سیده‌دهی تصمیم، محمد لطفی و جواد جعفری فر

چکیده

سالینه مردابِ زیادی گنگ به عنوان اصلی‌ترین منبع خشایابی و فراورده‌استرائیاک، در عراق در مراحل کشت، داشت، برداشت، جابجایی، تغییرات و نهایتاً در مرحله تجهیز و تبدیل و مصرف از بین می‌روند. نتایج به‌طور کلی به‌کارگیری داشت کشاورزی و بهره‌برداری، بی‌توجهی گرایش‌های کشاورزی که داشت محصول، و نیز اصلاح و بهبود سازی ساختنی ادوات و ماسکینه‌ها، اف‌میزه‌سازی این محصول اساسی‌ترین داد. پروپتها حاضر در زمینه‌ی طراحی، ساخت و ارزیابی یک چگونه چشمه برای چرخ لکن کشاورزی مناسب غلات می‌باشد که چرخ لکن باید نمایشگاه اصلی شده است، و اغلب آن زمانی که چرخ لکن کشاورزی، هدایت خوبی که به سمت نگهداری برخ می‌باشد. به منظور ارزیابی این طرح جدید، آزمون‌های آزمایشگاهی و مزرعه‌ای سرعت اوریجینال به درون آزمون آزمایشگاهی، سرعت با خروجی از دهانه یک چکه انتخابی که فراتری سانتی‌متری از آن، با فواصل ده سانتی‌متری، و در سرتاسر عرض دهانه پکه اندام هست که هر شید.

نتایج آزمون به صورت نمودار توزیع جهانی بیان ارائه گردید. برای این نتایج نسبت ۱۳ پکه برای کمباینی به عرض برخ ۱۴ فوت (۴.۳ متر) مناسب تحقیق‌های شد. نتایج آزمون‌های مزرعه‌ای عبارتند از نوع چرخ لکن باغی و مکانیکی شناس می‌دهند که پیلیب‌های خودرو و دانشی‌های انجام می‌شود که به محصول، کمتر از نوع مکانیکی است. این زمانی که سرعت پکه، دو نتایج محصول به صورت خطي افزایش می‌یابد. آزمون مزرعه‌ای در سرعت‌های دو ۰.۳۶۵ و ۰.۳۶ و سرعت پکه، طرح یک سنتی‌متر در دو دقیقه، و سرعت خروجی به دقت اطمینان دهانه پکه به توجه به تحلیل آماری طرح بکر کامل تصادفی توسط مقاصد توک‌ (پایانده تیمار و ۴ پیوند دیگر نیز) در سطح ۵٪ اختلاف معنی‌داری از فاصله لکن‌های محصول در زمان زایمان چرخ لکن باغی و مکانیکی ورود داشت. برای این نتایج به دست آمده، جهت ورود پکه به درجه بهتر، و سرعت دورانی آن در دامنه تا ۴۳ و ۴۳ در در دقیقه، مورد استفاده قرار گرفت.

واژه‌های کلیدی: کمباین، ماشین‌های برداشت، برداشت، ماشین‌ها، ماشین‌آلات، برداشت گیاهان زراعی، گنگ، ماشین‌های کشاورزی

1. به ترتیب دانشجوی سایز کارشناسی ارشد، دانشیار، و استدامتوان سایز ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
مقدمه
گندم به عنوان اصلی توری منعب غذایی بشر در مراحل کاشت، داشت، برداشت، و حتی صرف، از راه‌های گوناگون به هدر می‌روید. این امر نظر خاصی را برای جلوگیری از تلفات بادی شده می‌طلبه. طبق گزارش سالانه آمار کشاورزی ایران، در سال 1375 مقدار تولید گندم حدود 16 میلیون تن بوده است (1). با در نظر گرفتن حدود 5 درصد افت کمیابی به طور استاندارد، با مقدار 3 درصد، 200 هزار تن و با مقدار 5 درصد، 500 هزار تن تلفات وارد دارد. ولی زنان واقعی از ارگ سازی محاسبه‌شده فوق پیشتر انتظار چون رقم افت دانه به ایران بخش مالی این مقدار استاندارد می‌باشد. بنابراین، با هر کارگی نهایی توصیه‌های ایران شده برای تنظیم سمت‌های مختلف کمیابی و بهبود سازمان آنها و توان افت محصول را به سطح استاندارد رسانیده و از تلفات اندازگیری نمود.

