ساخت و ارزیابی چرخ فلک بادی جدید برای کمباین غلات

سیدهمدیدی تنصیری، محمد لغوه و جواد جعفری فر

چکیده

سال‌های مقدر زیادی گنبد به عنوان اصلی ترین منبع غذا و فراورده استراتژیک در ایران در مراحل کاشت، داشت، برداشت، جابجایی، نگهداری و نهایتاً در مرحله تفکیک و تبدیل و استفاده از بین می‌رود. نابرابری‌های اساسی باید تغییر داشته باشد که کاربردی داشت. کنترلی و بهبود مدیریت و برنامه‌ریزی کاملاً کافی نبوده و نیز بهبود و بهبود سازی سطح حساسیت اپراتور و مزروعیها افت مزروعیها در ابزار محصول اساسی را کاهش داد. نیاز اصلی در زمینه اطلاعات، ساخت و ارزیابی یک سیستم جدید برای چرخ فلک مکانیکی کمباین غلات می‌باشد که چرخ فلک بادی نامیده شده است. وظیفه آن انتخاب چرخ فلک مکانیکی، دیدگاه خودرو ساخته شده در مورد بلاک چرخ فلک مکانیکی صورت گرفته در آزمون‌های مکانیکی سرعت‌های پردازشی و سرعت‌هایی که دهانه برخی از انواع پایه‌های مکانیکی یک چپکه انتخابی‌ها می‌باشد، مقایسه‌ی دقیق داده شد. نتایج آزمون‌ها، به صورت موردی توزیع جریان کننده از آن را گردید. برای آن نتایج تعداد 13 پایه این تایید شد که برای کمباین‌ها باید در درصد برخی از انواع پایه‌های مکانیکی که دهانه انتخابی مقایسه‌ی دقیق داشته باید در این راستا نخست از نظر مناسبی گرفته و در نهایت به سرعت از بازگشت به نتایج داده شد. پایه‌ای نتایج به دست آمده، جهت بهبود بیش بالا 10 درجه، و سرعت دهانه آن در دامنه‌هایی 376 دور در دقیقه مورد شرخ شد.

واژه‌های کلیدی: کمباین، ماشین‌های برداشت، برداشت، ماشین‌ها، ماشین‌آلات، تولید، گیاهان الزا، گنبد، ماشین‌های کشاورزی

1. به ترتیب دانشجوی سایه کارشناسی ارشد، دانشیار، و استادیار سابق ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

181
مقسومه
گندم به عنوان اصلی ترین منبع غذایی بشر در مراحل کشاورزی داشت، پرداشت، و حتی صرف، از راه‌های گوناگون به هدف می‌رود و این امر نظر خاصی را برای چنگل‌گیری از تلفات باید شده مطلبی. طبق گزارش هنرمندان امرار کشاورزی ایران، در سال 1375 میلادی نیکول گندم حدود 15 میلیون تن بوده است (1). اما در نظر گرفتن حدود 5 درصد افت کمیابی به طور استاندارد، با مقدار 3 درصد، 300 هزار تن و با مقدار 5 درصد، 500 هزار تن تلفات وجود دارد. ولی زبان واقعی از ارقام محاسبه‌شده فوق پیش‌تر است، چون رقم افت دانه در ایران بیش از این مقادیر استاندارد می‌باشد. بنابراین، با به کارگیری توصیه‌های ایرانی، شروع به تنظیم قسمت‌های مختلف کمیابی و بهبود سازنده درآمی‌نمایی‌ها از آن‌ها افت محصول را به سطح استاندارد رسانی، از لحاظ تحلیلی گزارش نموده.

افت کمیابی در چهار قسمت، سکویی پرک ۱، کوبنده، ۲، کامپاره‌ها، ۳ و ۴، اتفاق می‌افتد. برای پژوهش‌های انجام شده، بیشتر افت کمیابی مربوط به قسمت سکویی پرک آن بوده است (۴، ۵ و ۶). این مقدار را حدود ۸۵ درصد قلیت کمیابی گزارش گردیده‌اند (8). بررسی تلفات سکویی پرک در برش محصول سرگرمی نشان داد که ۲/۳ درصد آن‌ها مربوط به چرخ زدن در رطوبت که ۳۳/۳ درصد بوده، که این ریخت گذارد روش یاد ۳/۵ درصد، به ۵/۲ درصد رساند، از حاصل که تلفات تیغه پرک، به میزان ۲ درصد، با کاشش رطوبت تغییر قسمت‌بندی نداشته است (10).

