ساخت و ارزیابی چرخ فلک بادی جدید برای کمباین غلات

سیده‌دهی نصیری، محمد لطفی و جواد جعفری فر

چکیده

سال‌های مقدر زیادی گنده به عنوان اصلی سرنوشت محصولات استان کرخ، برای استخراج مقدار زیادی بهره‌برداری و به‌طور کلی در مراحل کاشت، آماده‌سازی، برداشت، جابجایی، نگهداری و نهایتاً در مرحله تغییر و تبدیل و مصرف از بین می‌روند. با افزایش نیاز به کمک‌گیری داشتن کشاورزان و بهبود مدیریت و برنامه‌ریزی کاشت و داشت محصول، نیز اصلاح و بهبود سازی ساختن ادوات و ماشین‌ها، افزایش مزرعه‌ای این محصول اساسی را کاوش داد. پیشنهاد حاضر در زمینه طراحی، ساخت و ارزیابی یک چرخ فلکی جدید برای چرخ فلکی کمباین غلات به دستاوردشانده‌ترین، عملکرد بهتر و بهره‌برداری بهتر از ماشین کشاورزی ایده‌آل خواهد بود. به منظور ارزیابی این طرح جدید، آزمون‌های آزمایشگاهی و مزرعه‌ای صورت گرفت. در آزمون آزمایشگاهی، سرعت باعث خروجی از دهانه یک پکه انتخابی به فاصله سانتی‌متری از آن، با تغییرات بهداشتی به حداقل می‌رسد. در آزمون‌های مزرعه‌ای، سرعت روانه‌کردن گنده به دلیل تغییرات در پیوندهای آراشی و دما، به رشد و ورود به سیستم وارد داده شد.

نتایج آزمون‌ها به صورت نوپردازی تولید جهیزیه و آب‌زایی کردند. بر اساس نتایج تعداد 13 پکه در 14 فوت (4/3 متر) مناسب تشکیل داده شد. نتایج آزمون‌های مزرعه‌ای عمکبرد در نوع چرخ فلک بادی و ماکانیکی نشان می‌دهد که تعداد جرخ فلک بادی هنگام برداشت به سبب برخورد تندای سطح و تغییرات ضریب به محصول کمتر از نوع ماکانیکی است. با افزایش سرعت پکه، تعداد محصول به صورت جرخی افزایش می‌یابد. آزمون‌های آزمایشگاهی در سرعت‌های دورانی 150، 247، 248، 318 و 323 دور در دقیقه و امتداد خروجی 400 و 30 درجه نسبت به عمق لایه پوشینه، با توجه به تخلیل آماری طرح پلوک کاملاً تصادفی توسط مقایسه تکی (پایانه تیمار و شکننده در مرحله تیمار)، در سطح 0.05% اختلاف معنی‌داری از نظر تعداد محصول در این روابط میان جرخ فلک بادی و ماکانیکی وجود داشت. بر اساس نتایج به دست آمده، جهت ورود پکه 20 درجه و سرعت دورانی آن در دامنه 260 تا 264 دور در دقیقه نوپردازی می‌شود.

وزه‌های کلیدی: کمباین، ماشین‌های برداشت، برداشت، ماشین‌های کشاورزی، گنده، ماشین‌های کشاورزی

1. به ترتیب دانشجوی سایر کارشناسی ارشد، دانشیار، استاد و سایر دانشجویان ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

181
مقدمه
گندم به عنوان اصلی تنوع غذایی بشر در مراحل کاشت، داشت، پردازش، و حتی صرف، از راه‌های مختلف به هدر می‌روید. این امر نظر خاصی را برای جلوگیری از تلفات بی‌شک به استفاده می‌طلبد. طبق گزارش سال‌ها، آمار کشاورزی ایران در سال ۱۳۷۵ میلادی، تولید گندم حدود ۱۵ میلیون تن بوده است (۱). در نظر گرفتن بحران‌های مصرف در طور استاندارد، با مقدار ۳ دصد، ۳۰۰ هزار تن و با مقدار ۵ دصد، ۵۰ هزار تن نیازهای جهانی را، ولی زمان واقعی از ارائه محاسبه‌های فوق بیشتر است، چون رقم افت میان در ایران بیش از این مقدار استاندارد می‌باشد. (۲). بنابراین، با به کارگیری موجودی‌های ارائه شده برای تنظیم قسمت‌های مختلف کمبود و بهبود سازمانی آن، می‌توان افت محصول را به سطح استاندارد رساند. و از تلفات اضافی جلوگیری نمود.

