اثر غلظت انرژی و مواد مغذی چرخه بر عملکرد چرخه‌های آمیخته گوشته آرین

همایون ظهیرالدینی، سیدرضا میرآبادی آشینی، محمود شیوازاد و علی نیکخووا

چکیده

اثر سطح مختلف انرژی چرخه بر عملکرد چرخه‌های آمیخته گوشته آرین و نیز بازدهی اقتصادی چرخه‌ها در دو آزمایش مشابه بررسی گردید. آزمایش‌ها با صورت فناوری خوراک دارای طرح کامل کلاسیکی، با نجات چرخه و جنگل انیابان گرفته شد. چرخه‌های غلظت به ترتیب محدود گوردند. آزمایش‌ها در سه نمونه به چهار گروه گردید: گروه ۱، گروه ۲، گروه ۳ و گروه ۴. یک گروه از چرخه‌ها در هر گروه به ترتیب محدود گوردند و دو آزمایش دو در فصل پاییز اجرای گردید.

مواد مؤلفه در تمام چرخه‌ها نسبت گشته‌نشده شد. آزمایش اول در فصل تابستان و دوم در فصل آرین اجرا گردید.

در هر گروه از چرخه افزایش وزن و ضریب تبدیل، کاهش خیال‌های انرژی در جریان بهبود یافت (0/01). میزان مصرف خواراک فقط در تابستان تحت تأثیر نیوگرگر یافته شد (0/01). به طوری که کاهش انرژی تأثیرگذار در تمام چرخه‌های تازه طراحی شده‌است. نتایج نشان می‌دهد که در تمام چرخه‌ها نسبت به سایر گروه‌های آزمایشگاهی مصرف نموده‌اند. در تابستان، نسبت چرخه‌هایی که مصرف نشان می‌دهند، در آزمایش اول تحت تأثیر نیوگرگر یافته شد و در جریان حاصل از کاهش انرژی کاهش‌گذاری در سطح انرژی کاهش گرفته است (0/01). به طور مکانیکی تحت تأثیر نیوگرگر یافته شده از نظر وزن، ضریب تبدیل خیال‌های انرژی چرخه‌هایی که در حاضر انرژی تاریکه یا سایر گروه‌ها تازه طراحی شده‌اند، به خیال‌های انرژی چرخه‌هایی که در حاضر انرژی تاریکه یا سایر گروه‌ها تازه طراحی شده‌اند، به خیال‌های انرژی چرخه‌هایی که در حاضر انرژی تاریکه یا سایر گروه‌ها تازه طراحی شده‌اند، به خیال‌های انرژی چرخه‌هایی که در حاضر انرژی تاریکه یا سایر گروه‌ها تازه طراحی شده‌اند.

واژه‌های کلیدی: گوشته‌گری چرخه‌ها، غلظت انرژی چرخه‌ها، سطح انرژی، مصرف غذایی، بازدهی اقتصادی

مقدمه

پوسته دهندهان چرخه‌های گوشته براساس قیمت‌های نهایی، سطح انرژی چرخه‌است. بنابراین، در جریان نویسی انتخاب سطح انرژی نخستین گام است و اغلب یا و اساس انتخاب غلظت سایر