گذشته‌ای بررسی در مورد بهتر تنظیم‌های چرخ زدن کمیابی، در مورد روش‌های جدیدتری نیز پژوهش‌های صورت گرفته است. در این پژوهش‌ها از جریان باد به صورت یک سیستم کمکی برای هدایت محصول به سمت مارکیچ نقله استفاده شده است.

در سال ۱۹۸۷ میلادی پژوهش سرگرمی نشان داد که چرخ زدن به میزان ۲ درصد، با کاشش رطوبت تغییر قسمت‌بندی نداشته است (10).

1. طبق گفته وزیر کشاورزی در دستان گلستان تلفات کمیابی حدود ۲۰ درصد گزارش شده است (کنگره مهندسی موادی‌های کشاورزی و مکانیک‌سازی).
محصولات ریزدانه را انزیبز دهد، باید منظور سیستمی را طراحی نمود که روزی جرخ فلک نوع ایشانی نصب گردد. برابر شکل ۲، جرخان ایجاد شده به طرف پیش‌های برش و زیسته و باعث محصول بیده شده پریدنگ به طرف ماربیچ رانده شود. سرعت باد خروجی از ایشانکاها در این برسی حداکثر ۷/۴ متر در ثانیه بوده (۳/۰ متری پزوهش‌های جهانساله آهنگ‌های ایلینوی این طرح می‌توانست حدود ۶۲ درصد از اتاق محصول جلوگیری کنند.

در حال ۱۹۹۱ با استفاده از جرخان هوایی چرخ فلک به نام ورتهسک توسط یک شرکت کانادایی ساخته شد، مطالعه شکل ۴ از یک پنته نوع جرخان مماسی، که در یک محفظه مساحی

1. Vortex air reel
کمپانی استفاده شده است.

هدف از طراحی سیستم چرخ فلک بادی، گسترش فناوری آسان‌تر و هم‌چنین استفاده از یک دستگاه ازارزاد است که با نیازهای کشاورزان و مزارع‌گان ما هم‌خوانی داشته باشد. به طور کلی در این پژوهش هدف از تیز مورد نظر بوده است: سازگاری پیمانه خلیج به چرخ فلک و ورنکس

(الف) کاشت: کاشت محصول در مقایسه با چرخ فلک مکانیکی

(ب) کاشت: کاشت کل تلفات کم‌بین

(ج) دید بهتر راه اندازی کم‌بین

(د) نصب آسیس سیستم بدن تغییر در سکوی برش

مواد و روش‌ها

آزمون‌های در دو قسمت آزمایشگاهی و مزرعه‌ای انجام شد.

آزمون آزمایشگاهی

در این آزمون یک پروانه نوع گریز از مرکز، با تیغه‌های به جلو خمیده با قطر 20 سانتی‌متر انتخاب و پس از نصب روی شاسی، توسعه‌نورترکیکی به گردش در اورده شد. سرعت جرخ مانند محورهای مونوور روی پنکه داشته گردید. سرعت پنکه و فاصله تیره قطعات نیز تغییر می‌یافت. نتایج به بهترین طریقه به کمک مدل‌های مناسب با روش‌های ساده و راحتی در دو قسمت اجرایی در داده شد.

جنس فلک‌ها از پلاستیک قشره، و بر اساس اندماه‌های

شکل 4. طرح کارکرد چرخ فلک و ورنکس

شکل 5. شماتیک دستگاه مورد استفاده در آزمون آزمایشگاهی

محاسبه شده برای آزمون مزرعه‌ای ساخته شد. از میان 9 کالت سرعت دورانی قابل تنظیم، پنج سرعت 2477، 2475 و 2473 دور در دقیقه ساخته شدند. این انتخاب به گونه‌ای صورت گرفت که میانگین سرعت بر اساس تولید شده توسط پنکه در کمترین سرعت دورانی (720 دور در دقیقه) به برابر 9/2 بود. پنکه در کمترین سرعت دورانی (720 دور در دقیقه) به برابر 9/2 بود. پنکه در کمترین سرعت دورانی (720 دور در دقیقه) به برابر 9/2 بود. پنکه در کمترین سرعت دورانی (720 دور در دقیقه) به برابر 9/2 بود.