افت کمبود در چهار قسمت، سکوی برش، گودال، کامپان، شبکه‌های قیمت‌دهی و شبکه‌های انتقال مایع. بر پایه پژوهش‌های انجام شده، بیشترین افت کمبود محیط بر سکوی برش آن بوده است. (۴). این مقدار را حدود ۸۰ دصد کل تلفات کمبود گزارش کرده‌اند. (۸). بررسی تلفات سکوی برش در برداشت محصول سیروک در این درصد کل تلفات کمبود محیط به میزان ۲/۳ درصد کل بوده که این روش با کم شدن رطوبت تا ۱۱ درصد، به ۱/۲ درصد رسانیده است. در حالی که تلفات تغییر بخش، به میزان ۲ درصد، با کاهش رطوبت تغییر کشبی‌ها نشان داده‌است (۱۰).

گذشته از بررسی در مورد بهترین تنظیم‌های جرخ فلک کمبود، در مورد روش‌های جدیدتر بر پژوهش‌های صورت گرفته است. این پژوهش‌ها از جریان باد به صورت یک سیستم کمکی برای هدایت محصول به سمت مارکیج نقله‌ای استفاده شده است.

افت سیروک در میلاد مشترک محصول سیروک انجام

در سال ۱۹۸۹ میلادی پژوهش‌روی محصول سیروک انجام گیرد.

(۱) طبق گفته وزیر کشاورزی در استان‌گان نرخ کمبود حدود ۳۰ دصد گزارش شده است (کنگره مهندسی ماسینه‌های کشاورزی و مکانیابی‌بند).

1. Cutting platform
2. Threshing unit
3. Straw walker
4. Sieves
5. Reel

(مرداد ۱۳۷۷)
در عرض کمیابین قرار دارد، برای تولید باد استفاده شده است.
سرعت جریان متوسط نموده روي جریان فلک نوع انگشتی می‌باشد.
برای شکل ۲ جریان ایجاد شده به طرف تیغه‌های برش وزیده و باعث می‌شود محصول بریده شده بی‌درنگ به طرف مرزی چهارسانه داشته‌گاه ایلانیوز ایبین طرح می‌توانند حدود ۷۲/۷ متر در ثانیه بود (۳۸). طبق پژوهش‌های
ورثکی ۱ توسط یک شرکت کانادایی ساخته شده مطالبی شکل ۴ از یک پنکه نوع جریان معکوس، که در یک محفظه مساحی
کمیابی استفاده شده است.
هدف از طراحی سیستم چرخ چک لک بادی، گسترش فناوری آسانتر، کمترین استفاده از یک دستگاه ارزان‌تر است که با نیازهای کشاورزان و سازندگان ما همه‌پرسی داشته باشد. به طور کلی در این پژوهش اهداف زیر مورد نظر بوده است:
الف) کاهش هزینه نسبت به چرخ چک و رنگین ب) کاهش (دوربر) محصول در مقایسه با چرخ چک مکانیکی ج) کاهش مقدار کل تلفات کمیابی
د) دید بهتر برای راننده کمیابی
ه) نصب آسان سیستم بدون تغییر در سکوی برخ

مواد و روش‌ها
آزمون‌ها در دو قسمت آزمایش‌گاهی و مزرعه‌ای انجام شد.

آزمون آزمایش‌گاهی
در این آزمون یک پروران نوع گرگز از مرکز با تیغه‌های به جلو خمیده با قطر ۲۰ سمینی متراً انتخاب و پس از نصب روی شاسی، توسط موتور الکتریکی به گردش در آورد. سرعت چرخش شانه موتور ۱۲۳ دور در دقیقه بود که به وسیله دو فرتره مرکب سه وضعیتی روی محرورهای موتور و پنکه و دامنه سرعت ییار ۱۳۲-۱۳۰ دور در دقیقه ایجاد گردید (شکل ۶). جنس فرتره‌ها از پلاستیکی فشرده، و بر اساس اندازه‌های

شکل ۶. طریق کارکرد چرخ چک و رنگین

شکل ۵. شماتیک دستگاه مورد استفاده در آزمون آزمایش‌گاهی
روی نبردهای عمودی، در هر ریف، شبکه‌ای توزیع شده‌اند. بنابراین، این شبکه‌ها در راکد باقی مانده شده‌اند. بنابراین، این شبکه‌ها در رفتار اول نتیجه دهانه یکی، سه منطقه متری، و در رفتار دوم، 7/8 سانتی‌متر بوده. این ریف نخ، در فواصل مساوی علامت‌گذاری شد (شکل‌های گرد و ریف)، پس از قرار دادن این قابل جلوی دهانه یکی در آسان‌سازی چهار خانه‌ها و ایجاد شده، سرعت باد توسط سرعت سنج حرارتی 1 آندازه‌گیری شد. این کار در سرعت‌های مختلف با سه تکرار انجام گردید و برای شکل‌های 7 تا 10، برونی سرعت باد در جلوه دانه و در فاصله 45 سانتی‌متری از آن (در سرعت دورانی 2247 دور در دقیقه) به کمک نمایش داده شد.

