بررسی عوامل مؤثر در ذخیره سایزی رطوبت خاک، با استفاده از زیرشکن تبدیلی
طرحی تیغه و مکانیزم تزریق سبوس برنج در خاک
در کاربرد زیرشکن تبدیلی

نادر ساکتیان دهکردی ۱، برات قبیلیان ۱ و سعید مینایی ۲

چکیده
دستگاهی که توانای مالی را در داخل خاک تزریق کند و این نتانی به تغییر میزان برش مورد نظر است، هدف از این پژوهش، طراحی و ساخت یک دستگاه زیرشکن و مکانیزم اتصال به سیستم سبوس برنج در خاک تزریق کند. برای اتمام این دستگاه مورد نظر در عملیات زیرشکن مورد تزریق، سبوس مطهر مورد نظر در خاک و ساخت به آسانی به وسیله ترکانی به کارگرفته شد. میزان تزریق مابین دو هفته و مقدار مختلف در زیر خاک به خورش انجام داده شد. این نتایج به عنوان روشی نفلوئوس به کسب و کار بخشی مختلف می‌باشد.

واژه‌های کلیدی: زیرشکن، رطوبت خاک، خاک وزنی، مالی پاشی، حفاظت خاک

مقدمه
از آن جا که عملیات خاک‌ورزی به منظور آماده‌سازی بستر بذر، آماده سازی چاپی‌های برش و دسترسی از روی‌های گیاهی انجام می‌شود، غالباً عملیات زیرشکنی خاک به عنوان وسیله برای رسیدن به این اهداف مورد نظر بوده است. جون عملیات زیرشکنی، خاک را در عمق‌های پیشتری می‌شکافد، به‌عنوان ابزاری پیش‌بینی می‌شکافد، به‌عنوان سهولت رفتنی‌های آب باران و نفوذ به‌هر ریشه‌ها می‌گردد. از سوی دیگر، عملیات زیرشکنی در بهبود وضعیت ریشه مؤثر

1. استادیار مالی‌های کشاورزی، دانشکده کشاورزی، دانشگاه شهرکرد
2. استادیار مالی‌های کشاورزی، دانشگاه شهرکرد

اگرچه غیر از ماهیت و تاثیر نهایی، سطح خاک و میزان عناوین جهانی بر سطح خاک، افرادی را که مورد نظر هستند، افرادی که از محصولات طبیعی خاک استفاده می‌کنند، و افرادی که به آنها توجه نمی‌کنند، دارای تاثیر هستند.

در اینجا، میزان و تاثیر این عناوین بر سطح خاک و محصولات طبیعی آنها بحث می‌شود.

با تشکر,
[نام]
[نام]
[تاریخ]

211
در نهایت با ساخت آنها و پوند به یکدیگر، دستگاه شکل گرفت.

شکل ۱ نمایی از دستگاه را نشان می‌دهد.

طراحی تیغه

طراحی تیغه بر پایه برخی نفوذ در خاک انجام می‌پذیرد. عوامل مورد توجه در طراحی، مقدار مطلوب طول تیغه و زاویه تیغه با افق می‌باشد. مقدار زاویه تیغه را می‌توان از توازن نیروها محاسبه نمود. با توجه به شکل ۲، با برسی نیروهای مربوط معادلاتی به دست می‌آید که به وسیله آن مقدار زاویه تیغه مشخص می‌گردد و رابطه زیر حاصل می‌شود:

\[F_n = \frac{F_r}{\mu} = \frac{F_r - P \cos \alpha - F \sin \alpha}{\mu} \]

\[F_r = F \cos \alpha - P \sin \alpha \Rightarrow F_r = \mu (P \cos \alpha + F \sin \alpha) \]

\[\Rightarrow F \cos \alpha - P \sin \alpha = \mu P \cos \alpha + \mu F \sin \alpha \]

\[\Rightarrow \tan \alpha = \frac{F - \mu P}{\mu F + P} \]

رابطه ۱، حاکم بر مقدار زاویه تیغه را نشان می‌دهد (۱). همچنین، بدانگر آن است که مقدار زاویه بستگی به نیروی وزن خاک (P)، جنس خاک (μ) و نیروی مقاوم در انتقال خاک دارد. بنابراین، تغییر در هر یک، باعث تغییر در اندازه زاویه تیغه شده. ۱۱۱
مجرد نیروی کشش زیرشکن برای هراف سانتی مت عمق‌کار ارائه شده است (2) و برای عمق‌های مختلف محاسبه می‌گردد. اگر این نیرو برای نمونه‌بندی به فرضیات کشش F0 (برای نیرو) به عقیده h سانتی متری، برای استفاده با F0 = F0 × h

[1]

نیروی موردنظر F0 چون به عقیده برای هر سانتیمتر از عمق دارد، به صورت گسترده و مطالب شکل ۱۳ بر سطح زیرشکن عموم می‌کنند. برای فرضیات مثلث بار خواهد بود.