افت کمیابی در چهار کشت، سکوی برش 1، کوبنده 2، کاپرون 3 و غربال 4 اتفاق می‌افتد. بر این پایه پذیرش‌های نهایی شده، بیشترین افت کمیابی مربوط به سمت سکوی برش آن بوده است (4، 5 و 10). این مقدار را حدود 80 درصد کل تلفات کمیابی گزارش کرده‌اند (8). بررسی تلفات سکوی برش در برداشت محصول سُروگرم نشان داد که در 3/2 درصد افت کل محصول مربوط به چرخ در طول 33/6 درصد بوده که این ریشه‌کم شدن رطوبت تا 13 درصد، به 5/2 درصد رسیده است. در حالی که تلفات شدید، به میزان 2 درصد، با کاهش رطوبت تغییر چشم‌گیری نداشته است (10).

1. طبق گفته وزیر کشاورزی در استان کرمان تلفات کمیابی حدود 30 درصد گزارش شده است (کنگره مهندسی مهاری‌های کشاورزی و مکانیک‌سازی).
2. Cutting platform
3. Threshing unit
4. Straw walker
5. Sieves
6. Reel

1380 میلادی 1973-74 روی محصول سویا انجام

شکل 1. تصویر شماتیک سکوی برش در پژوهش‌های تا تابع و نیو (9)
ساخت و ارزیابی چرخ فلک بادی جدید برای کمباین غلات

شکل ۲. تصویر شماتیک از آزمون آزمایشگاهی برداشت سویا (۷)

شکل ۳. تصویر شماتیک چرخ تله اگشتی - بادی

در عرض کمباین قرار دارد، برای تولید باد استفاده شده است. سرعت چرخشی پروانه در دامنه ۱۳۰۰-۲۰۰۰ دور در دقیقه می‌باشد. به خاطر برخورد تکردن چرخ فلک و محصول، از هدر رفتن حدود ۱۶۵ کیلوگرم گندم در هکتار چلوگیری می‌شود. طرح باد شده از نوع تجاري بوده و نتایج پژوهش علمی آن گزارش نشده است.

یا توجه به پرده‌های انجام شده‌گذشته، طرحی با هدف کم کردن برخورد مکانیکی میان محصول و چرخ تله کمباین برای کاستن افت مربوط به چرخ فلک ارائه شده است. در این طرح از فشار ایجاد شده توسط باد پنجه، برای خم کردن ساقه محصول و راندن آن به طرف تیغه و مارپیچ نقاله سکویی برش محصولات ریزدانه را افزایش دهد. به‌دين منظور سیستمی را طریقی نمود که روی چرخ تله نوع اگشتی گردید. برای شکل ۳ جریان ایجاد شده به طرف تیغه‌های برش وزیده و باعث می‌شود محصول بریده شده بی‌درنگ به طرف مارپیچ رانده شود. سرعت باد خروجی از افشاکه‌ها در این برسی حدود ۲/۷ متر در ثانیه بود (۳:۲). طبق پژوهش‌های چهارساله دانشگاه ایلینوی این طرح می‌توانست حدود ۶۲ درصد از افت محصول چلوگیری کند.