1. به ترتیب دانشجوی سایق کارشناسی ارشد، استادیار، استاد علوم دامی، دانشکده کشاورزی، دانشکده تهیه‌کننده
مواد و روش‌ها
دو آزمایش طراحی و در دو فصل باستوان و پایین اجرا گردید. در این آزمایش‌ها نتیجه‌گیری که از نظر تراکم انرژی و مواد مغذی تفاوت داشته‌اند، بر سرعت رشد، ضریب تبدیل غذایی و بازدهی اقتصادی بررسی شد. هر دو آزمایش به صورت تصادفی در قالب طرح کاملاً تصادفی، با 10 ترکیب از دو عامل (5 جیره غذایی × 2 جنس) اجرا گردید. برای هر ترکیب از عوامل مذکور، در آزمایش اول چهار تکرار و در آزمایش دوم سه تکرار در نظر گرفته شد. بنابراین، آزمایش اول در 40 واحد آزمایی (هر یک مشکل از 25 جیره از یک جنس) و آزمایش دوم در 40 واحد آزمایی (هر یک مشکل از 27 جیره از یک جنس) انجام پذیرفت. هر واحد آزمایی، آشیانه‌ای به ابعاد 25/1 × 25/1 × 24/5 متر، تعبیه شده و روی یک بورد مرتعی تعبیه نیازهای غذایی جوجه‌ها که از آمیخته‌های تجاری گوشتی آزمایش‌شده بود، دستورالعمل تغذیه‌ای ارائه شده بود. پژوهش‌های قبل از تنظیم جیره‌ها، نموده‌هایی از ذرت، کنجعل سوا، پودر ماهی و کندم، از نظر میزان خامه، پروپتیتیون، خام، جیره، عصاره، الاف خام و خاکسترک، نموده‌هایی از پودر ماهی از نظر میزان کلسیم، سدیم...
ن ماده مذكورة، تمرنونیاً ز کربنات کلسیم از نظر کلسیم، و
نمونه‌ای از سینتیک، سیستم سیس در نظر گرفته، و تجزیه شیمیایی تا شیمیایی گردد. هم چنین، برای به دست آوردن
برخی از اطلاعات از جدول‌ان سای، سری (22) استفاده شد. سپس با استفاده از این اطلاعات، رجوع به پادخورال مذکور، و استفاده از نرم‌افزار
UFFDA، جهیزه‌های آزمایشی تنظیم شدند. این جهیزه‌ها که با شماره‌بندی ۱، ۲، ۳، ۴ و ۵ مشخص
شدند، به ترتیب محتوی ۸۸۰، ۳۸۰۰، ۲۲۰۰۰، ۳۱۰۰۰ و
۲۳۰۰ کیلوگرم ارزی قابل متابولیسم در کیلوگرم باری وزه
آغازین (۰-۲ هفته‌گذشته)، و ۲۹۰۰، ۳۷۰۰، ۲۶۰۰ و
۲۳۰۰ کیلوگرم ارزی قابل متابولیسم در کیلوگرم باری وزه
پایانی (۷-۵ هفته‌گذشته) بود. هر یک از ماده‌ها به
ازی در هر دوره برای تمام جهیزه‌ها ثابت نگه‌داشته شد.
(جدول ۱ و ۲.

دیرینگ پورش جوجه‌ها مانند روش‌های رایج، و استاندارد
انجام با تاکید، بالغ در آزمایش اول که در نتیجه نتایج
شان، نشان دهنده در نیم‌نیم کردن دوره پورش بیش از دمای
متعارف بود. در حالی که در آزمایش دوم که در نتیجه پاییز به
چند گرو، در آمد، به ترتیب می‌گذارند.

نتایج و بحث
میانگین‌های انفازی وزن، خروک مصرفی، ضربت تبدیل
غذایی، انرژی قابل متابولیسم مصرفی، پروتئین مصرفی، درصد
جریب دیگر، وزن، در محوطه شکمی جوجه‌ها و هزینه خروک
مصرف شده در طول هر کیلوگرم زنده در آزمایش‌های اول و
دوم، هر ترتیب در جدول ۳ و ۴ کارگاه شده است.
در هر دوره آزمایش، سرعت و تأثیر تراکم انرژی
جهیزه واقع شده است. به طوری که تاکید از جهیزه‌های واک
انرژی سایر موجب افزایش سرعت در مقایسه با جهیزه‌های
با کارگاه انرژی کمتر شده است. این تاثیر با تأخیر ایرانی
در سایر از گزارش‌ها مطابقت دارد (۲۳، ۱۲، ۱۳، ۱۴، ۱۵،
۲۰، ۲۱ و ۲۸). با این وجود، گزارش‌های نیز مبنا بر عدم
تأثیر سطح انرژی جهیزه که سرعت رشد جوجه‌های گوشتن
وجود دارد (۲۳، ۱۱، ۱۸ و ۲۱).