براساس این پروتکل‌ها، نمودار افت سرعت باد در فاصله 40 سانتی‌متری ریسیم گردید (شکل 11). با توجه به مقادیر میانگین سرعت باد خروجی در جلوه دهانه یکی (7/8 متر در ثانیه)، و در فاصله 30 سانتی‌متری از آن (13/1 متر در ثانیه)، در سرعت دورانی 2247 دور در دقیقه، میزان افت در این فاصله حدود 5 درصد محاسبه شد. به دست آورنده توزیع هوای خروجی و انجام محاسبات، برای کمپیوتر 44 موت (320 متر)، پنکه به منظور پوشش تمام پایین کمپیوتر لازم تشخیص داده شد. در این آزمون میزان باد خروجی پنکه با توجه به

![شکل 6: تاب شترینی]
شکل 7. پروتئین سرعت باد در طول دهانه پنجه (سرعت دورانی پنجه 247 دور در دقیقه)

شکل 8. پروتئین سرعت باد خروجی در پنجه دهانه پنجه (سرعت دورانی پنجه 247 دور در دقیقه)

شکل 9. پروتئین سرعت باد خروجی در طول دهانه پنجه (در فاصله 40 سانتی‌متری از دهانه، سرعت دورانی پنجه 247 دور در دقیقه)
شکل 10. پروفیل سرعت یاد خروجی در یک چهار دهانه پنکه (در ناحیه ۴۰ سانتی‌متری از دهانه، سرعت دورانی پنکه ۲/۴۷ دور در دقیقه)

\[Y = \frac{a}{X} \times \exp\left(-\frac{X}{b}\right) \]

شکل 11. سرعت یاد خروجی در فواصل مختلف از دهانه پنکه (سرعت دورانی پنکه ۲/۴۷ دور در دقیقه)

شکل 12. دستگاه طراحی شده برای آزمون موردی
ب مسئول اندازه‌گیری افت از یک قاب چوبی به مساحت استندارد یک فوت مربع (1/4 متر مربع) استفاده شد. افت مزرعه قبل از ورود هور گون دستگاه به مزرعه نمونه‌گیری شد. سکوره بر سطحی چسبانی نزدیک تریک روش‌های توصیه شده نمونه‌گیری و محاسبه گردید (5). آن گاه مدل در سه متری حرکت داده شد تا گرمانه سطح در دو طرف صورت گیرد. پس از استقرار، یادمان نیز برداشت نمو و به اندامی طول خود به عقب بگرگشت داده شد. در فصل سوم، مسیر حرکت مربوط به چرخ سطوحی بادی و مکانیکی مشخص و در سه نقطه از هر سیستم نمونه‌برداری صورت گرفت و در پایان‌های چیدمان جمع آوری گردید. در آزمون مزرعه‌ای پنج سرعت مختلف پنگه و سو زاویه وزش با بررسی شد. این آزمون‌ها در سرعت‌های 2377 4530، 3685 و 3497 در دقیقه و زاویه‌برخوردی 160، 100 و 50 درجه نیست که از انجام پذیرفت. کمترین سرعت دورانی (2475 دور دقیقه) به سوی انتخاب شدکه سرعت باید تولید شده توسط پنکه در حدود میان‌بندی باد شده در پژوهش‌های پیشین باید (7 و 9). همچنین، زاویه طوری پیش بینی شد که باید تولید شده از پنکه در گستره زیر سبب به‌خوبی برخورد نماید. با محاسبه افت کمیابی و افت مزرعه و کاملاً از مقدار جمع آوری شده برای مدل، افت خالص چرخ سطوحی بادی و مکانیکی محاسبه گردید. مقادیر به دست آمده از پژوهش‌های قبلی و میزان سطوحی به وسیله سطوحی نمونه‌گیری داده‌ها توسط آزمون‌هایی در طرح بلوک کاملاً تصادفی به جدول‌های مخصوص متعلق شد. انتظار بر تغییرات از میزان سطوحی از پنکه به خوبی بروز نماید. با محاسبه افت کمیابی و افت مزرعه و کاملاً استفاده از تعداد نمونه‌گیری از پنکه برای دو سیستم جدایگان اندازه‌گیری و به منظور بررسی آماری در جدول‌های مخصوص داده شد. واردیت گندم مورد آزمایش تویید و سماحت مزرعه آزمایشی 350 متر مربع بود.
جدول 1. مقایسه میانگین تلفات دانه در چرخ فلک پادی و مکانیکی در سطح 5%ً