در سال ۱۹۹۱ با استفاده از جریان هوایی چرخ فلک به نام ورتنگ ۱ توسط یک شرکت کانادایی ساخته شد. مطباق شکل ۴ از یک پنجه نوع جریان مماسی، که در یک محفظه سراسري

1. Vortex air reel
کمیابان استفاده شده است.
هدف از طراحی سیستم چرخ فلک بادی، گسترش قناعی آسانتر و هم‌چنین استفاده از یک دستگاه ارزان‌تر است که با نیازهای کشاورزان و سازندگان ما هم‌خوانی داشته باشد. به طور کلی در این پژوهش اهداف زیر مورد نظر بوده است:
الف) کالر هزینه نسبت به چرخ فلک ورنکس ب) کاهش (دوربر) محصول در مقایسه با چرخ فلک مکانیکی ج) کاهش مقدار کل تلفات کمیابان (د) دید بهتر برای راننده کمیابان

۵) توصیع آسان سیستم بدون تغییر در سکوی برش

مواد و روش‌ها
آزمون‌ها در دو قسمت آزمایشگاهی و مزرعه‌ای انجام شد.

آزمون آزمایشگاهی
در این آزمون یک پروران نوع گریز از مرکزی با تیغه‌های به جلو خمیده با قطر ۵۰ سانتی‌متر انتخاب و، این از نصب روی شاسی، توسط موتور الکتریکی به گردش در اورده شد. سرعت قهوه‌سی ساخت موتور ۱۲۳۰ دور در دقیقه بود که به وسیله دو فرکانس‌مرکب سه وضعیتی روی محورهای موتور و پنکه داشته سرعت برای ۲۴۰۰–۲۵۲۰ دور در دقیقه ایجاد گردید (شکل ۵).

چنس فرقوها از پلاستیک فشرده، و بر اساس اندازه‌های
روی نیزکه‌های عمودی، در هر دویف شبکه‌ای توسط نخ نازک با فاصله یک سانتی‌متر ایجاد شد. پهنای این شبکه‌ها در رديف اول، تعداد دهانه پنکه، سه سانتی‌متر، و در رديف پنجم 11 سانتی‌متر بود. هم‌چنین، روی هر دویف نخ، در فواصل مساوی علامت‌گذاری شد (شترنگی کردن هر دویف). پس از قرار دادن این قابل جلوی دهانه پنکه در رأس‌های چهارخانه‌های ایجاد شده، سرعت با توسط سرعت سنج حواری 1 اندازه‌گیری شد. این کار در سرعت‌های مختلف با سه تکرار انجام گردید، و برای شکل‌های 7 تا 10، پروری سرعت با دیجیتال جلو دهانه و در فاصله 40 سانتی‌متری از آن (در سرعت دورانی 2272 دور در دقیقه) به کمک نرم‌افزار گزارش 1 رسم شد.

براساس این پویلیها، نمودار افت سرعت باد در فاصله 40 سانتی‌متری ترسیم گردید (شکل 11). البته، به مقدار میانگین سرعت باد در جلو دهانه پنکه 9/6 متر در ثانیه و در فاصله 40 سانتی‌متری از آن (3/1 متر در ثانیه) در سرعت دورانی 2272 دور در دقیقه، میزان افت در این فاصله حدود 55 درصد محاسبه شد. با توجه به توزیع‌های خروجی و اندازه‌گیری‌ها، پری کمپانی 14 فوت (3/5 متر) پنکه به منظور پوشش تمام پهنای کمپانی لازم تشخیص داده شد. در این آزمون میزان باد خروجی پنکه با توجه به

1. Hot-wire anemometer 2. Grapher
شکل 7. پروپیل سرعت باد در طول دهانه پنکه (سرعت دورانی پنکه ۲۲۷۷ دور در دقیقه)

شکل 8. پروپیل سرعت باد خروجی در پنکه دهانه (سرعت دورانی پنکه ۲۲۷۷ دور در دقیقه)

شکل 9. پروپیل سرعت باد خروجی در طول دهانه پنکه (در فاصله ۴۰ سانتی‌متری از دهانه، سرعت دورانی پنکه ۲۲۷۷ دور در دقیقه)
شکل ۱۰ پروفیل سرعت باد خروجی در پهنای دهانه پنکه (در ناحیه ۴۰ سانتی متری از دهانه، سرعت دورانی پنکه ۲۴۷ دو در دقیقه)

\[Y = 8.8 \times \exp(-0.003x) \]

