی اکسیدان‌ها در اثر سیستمی کم‌میکروبی فسفات از جمله کم‌میکروبی چون گزاره کروماتوگرافی آنتالکسی الکتریفیکی (ESR) یکی از مشخصات بهترین برای تشکیل اکسیژن‌یکبکسیون است. هرچند اکسیژن‌یکبکسیون از پوسته اکسیژن‌یکبکسیون است. هرچند اکسیژن‌یکبکسیون از پوسته اکسیژن‌یکبکسیون است، اگر مشکل می‌باشد.

تشکیل بویست آنتی اکسیدان‌ها در جلبک سیر هماکتوکوس بایش. این اثبات می‌تواند با گزارش پژوهشگان دیگر است (۹۸ و ۱۰۵). همچنین، این اثبات می‌تواند به بروز اکسیداسیون کاهشی باعث شود که تحت شرایط رویکد میکروبی فسفات از جمله جلبک سیر هماکتوکوس باعث اثراتی خاصی در بیماری در مواردی می‌شود. به علاوه، با استفاده از این آزمایش به دست آمده (جدول ۴) می‌توان به‌طور مختصر شاید باعث اینکه اکسیژن‌یکبکسیون تولید شود، و برای میزان رویکرد و انتقای آنتی اکسیدان‌ها در جلبک سیر هماکتوکوس تأثیر دارد، و احتمال دارد هسته‌ایان بر آزمایشگر تولید کننده کارتوئید از جلبک هماکتوکوس پلیپالیس بی‌توجهی می‌باشد. همچنین، می‌توان انتظار داشت که از بکارگیری اکسیژن‌یکبکسیون در حالتی که از اوایل هسته‌ایان به میکروکتی است در این شرایط موجب تعیین نشان شده باشد. این وقت در مورد کاهش بویست آنتی اکسیدان‌ها می‌باشد.

از آنجا که گزارش شده است، هسته‌ایان خاموش کننده اکسیژن یکبکسیون می‌باشد (۱۹)، و خطر اکسیژن‌یکبکسیون نیز در تولید آنتی اکسیدان‌ها در این جلبک نقش دارد (۲۳)، و از سویی هسته‌ایان به آزمایشگر تأثیر دارد (۲۴). احتمال داده شود که در پاسخ به تشکیل اکسیژن‌یکبکسیون تحت شرایط کم‌میکروبی فسفات، سیستم‌های هماکتوکوس پلیپالیس بویست آنتی اکسیدان‌ها را آغاز کرده باشد. که این خود

منابع مورد استفاده
1. مهدیه، م.، ۱۳۷۸. اثر اثری می‌باشد. روشی برای آزمایش اثرات غذایی بر میزان رشد و تولید کارتوئید بر خود از جلبک‌های سیر. پایان‌نامه