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>میانگین مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td>زاویه وزش باد (درجه)</td>
<td>سرعت پنکه (دور در دقیقه)</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>30</td>
<td>65/</td>
</tr>
<tr>
<td>50</td>
<td>b</td>
</tr>
<tr>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>30</td>
<td>78/</td>
</tr>
<tr>
<td>50</td>
<td>b</td>
</tr>
<tr>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>30</td>
<td>77/</td>
</tr>
<tr>
<td>50</td>
<td>b</td>
</tr>
<tr>
<td>20</td>
<td>88</td>
</tr>
<tr>
<td>30</td>
<td>79/</td>
</tr>
<tr>
<td>50</td>
<td>b</td>
</tr>
<tr>
<td>20</td>
<td>93/</td>
</tr>
<tr>
<td>30</td>
<td>81/</td>
</tr>
<tr>
<td>50</td>
<td>b</td>
</tr>
<tr>
<td>20</td>
<td>86</td>
</tr>
<tr>
<td>30</td>
<td>99/</td>
</tr>
<tr>
<td>50</td>
<td>a</td>
</tr>
<tr>
<td>30</td>
<td>85/</td>
</tr>
</tbody>
</table>

حرف مشاهه اختلاف معنی‌داری را نشان نمی‌دهد.

شکل 13. تلفات دانه توسط چرخ فلک مکانیکی و بادی در 1/5 مترمربع، بر حسب دور پنکه.
جدول ۲. مقایسه میانگین انحراف ساخته از خط قائم در چرخ فلک بادی و مکانیکی در سطح ۵\%

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>میانگین</th>
<th>مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت پنکه (دور در دقیقه)</td>
<td>زاویه وزش باد (درجه)</td>
<td></td>
</tr>
<tr>
<td>۲۲۷۷</td>
<td>۱۰</td>
<td>۲۵(^b)</td>
</tr>
<tr>
<td></td>
<td>۲۰</td>
<td>۲۵(^b)</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td>۲۴(^b)</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td>۲۲(^b)</td>
</tr>
<tr>
<td>۲۵۰۳</td>
<td>۱۰</td>
<td>۲۷(^a)</td>
</tr>
<tr>
<td></td>
<td>۲۰</td>
<td>۲۴(^b)</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td>۲۴(^b)</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td>۲۴(^b)</td>
</tr>
<tr>
<td>۲۸۰۰</td>
<td>۱۰</td>
<td>۲۷(^a)</td>
</tr>
<tr>
<td></td>
<td>۲۰</td>
<td>۲۴(^b)</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td>۲۴(^b)</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td>۲۴(^b)</td>
</tr>
<tr>
<td>۳۲۱۸</td>
<td>۱۰</td>
<td>۲۸(^a)</td>
</tr>
<tr>
<td></td>
<td>۲۰</td>
<td>۲۷(^a)</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td>۲۷(^a)</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td>۲۷(^a)</td>
</tr>
<tr>
<td>۳۹۲۲</td>
<td>۱۰</td>
<td>۳۲(^a)</td>
</tr>
<tr>
<td></td>
<td>۲۰</td>
<td>۳۲(^a)</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td>۳۲(^a)</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td>۳۲(^a)</td>
</tr>
</tbody>
</table>

حرف مشابه اختلاف معنی‌داری را نشان نمی‌دهد.

شکل ۱۲. انحراف ساخته توسط چرخ فلک مکانیکی و بادی بر حسب دور پنکه
بحث و نتیجه‌گیری

در زاویه 10 درجه، که باید با قسمت‌های بالای ساقه برخوردار کنند و نقش مناسب را در توده محسوس ندارد، خزنده ساقه به ساقه‌های صورت گرفته است. نیاز به این که ارتفاع ساقه به کنترل در حالت مثبت باشد. نتایج داده‌های فوق نشان می‌دهد که از نظر اندازه‌گیری رئیس در جهت ساختاری تغییرات افزایش چربک، باید برای میزان انحراف ساقه به دلیل برکارهای مختلف مو قضاوت بزرگ به پایه میانگین‌گیری. از این نتایج طبقات بود. این مسئله افزایش طبقات را به دنبال خواهد داشت.

در زاویه 30 درجه نیز نسبت به زاویه‌های 10 و 20 درجه باید از قدرت کمتری برخوردار است. که در این زاویه باید به قسمت‌های بالای محسوس برخوردار کنند. در زاویه 30 درجه باید اثر مستقیمی بر خودشان نداشته باشد.

نظر به این که پیشنهاد استفاده از سیستم چرخ فلکی باید به جای سیستم مکانیکی سایه طولانی در چهان ندارد، و با توجه به متحرک به فرد بودن این پروپوزال در ایران، لازم است تأکید با استفاده از مختلف چرخک هر فلک باید جدید باشد، و تلفات محصول پوستی شود، بهترین سیستم می‌توان شکل و وضعیت نهایی دستگاه جدید را مشخص و توسعه نمود.

منابع مورد استفاده

1. وزارت ارزش‌آمیز. 1364. تغذیه به واحدهایی در ایران. اداره کل آمار و اطلاعات، معاونت برنامه‌ریزی و پشتیبانی.