F0 = B × h ⇒ B = \(\frac{F0}{h} \)

با استفاده از رابطه ۲، نتیجه می‌شود:

B = \(\frac{2}{3} F_d \)

[3]

به‌خیال از اکثر بار تیغه‌های است، بنابراین، میزان نیروی موردنظر بر هر متر از عمق مطالب شکل ۱۴ به دست می‌آید. به این ترتیب به شکل ۴ با توجه به شکل ۴:

\[h - e \] \frac{B}{h} \Rightarrow B = \left(\frac{h - e}{h}\right) F

⇒ F = \left(\frac{B + h(e - e)}{2}\right) \Rightarrow F = \frac{F \times h \times B + F \times e(h - e)}{2 \times h}

[4]

نیروی موردنظر برگیره‌وی با قایل دایگی مطلب رابطه ۳ در رابطه F ۴ نتیجه می‌شود:

\[F = \frac{F_d (\text{teh} - e)}{h} \]

[5]

سطح تمامی حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه همان سطح تیغه است که هره به سطح حاکی از اینکه
پرسی عوامل مؤثر در ذخیره سازی رطوبت خاک

شکل ۴: نیروی مقاوم مؤثر بر تیغه

شکل ۵: تأثیر گره خاک بر تیغه

شکل ۶: حجم نهایی خاک

215
زمینگرد به عنوان پارامتر اصلی در نظر گرفته می‌شود. اگر قطر چرخ ۹ سانتی‌متر باشد، محیط چرخ در یک دور گردش چرخ خواهد بود. به‌عنی:

\[L_w = 2\pi \times \frac{d_w}{2} \Rightarrow L_w = 125/66 \, \text{cm} \]

یکی از ویژگی‌های مورد نظر این پژوهش نوارسازی سیسوس با قطر ۷/۵ سانتی‌متر است. بنابراین، محاسبات برای دستیابی به این هدف است. سپس به تغییر چرخ دنده‌های ارتباطی، ریزش، برای قطر ۵ سانتی‌متر تنظیم می‌گردد.

\[\text{رباطه} \, \gamma = 1 \quad \begin{aligned} \frac{10 \pi}{\kappa (a.e.h, p, g)} & - \left(10 \pi \frac{r(e - c)}{\kappa h} \right)^2 \sin^2 \alpha + \\ \frac{10 \pi}{\kappa (a.e.h, p, g) \sin \alpha} &= 0 \end{aligned} \]

رباطه ۱۰: یک رابطه کاربردی خواهد بود که در آن:

\[a = \tan \theta \]

کیلوگرم/سانتی‌متر (کم) = \(F_q \)

سانتی‌متر = h

ارتفاع نیروی سطح زیرشکن (cm) = e

ضریب اصطکاک = \(\mu \)

ظرفیت تغییر (cm) = a

شکل ثقل (م) = g

عدد مخصوص خاک = \(\rho \)

ضریب حجم خاک = k

سیستم تزریق سیسوس

سیستم تزریق سیسوس با‌ای به‌عنوان طراحی گردد که بتواند در وضعیت تزریق با قطر ۷/۵ سانتی‌متر را پدید آورد. منفور از این ۲ مقدار این است که میزان سیسوس با قطر ۵ سانتی‌متر با توجه به حسکت تراکتور به ۱۹۶ سانتی‌متر مکعب، معمولاً ۲۳۶ کیلوگرم و با قطر ۷/۵ سانتی‌متر به ۴۳۱ سانتی‌متر مکعب می‌باشد. معمولاً ۵۳۶/۵ کیلوگرم در هر متر پشتی درختگاه در خاک نوارسازی گردد. شکل ۷ نمایی از دستگاه زیرشکن و چگونگی ریزش سیسوس را در زیر خاک نشان می‌دهد.