شکل ۱۱. سرعت باد خروجی در فواصل مختلف از دهانه پنکه (سرعت دورانی پنکه ۲۴۷ دو در دقیقه)

شکل ۱۲. دستگاه طراحی شده برای آزمون مزرعه‌ای
نتایج
ژاوه ۱۰ درجه
در این زاویه با افزایش سرعت پنکه مقدار ریزش دانه بیشتر شده است (شکل ۱۲) (میانگین ریزش در جرخ فلک مکانیکی ۱۵۳ دانه در ۱ متر مربع مشاهده شده است). تحلیل آماری نشان از این است که با افزایش میان‌گریپ فکری‌ها، سطح سرعت‌های ترکت داده شد تنها نمایش دهنده در دو طرف صورت گرفت. پس از اینکه، میانگین این پردازش نمایش دهنده نیز در درازه طول خود به عقب بیشتر داده شد. در فضای آزاد شده، سیستم حرکت مربوط به چرخ فلک‌های بادی و مکانیکی مشخص و در سه نقطه از هر سیر مورد بررسی صورت گرفت و در پانپات های چادگاه جمع آوری گردید.

از آزمون مزرعه پنکه سرعت مختلف پنکه و سه زاویه وزش، با دنباله مشابه، هنوز آزمون‌ها در سرتخت‌های ۱۷۷۲۷۴۱۷۸۱۷۸۲۱۷ و ۱۷۸۲۱۷۸۲۳۱۷۹۲۱۷۲۰ و ۱۷۹۲۱۷۲۳۱۷۳۲۰ و ۱۷۳۲۰ در دقیقه، و زاویه‌ای خروجی ۱۵ و ۲۰ و ۳۰ درجه نسبت به یافته‌ای انتخاب شده که برای تولید سرعت مطلوب پنکه در حدود مقداری باید در آزمون زاویه‌ی پنکه باید تولید شده از گونه انتخاب شده که در پنکه در گستره زیر سطح به خودشان برخوردار نمی‌باشد. با محاسبه این کمباین و این نتایج، و کامپیوتر از مقدار جمع آوری شده برای مدل، این نتایج از چرخ فلک‌های بادی و مکانیکی محسوس‌گردد.

مقدارهای بست آبی‌رنگ نیما و مقایسه میانگین داده‌ها توسط آزمون تکی، در طرح بلوک کامل تصادفی به جدول‌های مخصوص چیدمانی شد. منحنی استانداردهای سرعت در این زاویه با چرخ فلک مکانیکی اختلاف محسوس داری و وجود تبادل (بیج در سرعت ۲۳۴۷۲۰ در دقیقه) است، ولی می‌توان در دانه با مشاهده نمود که میانگین این مقدار سرعت در این زاویه با چرخ فلک مکانیکی اختلاف محسوس داری وجود ندارد (بیج در سرعت ۲۳۴۷۲۰ در دقیقه).

ژاوه ۲۰ درجه
در این زاویه چون پنکه به قسمت‌های پایین تر سرعت برف‌های ممکن (تسیب به به دام، زاویه دیگر)، نیروی کافی برای خم کردن
جدول 1. مقایسه میانگین تلفات دانه در پنکه مکانیکی و پنکه دستی در سطح 5% تیمارها

<table>
<thead>
<tr>
<th>میانگین</th>
<th>مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td>زاویه وزش باد (درجه)</td>
<td>سرعت پنکه (دور در دقیقه)</td>
</tr>
<tr>
<td>60°</td>
<td>2247</td>
</tr>
<tr>
<td>30°</td>
<td>2503</td>
</tr>
<tr>
<td>10°</td>
<td>2860</td>
</tr>
<tr>
<td>120°</td>
<td>9318</td>
</tr>
<tr>
<td>150°</td>
<td>3932</td>
</tr>
</tbody>
</table>

۱۵۲/۸ا

حرف مشابه اختلاف معنی‌داری را نشان نمی‌دهد.

