بررسی تأثیر سطوح مختلف کلسیم و ویتامین D بر صفات کیفی پوسته تخم‌مرغ

محسن افشارمشش، جواد پورضا و عبدالحسین سعیع

چکیده
این آزمایش به منظور بررسی اثر پنج سطح ۰/۵/۲/۰/۵/۰/۲۰ و ۰/۲۰ در کلیولیوم برو، بر صفات کیفی پوسته تخم‌مرغ به‌اجرا در آمد. آزمایش در یک طرح کاملاً تصادفی، در چهارچوب آزمایش تک‌کاروری ۵/۵، که جمعاً ۱۵ تیمار آزمایشی را تشکیل دادند، صورت گرفت. تعداد ۲۴۰ چرخه مرغ ۲۴ هفته‌ای لگهورن سفید از سویه هایلا به‌نوره۱۰۰ روی بود. در پایان آزمایش مقدار ۳۸ هفته سن داشتند.

نوبتی نشان داد که افزایش کلسیم جیره سبب افزایش معنی‌داری (P<0/05) در مقاومت پوسته، ضخامت پوسته و درصد پوسته شد.

در سطح ۰/۵ در کلیولیوم، کلسیم پوسته به طور معنی‌دار (P<0/05) افزایش یافت، اما کلسیم جیره اثر معنی‌داری بر درصد خاکستر پوسته نداشت. ویتامین D۳ اثر معنی‌داری بر درصد خاکستر و کلسیم پوسته نداشت، اما مقاومت پوسته، ضخامت و درصد پوسته به طور معنی‌داری (P<0/05) در سطح ۰/۲۰ در کلیولیوم برو، افزایش یافتند. مقاومت کلسیم پلاسمای به طور معنی‌داری (P<0/05) در سطح ۰/۲۰ و ۰/۵ در کلیولیوم برو، افزایش یافتند. داشت اثر مقاومت کلسیم و ویتامین D۳ بر مقاومت پوسته، ضخامت پوسته، درصد پوسته و کلاژن پلاسمای معنی‌دار بود (P<0/05).

واژه‌های کلیدی: کلسیم، ویتامین D۳، کیفیت پوسته

مقدمه
کلسیم یکی از عناصر کلسیمی مورد نیاز مرگان تخم‌گذار است. کلسیم فراوان‌ترین عنصر معدنی ساختمان بدن است و نقش مهمی را در بسیاری از فعالیت‌های بالینی یا مورفیا کبد پلوروفیک بدن ایفا می‌کند.

کلسیم‌گذاری در طول دوره تخم‌گذاری به مقدار زیادی کلسیم در حدود ۱۲ برای وزن بدن (۶) مقداری بیش از کلسیم مصرفی مرغ تخم‌گذاری از طریق پوسته دفع می‌شود.

1. به ترتیب دانشجوی دکتری، استاد و استادیار علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
سوخت و ساز کلسیم، افزونه‌های لیزر، پتاسیم و نیتروژن به منجر به افزایش گیاه شده در زمینه‌های مختلف است. این ویتامین‌های پتاسیم و نیتروژن به دسته‌بندی‌های مختلفی از بیماری‌های مختلفی می‌باشند. 

1. افزایش صفات کیفی پوسته تخم مرغ در اثر تغییر میزان کلسیم جیره.

2. مطالعه‌های اندونزی و ویتامین پ، بر قابلیت استفاده از کلسیم جیره و کیفیت پوسته.

3. بررسی و تعیین کلسیم مورد نیاز مراقبت‌های تخم‌گذاری در شرایط ایران.

4. بررسی چگونگی کلسیم و فسفر خون در تغییراتی که در جبهه کلسیم و ویتامین پ، جیره می‌باید تعامل کلسیم در هر کیلوگرم است.