\[V_w = 555 \, \text{cm}^3 \]

\[V_h = \left(10 \frac{\pi}{5} x \frac{\pi}{3} \right) \times 5/3 = 224 \, \text{cm}^3 \]

\[V_w + V_h = N \]

\[N = 555 + 224 = 125/66 \]

بنابراین، برای یک دور چرخ، با پایدار محرک، مقدار تزریق کننده ۱۲۵ دور بین دیواری به قطر ۷/۵ سانتی‌متر سیسوس در زیر خاک پایید.

\[\text{مقابله محرک هیلیس، به وسیله یک جعبه دندان به صورت} \]

\[\text{شکل ۱۰ طراحی می‌گردد.} \]

\[\text{با استفاده از روابط مثلثاتی، رابطه} \, 9 \, \text{به صورت زیر خواهد شد:} \]

\[\mu (\kappa a h, p, g) - (10 \pi \kappa c e) \sin^2 \alpha + \frac{10 \pi}{\kappa (a e h, p, g) \sin \alpha} = 0 \]

\[\text{زاویه تغییر} \, \alpha \]

کیلوگرم/سانتی‌متر (کم) = \(F_q \)

سانتی‌متر = h

ارتفاع نیروی سطح زیرشکن (cm) = e

ضریب اصطکاک = \(\mu \)

ظرفیت تغییر (cm) = a

شکل ثقل (م) = g

عدد مخصوص خاک = \(\rho \)

ضریب حجم خاک = k

سیستم تزریق سیسوس

سیستم تزریق سیسوس با‌ای به‌عنوان طراحی گردد که بتواند در وضعیت تزریق با قطر ۷/۵ سانتی‌متر را پدید آورد. منفور از این ۲ مقدار این است که میزان سیسوس با قطر ۵ سانتی‌متر با توجه به حسکت تراکتور به ۱۹۶ سانتی‌متر مکعب، معمولاً ۲۳۶ کیلوگرم و با قطر ۷/۵ سانتی‌متر به ۴۳۱ سانتی‌متر مکعب می‌باشد. معمولاً ۵۳۶/۵ کیلوگرم در هر متر پشتی درختگاه در خاک نوارسازی گردد. شکل ۷ نمایی از دستگاه زیرشکن و چگونگی ریزش سیسوس را در زیر خاک نشان می‌دهد.

\[V_w = 555 \, \text{cm}^3 \]

\[V_h = \left(10 \frac{\pi}{5} x \frac{\pi}{3} \right) \times 5/3 = 224 \, \text{cm}^3 \]

\[V_w + V_h = N \]

\[N = 555 + 224 = 125/66 \]

بنابراین، برای یک دور چرخ، با پایدار محرک، مقدار تزریق کننده ۱۲۵ دور بین دیواری به قطر ۷/۵ سانتی‌متر سیسوس در زیر خاک پایید.

\[\text{مقابله محرک هیلیس، به وسیله یک جعبه دندان به صورت} \]

\[\text{شکل ۱۰ طراحی می‌گردد.} \]
جعبه دنده دارای دو چرخ دنده مخروطی با تعداد 9 و 16 دنده انتخاب گردیده است. بنابراین، تعداد دور محور افقی (n_2) به دست می‌آید:

\[n_2 = \frac{n_1 \times N_1}{n_6 \times N_6} = \frac{11 \times 22}{9 \times 10} = 24 \]

این دور چرخ زمین گرد می‌گردد.

با توجه به قطر چرخ زمین گرد، با استفاده از چرخ دنده‌های مناسب، تعداد دور مورد نیاز به دست می‌آید (چرخ دنده شماره 6 با چرخ دنده شماره 2 هم محور است، در نتیجه دوران یکسان است). موقعیت سایر چرخ‌های دندوهای در شکل 11 نشان داده شده است.

\[n_4 = n_6 \Rightarrow n_2 = \frac{11}{6} \]

جعبه دنده دارای دو چرخ دنده شماره 5 و 6 هم محور خواهد بود.