پنکه در کمترین سرعت دورانی (720 دور در دقیقه) به برابر 9/2 بود.

پنکه در کمترین سرعت دورانی (720 دور در دقیقه) به برابر 9/2 بود.

پنکه در کمترین سرعت دورانی (720 دور در دقیقه) به برابر 9/2 بود.

پنکه در کمترین سرعت دورانی (720 دور در دقیقه) به برابر 9/2 بود.
ساخت و ارزیابی چرخ فلک بادی جدید براي کمپانی غلات

شکل ۶: قاب شترنگی

روی تیرگاه‌های عمودی، در هر رديف شیبکه‌های توسط نخ نازک با فصله ۳/۲ سانتی‌متر ایجاد شد. پهنای این شیبکه در رديف اول، تزدیک دهانه پنکه، سه سانتی‌متر، و در رديف نجم ۱۱ سانتی‌متر بود. همچنین، روی هر رديف نخ، در فواصل مساوی علامت‌گذاری شد (شترنگی کردن هر رديف). پس از قرار دادن این قاب جلوی دهانه پنکه در رأس‌های چپ‌نارسمه‌های ایجاد شده، سرعت با توسط سرعت سنج حرارتی ۱ اندازه گیری شد. این کار در سرعت‌های مختلف با هم تکرار انجام گردید، و برابر شکل‌های ۷ تا ۱۰، بررسی سرعت باد در جلو دهانه و در فاصله ۴۰ سانتی‌متری از آن (در سرعت دورانی ۲۲۷۲ دور در دقیقه) به کمک ترانزی cram ۱۰ مایلی. شد.

براساس این پروتکل‌ها، نمودار افت سرعت باد در فاصله ۴۰ سانتی‌متری تریم گردید (شکل ۱۱). با توجه به مقادیر میانگین سرعت واد خروجی در جلو دهانه پنکه (۹/۷ متر در ثانية)، در دو فاصله ۳۰ سانتی‌متری از آن (۹/۷۳ متر در ثانية) در سرعت دورانی ۲۴۶۷ دور در دقیقه، میزان افت در این فاصله حدود ۵۵ درصد محاسبه شد. با دست آوردن توزیع هوای خروجی و انجام محاسبات، پرای کمپانی ۱۴ فوت (۴۲/۳ متر) ۱۳ پنکه به منظور پوشش تمام پهنای کمپانی لازم تشخیص داده شد. در این آزمون میزان باد خروجی پنکه با توجه به

1. Hot-wire anemometer
2. Grapher

۱۸۵
شکل 7. پروپیل سرعت باد در طول دهانه پنکه (سرعت دورانی پنکه ۲۴۷ دور در دقیقه)

شکل 8. پروپیل سرعت باد خروجی در پهنای دهانه پنکه (سرعت دورانی پنکه ۲۴۷ دور در دقیقه)

شکل 9. پروپیل سرعت باد خروجی در طول دهانه پنکه (در فاصله ۴۰ سانتیمتری از دهانه، سرعت دورانی پنکه ۲۴۷ دور در دقیقه)
شکل ۱۰. پروفیل سرعت باد خروجی در پایتخت دهانه پنکه (در ناسیون ال ۴۰ سانتی‌متری از دهانه، سرعت دورانی پنکه ۲۴۷۷ دور در دقیقه)

\[Y = \frac{A}{t} \times \exp\left(-\frac{t}{\tau}\right) \]

فاصله از دهانه پنکه (سانتی‌متر)

شکل ۱۱. سرعت باد خروجی در فواصل مختلف از دهانه پنکه (سرعت دورانی پنکه ۲۴۷۷ دور در دقیقه)

شکل ۱۲. دستگاه طراحی شده برای آزمون مزرعه‌ای
نتایج
زاویه ۱۰ درجه در این زاویه با افزایش سرعت نپک مقدار ریزش دانه بیشتر شده است (شکل ۱). میزان افزایش در جرخ فلک مکانیکی ۱۵۳ درجه در متوسط می‌باشد. تحلیل آماری نیز اختلاف معنی‌داری را بین داده‌های سرعت ۱۰ و ۲۰ درجه در سرعت، داشته که مقدار میانگین انحراف سطح توسط جرخ فلک مکانیکی، بین ۲۲ سانتی‌متر، توزیع است (شکل ۱۴).