5. نحوه عمل ویتامین پ، بر جذب کلسیم روده و پدیدار شدن صورت است که شکل منایلی عمال کلوسیمی کوله‌سیمی (ویتامین پ،) و 25 و 1 دی هیدروکسی کوله‌سیمی است. به منظور سنتز ین شکل اندی ویتامین پ، به کرد پادگان و حیات مستقل گردد و هیپودکسی می‌گردد و به 25 هیدروکسی کوله‌سیمی کوله‌سیمی تبدیل می‌شود، سپس 25 هیدروکسی کوله‌سیمی کوله‌سیمی، دوره را در کلوسیمی گردید، به اشکال 25 و 1 دی هیدروکسی کوله‌سیمی کوله‌سیمی و 25 و 1 دی هیدروکسی کوله‌سیمی کوله‌سیمی در می‌آید. تست‌های زمانی که کلوسیمی به دنبال پدیداری می‌شود، و محکم آزمایش است. تست آماده کلوسیم پلاسم و این یک محکم فیزیکی برای آزاد شدن نوره‌های پاتورمون از گله یا پاتورمون می‌باشد. این هورمون نوره خود سبب تحریک کمک‌کننده الکمی است. 1- هیدروکسی‌کلاسترول از کلوسیمی گردید، و به این ترتیب 25 هیدروکسی کوله‌سیمی کوله‌سیمی به 15 و 1 دی هیدروکسی کوله‌سیمی کوله‌سیمی می‌گردد. 25 و 1 دی هیدروکسی کوله‌سیمی کوله‌سیمی از طریق سنتز پروتئین محتوای کلوسیمی در دو طبقه موجب افزایش گیره کلوسیم جیره در درب‌های افراشک کلوسیم پلاسم می‌گردد (10) خانه‌ها، تاثیر شگفتی بر کاهش ضخامت پوسته نقش دارد، در شرایط کاملاً کلوسیم جیره، افزونه ویتامین پ، جذب کلوسیم را از روده افراشک می‌دهد، و به کیفیت پوسته می‌گردد. در ایران اغلب جیره‌های مغزی تخم‌گذاری متعادل نیست، به

128
جدول 1. ترکیب چربه‌های پایه آزمایش

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۰/۱۰</td>
<td>۰/۱۹</td>
<td>۰/۲۹</td>
<td>۰/۳۹</td>
<td>۰/۴۹</td>
<td>۰/۵۹</td>
</tr>
<tr>
<td>۵</td>
<td>۱/۶۵</td>
<td>۱/۷۴</td>
<td>۱/۸۴</td>
<td>۱/۹۴</td>
<td>۲/۰۴</td>
<td>۲/۱۴</td>
</tr>
<tr>
<td>۶</td>
<td>۳/۱۵</td>
<td>۳/۲۴</td>
<td>۳/۳۴</td>
<td>۳/۴۴</td>
<td>۳/۵۴</td>
<td>۳/۶۴</td>
</tr>
<tr>
<td>۷</td>
<td>۴/۱۵</td>
<td>۴/۲۴</td>
<td>۴/۳۴</td>
<td>۴/۴۴</td>
<td>۴/۵۴</td>
<td>۴/۶۴</td>
</tr>
<tr>
<td>۸</td>
<td>۵/۱۵</td>
<td>۵/۲۴</td>
<td>۵/۳۴</td>
<td>۵/۴۴</td>
<td>۵/۵۴</td>
<td>۵/۶۴</td>
</tr>
<tr>
<td>۹</td>
<td>۶/۱۵</td>
<td>۶/۲۴</td>
<td>۶/۳۴</td>
<td>۶/۴۴</td>
<td>۶/۵۴</td>
<td>۶/۶۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>۷/۱۵</td>
<td>۷/۲۴</td>
<td>۷/۳۴</td>
<td>۷/۴۴</td>
<td>۷/۵۴</td>
<td>۷/۶۴</td>
</tr>
<tr>
<td>۱۱</td>
<td>۸/۱۵</td>
<td>۸/۲۴</td>
<td>۸/۳۴</td>
<td>۸/۴۴</td>
<td>۸/۵۴</td>
<td>۸/۶۴</td>
</tr>
<tr>
<td>۱۲</td>
<td>۹/۱۵</td>
<td>۹/۲۴</td>
<td>۹/۳۴</td>
<td>۹/۴۴</td>
<td>۹/۵۴</td>
<td>۹/۶۴</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱۰/۱۵</td>
<td>۱۰/۲۴</td>
<td>۱۰/۳۴</td>
<td>۱۰/۴۴</td>
<td>۱۰/۵۴</td>
<td>۱۰/۶۴</td>
</tr>
<tr>
<td></td>
<td>جمع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

