بررسی عوامل مؤثر در ذخیره سازی رطوبت خاک، با استفاده از زیرشکن تبدیلی

طراحی تیغه و مکانیزم تریزی سوس پرنج در خاک،
در کاربرد زیرشکن تبدیلی

نادر ساکتیان دهکردی، پریت قبادیان و سعید مینایی

چکیده

دستگاهی که بوتان ها مالیج را در داخل خاک تزریق کنند و ظرفیت های نگهداری رطوبت خاک را بهبود بخشید مورد نیاز است. هدف ار این زوری، طراحی و ساخت یک دستگاه زیرشکن با تیغه و مکانیزمی است که بوتان سوس پرنج را در خاک تزریق کند. با امتراز مورد نظر در عملیات زیرشکن مورد توجه تر می‌گردد و شیوه ارائه شده می‌تواند به عنوان رویا خاص برای تزریق سوس مطرح گردد. دستگاه پس از طراحی و ساخت به آسانی به وسیله تراکتور به کار گرفته شد. عملیات زیرشکنی و تزریق سوس در هر دو مقدار مختلف در زیر خاک به خوبی انجام گرفت. این شیوه به عنوان رویا تلفیقی به نمو راه راه حفاظتی چک توسط مورگان ارائه شده است، اضافه می‌گردد.

واژه‌های کلیدی: زیرشکنی، رطوبت خاک، خاک ورزی، مالیج پاشی، حفاظت خاک

مقدمه

از آن جا که عملیات خاک‌ورزی، به منظور آماده سازی بستر بذر، آماده سازی چابگاه ریشه و جلوگیری از رقابت گیاهی انجام می‌شود، غالباً عملیات زیرشکنی خاک به عنوان روشی برای رسیدن به این اهداف مورد نظر بوده است. چون عملیات زیرشکنی درآمدهای بیشتری می‌شکافد، باعث سهولت نفوذ‌پذیری آب باران و نفوذ بهتر ریشه می‌گردد. از سوی دیگر، عملیات زیرشکنی در بهبود وضعیت ریشه مؤثر

است. در سیاره به وجوه آمدن در عملیات زیرشکنی از ته سطح خاک را مالی بر می‌گذند. در مالی برده قائم شیرا بای خاک بسته نمی‌شود. اگر روی خطوط تراز مشخص انجام شود، در کنترل روانیک بهبود جای خواهد یافت (9).

به‌ویژه در زمانی که بیش از یک دستگاه زیرشکن است که به وسیله تراکتور کشیده می‌شود، این روش پیشنهاد‌های ایجاد سطح روی زیرشکن است که بر روی سطح کشتی کشیده می‌شود، این روش پیشنهادی انجام ایجاد سطح روی زیرشکن است که بر روی سطح کشتی کشیده می‌شود.

یکی از این اشکال که با قیادت جدی‌تری در مورد طراحی تغییر و سایر ابزار خاکی تحلیل‌های جامعی ایران داده‌اند، که در قابل فرمول‌گذاری، نمایش‌گذاری مختلف قابل دسترسی است. در زمان استفاده از زیرشکنی و استفاده از مالیات (سیستم قانونی) به عنوان ماده که در حفاظت خاک کاربردی مؤثر دارد، به کارگیری دستگاهی که بتواند مالی را در زیر خاک توزیع کند، سرانجام سیستم توانایی حاصله، موضوع اصلی این پروژه است. بنابراین، طراحی و مکانیزم توزیع سیستم که از میان شرکت‌های مالی در ایران هستند، مورد توجه قرار گرفته و ارائه گردیده است. در نهایت کاربرد زیرشکن تدابیر به عنوان روش تلفیقی حفاظت خاکی می‌گردد.

مواد و روش‌ها

طرح‌سازی دستگاه زیرشکن تدابیر بر پایه توزیع مالی سیستم در زیر خاک صورت می‌گیرد. به این معنی که دستگاه ضمن شکستن خاک و ایجاد شیار زیرسطحی، یکدایی طراحی عمل کنده به‌ویژه در زمان زیر شکنی سیستم را برای نوارهایی با در سطح مقطع نیازمندی شکستن خاک و ایجاد شیار زیرسطحی، یکدایی طراحی عمل کنده به‌ویژه در زمان زیر شکنی سیستم را برای نوارهایی با در سطح مقطع نیازمندی شکستن خاک و ایجاد شیار زیرسطحی، یکدایی طراحی عمل کنده به‌ویژه در زمان زیر شکنی سیستم را برای نوارهایی با در سطح مقطع نیازمندی شکستن خاک و ایجاد شیار زیرسطحی، یکدایی طراحی عمل کنده به‌ویژه در زمان زیر شکنی سیستم را برای نوارهایی با در سطح مقطع نیازمندی شکستن خاک و ایجاد شیار زیرسطحی، یکدایی طراحی عمل کنده به‌ویژه در زمان زیر شکنی سیستم را برای نوارهایی با در سطح مقطع

شاری علی، و مهندسان (7)، در سال‌های 1994-1995 و پیوسته گندم و گندم‌ها را نسبت به عملیات خاکریزی در است. در سیاره به وجوه آمدن در عملیات زیرشکنی از ته سطح خاک را مالی بر می‌گذند. در مالی برده قائم شیرا بای خاک بسته نمی‌شود. اگر روی خطوط تراز مشخص انجام شود، در کنترل روانیک بهبود جای خواهد یافت (9).