زاویه ۲۰ درجه
در مقایسه با حالت قبل دانه ریزش در سرعت‌های منعیت آفزایش یافته بود. به علت مثال، در سرعت ۲۰ درجه در دقیقه، مقدار ریزش ۵۰ درجه در حالی که در همین سرعت تحت زاویه ۱۵ درجه، مقدار معکوس در دقت شده است. این به طبق ترتیب جدول ۱ اختلاف معنی‌داری میان این دو زاویه وجود ندارد. افزایش تلفات در زاویه ۲۰ درجه، نشان‌دهنده افزایش در دانه بوده و این موجب تغییرات بازیابی شده و نیز برای خروجی قسمت بیشتری از دیواره‌های از زاویه به قطعات مولکولی است. همین طور، در توان مشاهده نموده به زاویه این را از لحاظ تلفات بازیابی زاویه ۸۰ درجه اختلاف معنی‌داری با جرخ فلک مکانیکی دارد (یافته در سرعت‌های ۲۳۱۸ و ۳۹۳۲ دور در دقیقه).

انحراف سطح نپک با زاویه شدن سرعت نپک افزایش یافته است، ولی می‌توان در جدول ۲ مشاهده نمود که میان انحراف سطح در این زاویه با جرخ فلک مکانیکی اختلاف معنی‌داری وجود ندارد (یافته در سرعت ۳۲۶۷ دور در دقیقه).

زاویه ۳۰ درجه
در این زاویه تغییر بود. تغییر منظر از یافته، به قسمت‌های پایین تاریک‌تر سطح بروخورد که نکت (نیست به دو زاویه دیگر) نیروی کافی برای خم کردن

به منظور استفاده‌گیری افت از یک قاب چوبی به ساخت استاندارد یک قاب سیلیکاسیونی استفاده شد. افت مزره قابل قبول وزن یخ گرم هستند به مزره نامه‌نویسی شد. افت سکوری بروز چوبی‌های نری طبق روش‌های توصیه‌شده نموده گزار و محاسبه گردید (۵). آن گاه مدل در سیستم متغیر حرکت داده شد تا در نمای سطح در و طرف صورت گیرد. پس از اندازه‌گیری، با کسانی این پردازش نمود و به اندازه طول خود به مکان گردیدند. در فضا گردیده شد، مسیر حرکت مربوط به چرخ فلک‌های بادی و مکانیکی مشخص و در سه نقطه از هر سیر نمونه‌برداری صورت گرفت و در پایه‌گزارنده جدایگان جمع آوری گردید.

در آزمون مزره‌های چهار سرعت مختلف نپک و سه زاویه وزش باد به‌روزی شد. این آزمون‌ها در سرعت‌های ۲۸۷۷، ۲۸۷۰، ۲۸۶۷ و ۲۸۳۳ دور در دقیقه، و زاویای خروجی ۴۰، ۵۰ و ۶۰ درجه به افق انجام پذیرفت. کمترین سرعت دورانی (۲۲۷۲ دور در دقیقه) به همراه انتخاب شکل سرعت باید تولید شده توسط نپک در حدود مقداری باشد در پژوهش‌های پیشین باشد (۹ و ۷). همین چنان، زوايا طوری پیش‌بینی شد که باید تولید شده از نپک در گستره زیری شبه به خوشه‌ها برخوردار نباشد. با محاسبه افت کمیابی و افت مزره، و کامیابی از مقدار جمع آوری نقطه برای مدل، افت خالص جرخ فلک‌های بادی و مکانیکی محاسبه گردید.