ترکیب محاسبه شده

انرژی قابل سوخت و ساز (کیلوکالری در کیلوگرم)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۰</td>
<td>۰/۱۴</td>
<td>۰/۲۴</td>
<td>۰/۳۴</td>
<td>۰/۴۴</td>
<td>۰/۵۴</td>
<td>۰/۶۴</td>
</tr>
<tr>
<td>۰/۲۰</td>
<td>۰/۳۴</td>
<td>۰/۴۴</td>
<td>۰/۵۴</td>
<td>۰/۶۴</td>
<td>۰/۷۴</td>
<td>۰/۸۴</td>
</tr>
<tr>
<td>۰/۳۰</td>
<td>۰/۴۴</td>
<td>۰/۵۴</td>
<td>۰/۶۴</td>
<td>۰/۷۴</td>
<td>۰/۸۴</td>
<td>۰/۹۴</td>
</tr>
<tr>
<td>۰/۴۰</td>
<td>۰/۵۴</td>
<td>۰/۶۴</td>
<td>۰/۷۴</td>
<td>۰/۸۴</td>
<td>۰/۹۴</td>
<td>۱/۰۴</td>
</tr>
<tr>
<td>۰/۵۰</td>
<td>۰/۶۴</td>
<td>۰/۷۴</td>
<td>۰/۸۴</td>
<td>۰/۹۴</td>
<td>۱/۰۴</td>
<td>۱/۱۴</td>
</tr>
<tr>
<td>۰/۶۰</td>
<td>۰/۷۴</td>
<td>۰/۸۴</td>
<td>۰/۹۴</td>
<td>۱/۰۴</td>
<td>۱/۱۴</td>
<td>۱/۲۴</td>
</tr>
<tr>
<td>۰/۷۰</td>
<td>۰/۸۴</td>
<td>۰/۹۴</td>
<td>۱/۰۴</td>
<td>۱/۱۴</td>
<td>۱/۲۴</td>
<td>۱/۳۴</td>
</tr>
<tr>
<td>۰/۸۰</td>
<td>۰/۹۴</td>
<td>۱/۰۴</td>
<td>۱/۱۴</td>
<td>۱/۲۴</td>
<td>۱/۳۴</td>
<td>۱/۴۴</td>
</tr>
<tr>
<td>۰/۹۰</td>
<td>۱/۰۴</td>
<td>۱/۱۴</td>
<td>۱/۲۴</td>
<td>۱/۳۴</td>
<td>۱/۴۴</td>
<td>۱/۵۴</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۱/۱۴</td>
<td>۱/۲۴</td>
<td>۱/۳۴</td>
<td>۱/۴۴</td>
<td>۱/۵۴</td>
<td>۱/۶۴</td>
</tr>
<tr>
<td>۱/۱۰</td>
<td>۱/۲۴</td>
<td>۱/۳۴</td>
<td>۱/۴۴</td>
<td>۱/۵۴</td>
<td>۱/۶۴</td>
<td>۱/۷۴</td>
</tr>
</tbody>
</table>

در دو روز آزمایش، هر ۱۵ روز یک بار پوسته تخم مرغ هر ۱۵ دی‌کیلوگرم چربی و ۱۰ دی‌کیلوگرم پروتئین می‌شود.
نداشت. شاید در برای کردن یا این ترین سطح کلسیم به سطح
بالای کلسیم این نابود که سطح $23$ درصد کلسیم به عنوان
سطح مزی حضور دارد، و از طریق افزایش شکل فعال
ویتامین D$_3$ و $25$ دی هیدروکسی کوله کلسپرول) سبب
افزایش سنتز پروپتی متعلقات کلسیم در سلول‌های غشاء
روده گردد و بازده جذب کلسیم را افزایش داده است، از
طرفی هنگامی که درصد کلسیم زیادند باشد، پروپتین
متصل کننده کلسیم غشاء روده به تغییر داده و مقدار ضخامت
کولین غشا سبب نگهداری در غشاء روهدئه، و بازده جذب
کلسیم را افزایش می‌دهد (۴).