نتایج و بحث

نتایج طراحی تیغه

با استفاده از رابطه 10، می‌توان برایهی مقادیر بزرگ بیشتری و بخشه پارامترهای انتخابی زاویه آن را محاسبه نمود. نیروی کشش بر حسب عملکرد برای خاک‌های مختلف بین 120 تا 280 نیوتن (N/cm تغییر نمی‌آست (2)). در اینجا از 280 نیوتن،
بررسی عوامل مؤثر در ذخیره سازی رطوبت خاک

جدول 1. نتایج طراحی تیغه (k برابر 5)

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>اندازه</th>
</tr>
</thead>
<tbody>
<tr>
<td>زاویه تیغه</td>
<td>45/2 درجه</td>
</tr>
<tr>
<td>طول تیغه</td>
<td>13/241 سانتی‌متر</td>
</tr>
<tr>
<td>عرض تیغه</td>
<td>8 سانتی‌متر</td>
</tr>
<tr>
<td>حداکثر تیغه کش کردن در خاک لومی رسی</td>
<td>15/2 kN</td>
</tr>
<tr>
<td>حداکثر عمق در خاک</td>
<td>40 سانتی‌متر</td>
</tr>
</tbody>
</table>

جدول 2. نتایج α زاویه تیغه در اثر تغییرات μ (براورد درجه)

<table>
<thead>
<tr>
<th>k برابر 20</th>
<th>μ برابر 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>37</td>
<td>47</td>
</tr>
<tr>
<td>41</td>
<td>52</td>
</tr>
<tr>
<td>46</td>
<td>56</td>
</tr>
<tr>
<td>51</td>
<td>60</td>
</tr>
</tbody>
</table>

شکل 11. موقعیت چرخ دنده‌ها

برای هر سانتی‌متر عمق استفاده شده است (این مقیاس حداکثر در خاک لومی رسی است). اگر پارامترهای دیگر برای طراحی به شرح زیر انتخاب شوند:

\[\frac{0/38}{kN/cm} \text{ (عمق (N/cm)} = \frac{380}{F_d} \]

\[h \text{ cm} = 40 \]

\[c \text{ cm} = 10 \]

\[\alpha = \mu \]

\[a \text{ cm} = 8 \]

\[g = \frac{9/8}{N/kg} \]

\[\rho \text{ gr/cm}^3 = 1/v \]

\[k = 5 \]

یا جایگذنی در رابطه 10، زاویه تیغه، و در تیغه طول آن به دست خواهد آمد:

\[\alpha = \frac{0/38}{22/29\alpha} \]

\[\alpha = \frac{22/29}{0/38} \]

\[\alpha = \frac{48/2}{13/241} \text{ cm} \]

نتایج حاصل در جدول 2 آمده است.

اگر برای طراحی پارامترهای بیشتر به میزانی که قبل ذکر گرفته شوند برای اندازه‌گیری nicht، زاویه تیغه، مقدار زاویه α مطلق جدول نشان می‌دهد، و اگر روش چرخ دنده شماره 7 سوار شود، دستگاه

219
شکل 12. روش‌های حفاظتی در زمین‌های کشاورزی

شکل 13. روش‌های حفاظتی در زمین‌های شهری
شکل ۱۴. روش‌های حفاظتی در زمین‌های غیرکشاورزی

تحقیق با قطر ۵ سانتی‌متر را انجام خواهد داد. تمامی چرخ دندان‌ها با گام پکسیان، با استفاده از زنجیر صنعتی نمره ۵۰ به کار گرفته می‌شوند.

بروسی نتایج در آزمایش زیرشکن تبدیلی در عملیات مزرعه‌ای، نشان داد که طراحی ابعاد و مکانیزم‌های دستگاه، به
مشاهده می‌شود، هر چه بیانات‌های سطیگی‌تر باشد، این تغییرات در مورد و فیزیکی و زون‌ها نشان دهنده ارتباط با برآورده شده است، که تمامی روشهای کاربردی موجود را شامل می‌شود. کاربرد دستگاه زیرشکن تدبیلی و شیوه استفاده از مالیه به عنوان یک روش تلفیقی افزوده به نمودارهای ارائه شده توسط مورگان معرفی می‌گردد. در شکل‌های ۱۲، ۱۳ و ۱۴، نمودارهای مورگان یا خط چین و روشهای استفاده از زیرشکن تدبیلی نشان داده شده است.

منابع مورد استفاده

1. تابش، ف. ۱۳۵۹. شناخت نظیری و عملی ماهیهای کشاورزی، انتشارات انتشارات، تهران.
2. شفیعی، س. ۱۳۷۷. اصول ماهیهای کشاورزی (تأثیر کنترل همکاران)، انتشارات، انتشارات، تهران.