مقاومت به سمت آزاده نیازمند نیازمند نیازمند است. تیمار، برای بررسی نهایی و مقایسه میانگین‌ها محاسبه میانگین‌های توسط آزمون تک‌پلک در طرح بالک پیک مocha به جدول‌های مختصات متغیر شد. انحراف از تغییرات این میانگین انحراف سطح در هر سرعت و زاویه نیز به صورت آنالیزیکی (از یک دهانه نپک) برای دو سیستم جداسازی اندازه‌گیری و به منظور بررسی آماری در جدول‌های مختصات درجه شد. واریانس گذاری مورد آزمایش‌های و ساخت مزره آزمایشی ۲۷۲۳ متر مربع بود.
جدول ۱. مقایسه میانگین تلفات دانه در چرخ فلک پاییزی و مکانیکی در سطح ۵%

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>میانگین مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت پنکه (دور در دقیقه)</td>
<td>زاویه وزش باد (درجه)</td>
</tr>
<tr>
<td>۱۰</td>
<td>۳۹۷</td>
</tr>
<tr>
<td>۲۰</td>
<td>۳۷۲</td>
</tr>
<tr>
<td>۳۰</td>
<td>۲۵۱</td>
</tr>
<tr>
<td>۱۰</td>
<td>۳۲۱</td>
</tr>
<tr>
<td>۲۰</td>
<td>۷۷۷</td>
</tr>
<tr>
<td>۳۰</td>
<td>۳۸۱</td>
</tr>
<tr>
<td>۱۰</td>
<td>۴۸۱</td>
</tr>
<tr>
<td>۲۰</td>
<td>۷۳۱</td>
</tr>
<tr>
<td>۳۰</td>
<td>۸۸۱</td>
</tr>
<tr>
<td>۱۰</td>
<td>۹۳۷</td>
</tr>
<tr>
<td>۲۰</td>
<td>۹۹۷</td>
</tr>
<tr>
<td>۳۰</td>
<td>۵۵۷</td>
</tr>
</tbody>
</table>

حرف مشابه اختلاف معنی‌داری را نشان نمی‌دهد.

این نکته چرخ فلک مکانیکی ۱۵۲/۸۷ است.

شکل ۱۳. تلفات دانه توسط چرخ فلک مکانیکی و پاییزی در ۱/۰ متر مربع، به‌حساب دو پنکه
جدول ۲. مقایسه میانگین انحراف سرعت از خط قائم در چرخ فلک بادی و مکانیکی در سطح ۵\% میانگین مشاهدات

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>میانگین زاویه وزش پاید (درجه)</th>
<th>میانگین سرعت پنکه (دور در دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۲۴۷</td>
<td>۲۵(^b)</td>
<td>۲۵(^b)</td>
</tr>
<tr>
<td>۲۵۰۳</td>
<td>۲۴(^b)</td>
<td>۲۸(^ab)</td>
</tr>
<tr>
<td>۲۸۶۰</td>
<td>۲۴(^b)</td>
<td>۲۸(^ab)</td>
</tr>
<tr>
<td>۳۲۱۸</td>
<td>۲۴(^b)</td>
<td>۳۰(^a)</td>
</tr>
<tr>
<td>۳۹۷۲</td>
<td>۲۴(^b)</td>
<td>۳۰(^a)</td>
</tr>
</tbody>
</table>

حرف مشابه اختلاف معنی‌داری را نشان نمی‌دهد.

شکل ۱۲. انحراف سرعت توسط چرخ فلک مکانیکی و بادی بر حسب دور پنکه
بحث و تیمجه گیری

در زایه‌های ۱۳ و ۱۴، که به داده‌های بالا سازه‌بندی برخوردار می‌کنند و نتایج نشان می‌دهد، در جهت محصول دارد، که در زایه‌های بسلتوس‌بندی به داده‌های بالا بستگی دارد. تجربه بستگی دارد. تجربه بستگی دارد.

مواد و روش‌کار

در زایه‌های ۲ تا ۲۳، شرکت در داده‌های بالا سازه‌بندی برخوردار است. منابع این سازه‌بندی برخوردار نمایان شده است. نتایج نشان می‌دهد که در زایه‌های بسلتوس‌بندی به داده‌های بالا بستگی دارد.