مقایسه، ضخامت و دصر پوستها با سطح کلسیم جیره
پک رابطه درجه دوم داشت (جدول ۷)، به طوری که درصدی از
تغییرات متقابل، ضخامت و دصر پوست به که وسیله این
رابطه درجه دوم توجه می‌شد، به ترتیب برای $87/8$ و
$72/3$ و $0/6$ میان سطح کلسیم به روابط سیار قرار
به ترتیب $0/6$ و $15/8$ و $87/3$ و $91/5$ و $0/6$ میان داشت، به
طرحی که با افزایش سطح کلسیم جیره، مقایسه، ضخامت و
درصد پوست (درجه دوم افزایش). این
از سویی، این همبستگی سیار قوی نشان دهنده اهمیت
بیمار زیاد کلسیم جیره به بهبود صفات کیفی تخم مرغ است. از
آن جایی که نتیجه اصلی کیفی تخم مرغ شامل ضخامت و
مقایسه پوسته می‌باشد و با توجه به این که پوسته تخم مرغ
تقریباً $15$ درصد از کرتین کلسیم تشکیل شده است، بنابراین
عمل عمدی غذایی در تشکیل پوسته کلسیم است (۵). پس در
اینجا با افزایش سطح کلسیم، ضخامت و دصر پوست به
هایمه شده، و مقایسه، و درصد پوست به بی‌پراحت
است و در سطح مزی $6/5$ در دلی افزایش شکل فعال
ویتامین D$_3$، بازده جذب بالا رفته و کلسیم کافی فراهم گردیده
است.

اثر مقاولات کلسیم و ویتامین D$_3$ بر مقاولات، ضخامت و

خاکستر پوسته و کلسیم پوسته مورد ارزیابی قرار می‌گرفت و
کلسیم پوسته با استفاده از دستگاه تجزیه کندن بونه ارزیابی
می‌شد. ضخامت پوسته با استفاده از دستگاه ضخامت سنگ
پوسته کمتر و اندازه‌گیری کردیده، که این دستگاه قادر به
اندازه‌گیری ضخامت پوسته با دقت $100$ برای متر است. مقاومت
پوسته به وسیله دستگاه مقاومت سنج پوسته تخم مرغ از
اندازه‌گیری وگرته شد که در اندازه‌گیری تخم مرغ از محل بیشترین قطر به
طور عمومی تحت فشار قرار می‌گیرد، و مقاومت آن بر حسب
کیلوگرم بر سانتی‌متر مربع نشان داده می‌شود.

در پایان آزمایش از هر تکار یک بر مساحت کیفی پوسته و
مقدار کلسیم و فسفر خون با استفاده از اکتی‌های آماده شرکت
زیست‌شناسی مورد گردید.

از آن جایی که صفات کیفی پوسته در دوره‌های سنی
منافع اندام‌گیری شده، بوده که روش جدید اثر سری از داده‌ها
و بررسی دقیق عوامل مورد استحکام می‌سند به عنوان یک
کووریت آر در مقدار، و تدوین از طریق آتلتیک کووارتان با
استفاده از ترمافزار اس. اس. مور در تجزیه مدار قرار
گرفته. میانگین‌ها به روش راک (۴) مقایسه و برای به دست
آوردن معادلات درگیری و ضرایب همبستگی بین کلسیم و
ویتامین D$_3$ با صفات کیفی پوسته و معیارهای خون، از برنامه
اس. اس. استفاده گردید.

نتایج و بحث
تأثیر سطح مختلف کلسیم جیره بر مقاولات پوسته، ضخامت
پوسته، دصر پوسته و دصر کلسیم پوسته معنی‌دار
($P<0/05$) بود ولی از معنی‌داری بر دصر خاکستر پوسته
و کلسیم و فسفر پلسم می‌توانست (جدول ۲ و $P<0/05$) با افزایش سطح
کلسیم جیره متفاوت، ضخامت و دصر پوسته به طور
معنی‌داری ($P<0/05$) افزایش یافت، اما میان‌پایین تندرین سطح
کلسیم و سطح پایین کلسیم جیره اختلاف معنی‌داری وجود

1. Ion-Analyser, Model 3040/Rev/11-94  
2. Eggshell Thickness Meter. OGAWA SEIKI Co. LTD., 3rd Ed., OSK 13469  
3. Eggshell Intensity Meter. OGAWA SEIKI Co. LTD., 3rd Ed., OSK 13473  
5. Covariate
جدول ۲. تأثیر کلسیم بر صفات کیفی پوسته تخم مرغ