1. User-Friendly Feed Formulation Done Again
جدول 1. درصد مواد مشکل و ترکیب جیره‌های آغذیزین و پایانی در آزمایش‌اول

<table>
<thead>
<tr>
<th>مرحله آزمایش</th>
<th>جیره</th>
<th>مواد خوراکی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ذرت</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کنجدالسوزا</td>
</tr>
<tr>
<td></td>
<td></td>
<td>گندم</td>
</tr>
<tr>
<td></td>
<td></td>
<td>روغن نباتی</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی کلسیم فسفات</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کربنات کلسیم</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مکمل چروج غوشته‌های</td>
</tr>
<tr>
<td></td>
<td></td>
<td>نمک</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ماسه</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی‌ال‌متیئونین</td>
</tr>
<tr>
<td></td>
<td></td>
<td>لاژیئن</td>
</tr>
<tr>
<td></td>
<td></td>
<td>قیمت جیره (ریال)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32/84</td>
<td>37/81</td>
<td>22/64</td>
<td>28/60</td>
<td>51/30</td>
</tr>
<tr>
<td>2</td>
<td>38/32</td>
<td>46/55</td>
<td>29/32</td>
<td>32/50</td>
<td>45/40</td>
</tr>
<tr>
<td>3</td>
<td>15/00</td>
<td>15/00</td>
<td>15/00</td>
<td>15/00</td>
<td>15/00</td>
</tr>
<tr>
<td>5</td>
<td>1/85</td>
<td>1/43</td>
<td>1/17</td>
<td>1/59</td>
<td>1/64</td>
</tr>
<tr>
<td>6</td>
<td>1/54</td>
<td>1/74</td>
<td>1/64</td>
<td>1/64</td>
<td>1/64</td>
</tr>
<tr>
<td>7</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
</tr>
<tr>
<td>8</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
</tr>
<tr>
<td>9</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
</tr>
<tr>
<td>10</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
</tr>
</tbody>
</table>

انرژی و مواد مغذی

انرژی قابل متابولیسم (کیلوکالری در کیلوگرم)

<table>
<thead>
<tr>
<th></th>
<th>3300</th>
<th>2200</th>
<th>3100</th>
<th>3200</th>
<th>2900</th>
<th>2300</th>
<th>2100</th>
<th>2000</th>
<th>2100</th>
<th>1900</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21/00</td>
<td>11/10</td>
<td>20/30</td>
<td>19/19</td>
<td>23/10</td>
<td>22/00</td>
<td>22/00</td>
<td>21/00</td>
<td>21/00</td>
<td>21/00</td>
</tr>
<tr>
<td>2</td>
<td>28/20</td>
<td>0/24</td>
<td>0/44</td>
<td>0/42</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
</tr>
<tr>
<td>3</td>
<td>0/24</td>
</tr>
<tr>
<td>4</td>
<td>0/24</td>
</tr>
<tr>
<td>5</td>
<td>0/24</td>
</tr>
<tr>
<td>6</td>
<td>0/24</td>
</tr>
<tr>
<td>7</td>
<td>0/24</td>
</tr>
<tr>
<td>8</td>
<td>0/24</td>
</tr>
<tr>
<td>9</td>
<td>0/24</td>
</tr>
<tr>
<td>10</td>
<td>0/24</td>
</tr>
</tbody>
</table>

پروتئین خام (%)

میوه‌ناتی (\%)

میوه‌ناتی + میوه‌ناتی (\%)

لازیئن (\%)

آرژین (\%)

الاف‌خام (\%)

چرخی خام (\%)

کلسیم (\%)

فسفر (\%)

سدیم (\%)

کلر (\%)

1. به صورت درصدی از مقدار خرابه بیان شده است.
جدول ۱. درصد مواد مذکور در ترکیب جیره‌های آغازین و پایانی در آزمایش دوم

<table>
<thead>
<tr>
<th>مرحله آزمایش</th>
<th>پایانی</th>
<th>آغازین</th>
<th>جیره</th>
<th>مواد خوراکی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۹/۰۰</td>
<td>۲۴/۰۹</td>
<td>۲۹/۴۱</td>
<td>ذرت</td>
</tr>
<tr>
<td>۲</td>
<td>۲۳/۴۷</td>
<td>۲۳/۱۲</td>
<td>۲۸/۶۸</td>
<td>کنتاجه‌سیا</td>
</tr>
<tr>
<td>۳</td>
<td>۸/۰۰</td>
<td>۸/۰۰</td>
<td>۸/۰۰</td>
<td>گندم</td>
</tr>
<tr>
<td>۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>سبزه گندم</td>
</tr>
<tr>
<td>۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>روغن طوره</td>
</tr>
<tr>
<td>۶</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>پودر ماهی</td>
</tr>
<tr>
<td>۸</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>۹</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۱۱</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۱۲</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۱۳</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۱۴</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
</tbody>
</table>