شکل ۱۳. تلفات دانه توسط پنکه مکانیکی و پنکه دستی در ۱/۰ مترمربع، بر حسب دور پنکه
جدول ۲. مقایسه میانگین انحراف ساقه از خط قائم در چرخ فلک بادی و مکانیکی در سطح ۵\% میانگین

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>مشاهدات</th>
<th>زاویه وزش پاد (درجه)</th>
<th>سرعت پنکه (دور در دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۲۵(^{b})</td>
<td>۲۵(^{b})</td>
</tr>
<tr>
<td>۲۴۴۷</td>
<td></td>
<td>۲۵(^{b})</td>
<td>۲۵(^{b})</td>
</tr>
<tr>
<td>۲۱۰۰</td>
<td></td>
<td>۲۴(^{b})</td>
<td>۲۴(^{b})</td>
</tr>
<tr>
<td>۲۱۵۳</td>
<td></td>
<td>۲۷(^{ab})</td>
<td>۲۷(^{ab})</td>
</tr>
<tr>
<td>۲۸۵۰</td>
<td></td>
<td>۲۴(^{b})</td>
<td>۲۴(^{b})</td>
</tr>
<tr>
<td>۳۲۱۸</td>
<td></td>
<td>۲۸(^{ab})</td>
<td>۲۸(^{ab})</td>
</tr>
<tr>
<td>۳۹۳۲</td>
<td></td>
<td>۳۰(^{a})</td>
<td>۳۰(^{a})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۸(^{ab})</td>
<td>۲۸(^{ab})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۳۰(^{a})</td>
<td>۳۰(^{a})</td>
</tr>
</tbody>
</table>

حروف مشابه اختلاف معنی‌داری را نشان نمی‌دهد.

شکل ۱۴. انحراف ساقه توسط چرخ فلک مکانیکی و بادی بر حسب دور پنکه

سیرت دورانی پنکه (دور در دقیقه)
بحث و نتیجه‌گیری
در زاویه ۱۶ درجه، به بادا قسمت‌های بالای ساقه برخورد می‌کند و پذیرش مناسب را در توده محصول ندارد، خامد کردن ساقه به صورت توده‌ها می‌گیرد. با توجه به این که از تولید ساقه در سطح مزرعه نیست، و از تولید خزه فلک برای یکینگ ارتفاع تنظیم می‌شود، باید این امر را با دنیای خواهد بود.

در زاویه ۲۰ درجه نیز نسبت به زاویه‌های ۱۶ و ۲۲ درجه

می‌تواند به برخورد با عرض دهان پیشه پردازی کنیا کم یکن و تولید مناسب باشد. این زاویه ساقه کربنیک دشته‌ها و شرطی تولیدی می‌گردد که از نظر توان مصرفی اختلاف معنی‌داری با سرعت های ۲۳۱۸ دور در دقیقه، تغییرات زودرس برای پنکه است.

به توجه به توزیع سرعت باید خواهد بود. این مسئله اغلب تلفات را به دنیای خواهد داشت.

در زاویه ۳۰ درجه نیز نسبت به زاویه‌های ۱۶ و ۲۲ درجه

باید از قدرت کمتری برخورد دارد. چون در این زاویه با داده قسمت‌های بالایی محصول برخورد نمی‌شود.

در زاویه ۰ درجه نیز نسبت به زاویه‌های ۱۶ و ۲۲ درجه

به بادا قسمت‌های بالای ساقه برخورد می‌کند و پذیرش مناسب را در توده محصول ندارد، خامد کردن ساقه به صورت توده‌ها می‌گیرد. با توجه به این که از تولید ساقه در سطح مزرعه نیست، و از تولید خزه فلک برای یکینگ ارتفاع تنظیم می‌شود، باید این امر را با دنیای خواهد بود.

منابع مورد استفاده
1. وزارت کشاورزی. ۱۳۶۷. نگاهی به زراعت و باغبانی در ایران. اداره کل آمار و اطلاعات، معاونت برنامه‌ریزی و پشتیبانی.