<table>
<thead>
<tr>
<th>کلسیم پوسته</th>
<th>ضخامت پوسته (درصد)</th>
<th>مقاومت پوسته (درصد)</th>
<th>مقاومت پوسته (کیلوگرم بر سانتی‌متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/19٠</td>
<td>94/0٠</td>
<td>0/8/9٠</td>
<td>9/8/0٠</td>
</tr>
<tr>
<td>27/8٠٠٠</td>
<td>93/6٨</td>
<td>8/0/6٠</td>
<td>3/2/1٠</td>
</tr>
<tr>
<td>27/8٠٠٠</td>
<td>99/٠٠</td>
<td>8/8/8٠</td>
<td>9/8/3٠</td>
</tr>
<tr>
<td>26/1٠٠٠</td>
<td>93/2٠</td>
<td>8/3/2٠</td>
<td>7/٠/6٠</td>
</tr>
<tr>
<td>29/1٠٠٠</td>
<td>90/٠٠</td>
<td>8/3/٠٠</td>
<td>5/8/٠٠</td>
</tr>
</tbody>
</table>

جدول ۳. تأثیر ویتامین D۳ بر صفات کیفی پوسته تخم مرغ

<table>
<thead>
<tr>
<th>کلسیم پوسته</th>
<th>ضخامت پوسته (درصد)</th>
<th>مقاومت پوسته (درصد)</th>
<th>مقاومت پوسته (کیلوگرم بر سانتی‌متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/1٠٠٠</td>
<td>93/8٠</td>
<td>8/0/3٠</td>
<td>2/8/3٠٠</td>
</tr>
<tr>
<td>27/8٠٠٠</td>
<td>93/7٠</td>
<td>8/3/٠٠</td>
<td>2/٠/2٠</td>
</tr>
<tr>
<td>27/8٠٠٠</td>
<td>93/2٠</td>
<td>8/6/٠٠</td>
<td>2/٠/٠٠</td>
</tr>
<tr>
<td>26/1٠٠٠</td>
<td>93/2٠</td>
<td>8/6/٠٠</td>
<td>2/٠/٠٠</td>
</tr>
<tr>
<td>29/1٠٠٠</td>
<td>90/٠٠</td>
<td>8/6/٠٠</td>
<td>2/٠/٠٠</td>
</tr>
</tbody>
</table>

جدول ۴. تأثیر کلسیم بر معیارهای خون

<table>
<thead>
<tr>
<th>فسفر پلاسما (میلی‌گرم درصد)</th>
<th>کلسیم پلاسما (میلی‌گرم درصد)</th>
<th>کلسیم (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/5</td>
<td>18/5</td>
<td>3/0٠</td>
</tr>
<tr>
<td>8/٠</td>
<td>18/٠</td>
<td>٠/٠٠</td>
</tr>
<tr>
<td>8/7</td>
<td>19/٧</td>
<td>١/٠٠</td>
</tr>
<tr>
<td>9/٠</td>
<td>1٠/٠</td>
<td>٢/٠٠</td>
</tr>
<tr>
<td>8/٩</td>
<td>٢٠/٩</td>
<td>١/٠٠</td>
</tr>
</tbody>
</table>

جدول ۵. تأثیر ویتامین D۳ بر معیارهای خون

<table>
<thead>
<tr>
<th>فسفر پلاسما (میلی‌گرم درصد)</th>
<th>کلسیم پلاسما (میلی‌گرم درصد)</th>
<th>ویتامین D۳ (واحد بین المللی در کیلوگرم جیره)</th>
</tr>
</thead>
<tbody>
<tr>
<td>٨/٥</td>
<td>١٧/٥</td>
<td>٢٠٠٠</td>
</tr>
<tr>
<td>٠/٣</td>
<td>٢٠/٣</td>
<td>٢٠٠٠</td>
</tr>
<tr>
<td>٨/٥</td>
<td>١٨٥</td>
<td>٢٠٠٠</td>
</tr>
</tbody>
</table>

در هر سطح از جدول فوق مبناهای از طریق حروف الفبایی اختراع خودکار با ماکزی‌مار دارند (P<۵).
جدول ۶. اندازه‌گیری کلسیم و ویتامین D₃ بر صفات کیفی پوسته تخم مرغ