انرژی و مواد مذکور

انرژی قابل متابولیسم (کیلو کالری در کیلو گرم)
پروتئین (٪)
متیوئین (٪)
متیوئین + سپتئین (٪)
لیزین (٪)
آزئوئین (٪)
الافم (٪)
چربی خام (٪)
کلسیم (٪)
فسفر (٪)
سیدم (٪)
کلر (٪)

۱. به صورت درصدی از گروه‌های جیره‌بندی شده است.
اصطلاحات و همکاران (27) بیان می‌کند که جیره‌های کم ارزشی و پر ارزشی (البته در یک محدوده مشخص)، اگر از نظر پروتئین، مواد معدنی و ریزمانی‌ها متواری‌باشند، جیره‌های یا ونژیکان در سن‌هشت هفتگی تولید می‌کند. این نظریه بر پایه فرضیه توانایی در تنظیم میزان مصرف خوراک‌بر اساس نیاز به ارزش، و مستقل کننده به مصرف افزایش از سطح ارزش جیره‌های بیان شده است. اما یا بر نتایج پژوهش صاحب (جدول 3 و 4) مقدار ارزش مصرفی جیره‌های تغذیه‌شده با جیره‌های حاوی سطح کم ارزش، کاهش معنی‌دار داشته است. برای مقدار خوراک مصرفی این جیره‌ها کمیت این صورت است. و گاهی به مقدار جنگلی بیشتر از جیره‌های تغذیه‌شده با جیره‌های حاوی سطح بالا ارزش بوده است.

میزان مصرفی همکاران (9) به مصرف‌گرایان جیره‌های حاوی سطح معنی‌دار ارزش و مواد مغذی به این نتیجه رسیده‌اند که جیره‌های غشته‌سی، صرف نظر از سطح ارزش جیره، تعادل سبزیجاتی خوراک مصرف نموده و توانایی تنظیم مصرف خوراک به معنی کم مصرف مشخصی از انرژی را ندارند.

در آزمایش‌های حاضر، مقداری از جیره‌های حاوی سطح بالا باین تر ارزشی کاهش معنی‌دار مصرف ارزشی قابل متا‌بلیسیم با به همراه داشت. در واقع نتایج بین روند تغییرات مصرف انرژی و روند تغییرات رشد قابل ملاحظه است. به طوری که ضریب میانگین مصرف با ارزش قابل متا‌بلیسیم و انرژی روندهای تغییرات نشان دهد. در آزمایش اول، میانگین ضریب تبدیل غذایی جیره‌های تغذیه شده با جیره‌های حاوی پایین‌ترین سطح انرژی (جیره شماره 1) بهتر از تبدیل غذایی جیره‌های تغذیه شده با جیره‌های حاوی بالاتر (جیره شماره 2) می‌باشد. ممکن است این پایداری به عمل نشان دهنده است. در آزمایش اول، محدود شدن مصرف خوراک جیره‌های تغذیه شده با جیره‌های حاوی پایین‌ترین سطح انرژی، که فاقد جیره‌های بوده
جدول ۲ میانگین انرژی وزن (گرم)، خوراک مصرفی (گرم)، ضریب تبدیل غذایی (خوراک مصرفی به وزن زنده تولیدی)، انرژی قابل منابع لیپید، پروتئین مصرفی (گرم)، پروتئین مصرفی (گرم)، پروتئین مصرفی و شاخص هزینه غذایی (درصد) در سه فاصله‌های (آزمایش‌ایل)