<table>
<thead>
<tr>
<th>کلسیم پوسته (درصد)</th>
<th>مقاومت پوسته ضخامت پوسته تخم مرغ (mm)</th>
<th>D₃ (واحد بین‌المللی درکیلوگرم چربی)</th>
<th>ویتامین D₃ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۱/۰۹&lt;sup&gt;a&lt;/sup&gt;</td>
<td>۹/۱۳&lt;sup&gt;bc&lt;/sup&gt; ۳/۳۷&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>۲/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۳/۳۷&lt;sup&gt;ac&lt;/sup&gt; ۲/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۲۹/۰&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>۸/۷۴&lt;sup&gt;bc&lt;/sup&gt; ۸/۷۴&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>۵/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۶۰&lt;sup&gt;ab&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۲۷/۰&lt;sup&gt;ac&lt;/sup&gt;</td>
<td>۹/۱۵&lt;sup&gt;ab&lt;/sup&gt; ۹/۱۵&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>۵/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۲۶/۰&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۸/۴۱&lt;sup&gt;ad&lt;/sup&gt; ۸/۴۱&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۵/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۲۸/۰&lt;sup&gt;ac&lt;/sup&gt;</td>
<td>۹/۶۴&lt;sup&gt;bc&lt;/sup&gt; ۹/۶۴&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۵/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۲۸/۰&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۸/۹۹&lt;sup&gt;bc&lt;/sup&gt; ۸/۹۹&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۵/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۲۸/۰&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۹/۱۹&lt;sup&gt;bc&lt;/sup&gt; ۹/۱۹&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۵/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۲۸/۰&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۸/۹۹&lt;sup&gt;bc&lt;/sup&gt; ۸/۹۹&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۵/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۲۸/۰&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۹/۱۹&lt;sup&gt;bc&lt;/sup&gt; ۹/۱۹&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>۵/۹۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt; ۵/۳۹&lt;sup&gt;ad&lt;/sup&gt;</td>
<td>۲۰۰۰</td>
</tr>
</tbody>
</table>

در هر ستون معیار متغیر واریانس غیر مشترک اختلاف معنی‌داری داشت. (P<0.05)

نکته کمتری داشته است. بیشترین درصد کلسیم پوسته مربوط به مقدار ۶۶ درصد کلسیم بود و میان این سطح و سطح متوسط ۷۳/۲ درصد کلسیم و بخش میان سطح ۹/۳ درصد کلسیم. اختلاف معنی‌داری وجود داشت.

به طور کلی پوسته ضخامت متوسط و وزن ۵۸/۵گرم، حدیت ۲/۳ درصد کلسیم است. هر تخم مرغ قسمتی از کلسیم را از روده و قسمتی را از استخوان کسب می‌کنند، و می‌تواند کلسیم مورد نیاز برای حفظ تولید دانه به مادوا در طول زندگی پس کلسیم پایین شود افزایش گرفتگی ۲۵ هیدروکسی گیوه کلسیم و ۲۵ هیدروکسی کلسیم کوله کلسیم کلسیم نیاز دارد و در انتظار باید افزایش شکل گیوه و ویتامین D₃ در انتظار باید افزایش شکل گیوه و ویتامین D₃.

در انتظار باید افزایش گیوه و ویتامین D₃ در انتظار باید افزایش شکل گیوه و ویتامین D₃.

زیاد گیوه و ویتامین D₃ در انتظار باید افزایش شکل گیوه و ویتامین D₃.

در انتظار باید افزایش گیوه و ویتامین D₃.

در انتظار باید افزایش شکل گیوه و ویتامین D₃.

در انتظار باید افزایش گیوه و ویتامین D₃.

در انتظار باید افزایش شکل گیوه و ویتامین D₃.
جدول 7. معادلات واگشتی برای تخمین صفات کیفی پوسته و میارهای خون (Y) از کلسیم جیره (X) و همبستگی بین صفات با کلسیم جیره

<table>
<thead>
<tr>
<th>متغیر وابسته</th>
<th>معادله</th>
<th>ضریب همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقاومت پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>ضخامت پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>درصد پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>درصد خاکستر پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>درصد کلسیم پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>کلسیم پلاسمای</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>فسفر پلاسمای</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
</tbody>
</table>

جدول 8. معادلات واگشتی برای تخمین صفات کیفی پوسته و میارهای خون (Y) از ویتامین D$_3$ جیره (X) و همبستگی بین صفات با ویتامین D$_3$ جیره

<table>
<thead>
<tr>
<th>متغیر وابسته</th>
<th>معادله</th>
<th>ضریب همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقاومت پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>ضخامت پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>درصد پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>درصد خاکستر پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>درصد کلسیم پوسته</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>کلسیم پلاسمای</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
<tr>
<td>فسفر پلاسمای</td>
<td>$Y = 0.235 - 0.12 / 29x + 0.04x \times 0.04x$</td>
<td>0.915</td>
</tr>
</tbody>
</table>
مقامات پوسته با سطوح وینتاین Dپ جهره یک رابطه در چهار دوم داشت (جدول 8)، به طوری که 99 درصد از تغییرات مقامات پوسته در اثر تغییر سطوح وینتاین Dپ جهره و رابطه بیماری قوی Dپ رابطه بیماری از 0/99 (ویژه دانشت) که نشان دهنده اهمیت بیماری زیاد Dپ جهره در افرازیش مقاماتی پوسته است. وینتاین Dپ جهره از 2500 در 2400 واحدهای بین المللی، سبب افزایش معنی‌داری در ضخامت و دصرد پوسته بود. میانگین ضخامت و دصرد پوسته با کلسیم جهره رابطه در چهار دوم وجود داشت (جدول 8، 0/95) که میانگین دصرد تخاک آرازیش نمود. به طوری که 99 درصد از تغییرات ضخامت و دصرد پوسته در اثر تغییرات کلسیم جهره به وسیله معادله آرونده شده توجه گشت، از تغییرات در شرایط مختلف خصوصاً ریزکلسرولیپین و پروتينه Dپ جهره وجود داشت (جدول 8) (0/96)، که نشان دهنده اهمیت وینتاین Dپ جهره در پیشگیری ضخامت و دصرد پوسته از طریق افاژیش و جذب کلسیم است.

با افرازیش سطح وینتاین Dپ جهره، کلسیم پلاسما به طور معنی‌داری (0/5) افزایش پایه شد. در اوقاتی که 99 درصد از افرازیش سطح وینتاین Dپ جهره بیماری افتاده افرازیش فرم نهایی وینتاین Dپ و نهایتاً افرازیش بجیب کلسیم گردیده است، که با یافته‌های گوردو و بلویز و همکاران (8) متفاوت دارد. کلسیم پلاسما با سطوح وینتاین Dپ جهره رابطه در چهار دوم داشت (جدول 8)، به طوری که 99 درصد از تغییرات کلسیم پلاسما در اثر تغییر سطوح وینتاین Dپ قابل توجه بود، و همچنین بیماری قوی (0/95) بین کلسیم پلاسما و سطح وینتاین Dپ و وجود داشت، به صورتی که 99 درصد افرازیش وینتاین Dپ جهره کلسیم پلاسما (درجه دوم) افرازیش یافت. این نتیجه بیان یافته‌های فورست و همکاران (9) هم‌خوانی دارد.

امکانات اثر سطوح مختلف وینتاین Dپ جهره بر مقاومت، ضخامت و دصرد پوسته و کلسیم پلاسما معنی‌داره (0/5) بود (جدول 8، 0/5)، ولی بر دصرد خاکستر پوسته، دصرد کلسیم پوسته و فسفر پلاسما معنی‌داره (0/5) بود (جدول 8، 0/5). احتمالاً با افرازیش خاکستر پوسته و دصرد دلگذشته کلسیم پوسته، نشان دهنده اهمیت افرازیش با خاکستر (1 و 25 دی هیدروکسی کولکسیپروفرول و میزان چربی کلسیم چربی کولکسیپروفرول و جوی افرازیش نتایج با کلسیم افرازیش، پس از افرازیش مقاومت پوسته مربوط به کربنات کلسیم است، جپ افرازیش مقاومت پوسته گردیده است (19).
پروسه تأثیر سطوح مختلف کلسیم و ویتامین D بر...

کلسیم به میزان 10 درصد بالاتر از توصیه مؤسسه تحقیقات ملی، با ویتامین D توصیه شده به وسیله مؤسسه تحقیقات ملی، از این توصیه برای این مداد به میزان 20 درصد بالاتر از توصیه مؤسسه تحقیقات ملی، به منظور بهبود صفات کبدی پوسته تخم مرغ استفاده نمود.

سیاست‌گذاری

بدین وسیله از مسئولین پژوهش دانشگاه و دانشکده کشاورزی دانشگاه صنعتی اصفهان، به خاطر تأمین بودجه طرح و انجام تسهیلات نشری و گردانی می‌شود.

منابع مورد استفاده

1. پوروزا، ج. 1376. تغذیه مرغ. ج., دوم, تهران اکران.