<table>
<thead>
<tr>
<th>میانگین کل و انحراف معیار</th>
<th>جیره‌های غذایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>افزایش وزن</td>
<td>2466 ± 266</td>
</tr>
<tr>
<td>خوراک مصرفی</td>
<td>2804 ± 364</td>
</tr>
<tr>
<td>ضریب تبدیل غذایی</td>
<td>1/94c</td>
</tr>
<tr>
<td>انرژی قابل منابع لیپید</td>
<td>13211 ± 1527</td>
</tr>
<tr>
<td>پروتئین مصرفی</td>
<td>982 ± 105</td>
</tr>
<tr>
<td>درصد چربی محتوای شکمی</td>
<td>2/75 ± 0/81</td>
</tr>
<tr>
<td>شاخص هزینه غذایی</td>
<td>91 ± 8/9</td>
</tr>
</tbody>
</table>

1. حروف هم‌اندازه با هر سطح نمایانگر تفاوت معنی‌دار (P<0.05) است.
2. هزینه خوراک به ازای تولید هر گیلو مرغ زنده که به صورت درصدی از بیشترین مقدار بیان شده است.

۱. حروف غیرمشابه در هر سطح نمایانگر تفاوت معنی‌دار (P<0.05) است.
۲. هزینه خوراک به ازای تولید هر گیلو مرغ زنده که به صورت درصدی از بیشترین مقدار بیان شده است.

است، رخ داده باشد.
که با کاهش تراکم انرژی جیره، این معیار به میزان زیادی کاهش یافته، با اینکه تعدادهایی می‌تواند به‌طور تکراری پایین‌تر باشد. این آزمایش به‌طور تکراری انجام شده است. نتایج کاهش تراکم انرژی جیره، این معیار در میان دو آزمایش یک نواختی جالبی را نشان می‌دهند. با توجه به هزینه‌های کالری اقلا مصرف پروتئین جیره و نشانه‌هایی از انرژی خشک و پروپتیو در ایران، نتایج نیز علائم از انتجویی سیستم زیستی در آزمایشی اول، تحت تأثیر سطح انرژی جیره در مورد، در حالی که در آزمایشی دوم تحت تأثیر جیره گذاری واقع شده است. در واقع در آزمایشی اول نیز تنها گروه‌های غذایی بهره‌مندتر در مصرف پروتئین سطح انرژی، دارای درد مصرف مصرف شکمی کمتری، در مقایسه با گروه‌های غذایی ماده بود. با توجه به این که این تأثیر در آزمایشی دوم مسالمه نشده است، احتمالاً می‌توان آن را نتایج‌های کاذب گیری نریزی مصرف جوجه‌های غذایی شده با بیان‌هایی پایین‌تر سطح انرژی توسط نسبت مصرف شکمی گروهی در این دسته باشد. در نظر گرفتن تأثیر انرژی معیار سالار هزینه‌ها نامیت و شهرتی بوده‌ایند.

جدول‌کنار دو جنس دری در آزمایش‌ها با مبتنی اثرات به تأثیر انرژی و نتایج صورت پذیرفته است. اما هر دو مدل انسانی گونه که تأثیر می‌رود، جوجه‌های نر به لحاظ انرژی و وزن، ضریبی می‌باشد.

غذایی، ذهینی کمتر چربی در میزان سالمی، هزینه‌های کمتر از گروه‌های نرم و وزن زنده، نسبت به جوجه‌های ماده بپرتو بوده‌اند.

منابع مورد استفاده

1. زاغری، م. 1374. تأثیر سطح پروتئین و دیوتئین بر روی رشد و کیفیت لاشه خطوط پدری لایه‌های گوشتی. پایان نامه کارشناس.

2. صدیقی، م. 1374. تأثیر سطح مختلف انرژی قابل متابولیسم در صدایی و پروتئین‌های غذایی بر روی سعت رشد، بازده غذایی و کیفیت لاجوردی گوشتی. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تهران.

3. فرشی، س. ت. خلیفی سیگناویدی و ف. نیکخواه. 1371. راهنمای کامل پرورش طیر. انتشارات واحد آموزش و پژوهش، معاونت کشاورزی، ایران.

5. نیکخواه، ع. و. کافلی، شریفی. 1382. روش علمی تغذیه طیر. چاپ دوم، انتشارات دانشگاه تهران.

28. Sell, J. L., R. J. Hasiak and W. J. Owings. 1985. Independent effects of dietary metabolizable energy and