به‌ویژه در زمانی که بیش از یک دستگاه زیرشکن است که بر روی سطح کشتی کشیده می‌شود، این روش پیشنهادی انجام ایجاد سطح روی زیرشکن است که بر روی سطح کشتی کشیده می‌شود.

یکی از این اشکال که با قیادت جدی‌تری در مورد طراحی تغییر و سایر ابزار خاکی تحلیل‌های جامعی ایران داده‌اند، که در قابل فرمول‌گذاری، نمایش‌گذاری مختلف قابل دسترسی است. در زمان استفاده از زیرشکنی و استفاده از مالیات (سیستم قانونی) به عنوان ماده که در حفاظت خاک کاربردی مؤثر دارد، به کارگیری دستگاهی که بتواند مالی را در زیر خاک توزیع کند، سرانجام سیستم توانایی حاصله، موضوع اصلی این پروژه است. بنابراین، طراحی و مکانیزم توزیع سیستم که از میان شرکت‌های مالی در ایران هستند، مورد توجه قرار گرفته و ارائه گردیده است. در نهایت کاربرد زیرشکن تدابیر به عنوان روش تلفیقی حفاظت خاکی می‌گردد.
پروپی عوامل مؤثر در ذخیه‌سازی رطوبت خاک

1. جمع‌بندی
2. محل اتصال بازوی میانی تراکتور
3. جرخ دندان‌های شماره ۶ و ۷
4. مخزن
5. دیسک اصلی شاسی
6. پایه نگهدارنده
7. تیغه
8. تیغه منصل به شاسی
9. زنجیر انتقال نیرو
10. جرخ زمین گرد
11. لوله ریزش سبوس
12. لوله ریزش سبوس به شاسی

درنهایت با ساخت آنها و پیوستن به یکدیگر، دستگاه شکل گرفت. شکل ۱ نمایی از دستگاه را نشان می‌دهد.

طرحی تیغه

طرحی تیغه به‌پایه بر‌شکل توقف در خاک انجام می‌پذیرد. عوامل مورد توجه در طراحی، مقدار مطلوب طول تیغه و زاویه تیغه با افق می‌باشدند. مقدار مجزای زاویه تیغه را می‌توان از توازن نیروها محاسبه نمود. با توجه به شکل ۲، با پروسی نیروهای متأفز، معادلاتی به دست می‌آید که به وسیله آن مقدار زاویه تیغه مشخص می‌گردد و رابطه زیر حاصل می‌شود:

\[F_n = \frac{F_r}{\mu} = \frac{F_r - P \cos \alpha - F_s \sin \alpha}{P} \]

\[F_r = F \cos \alpha - P \sin \alpha \Rightarrow F_r = \mu (P \cos \alpha + F_s \sin \alpha) \]

\[\Rightarrow F \cos \alpha - P \sin \alpha = \mu P \cos \alpha + \mu F_s \sin \alpha \]

\[\Rightarrow \tan \alpha = \frac{F - P \mu}{\mu F + P} \]

رابطه ۱، حاکمک مقدار زاویه تیغه را نشان می‌دهد (۱). همچنین، بایانگر آن است که مقدار زاویه بستگی به نیروی وزن خاک (P) جنس خاک (μ) و نیروی مقاوم در اندازه خاک (P) دارد. پتایا، تغییر در هر یک، باعث تغییر در اندازه زاویه تیغه می‌شود.
می‌گردد.

نریوز کشیر زیر شکن برابر محاسبه می‌گردد. اگر این نریوز برابر F_d باشد، کل نریوز بر زیر شکن F_0 (نریوز برابر کشیر) در عمق h سانتی‌متری برای استفاده

با توجه به شکل گو، جسم گو، پای سانه در انتظار هم‌کاری که نشان دهنده از آن مکانیزم است. با آزمایش‌های مختلف می‌توان مجتهده را با دست آورد.

$V = kx(h.l.a)$

ضریبی است که با توجه به بافت و رطوبت خاک در انجام جسم توخالی درست است و این که حجم ضریب به کار می‌رود.

$\sin \alpha = \frac{e}{l}$

با توجه به شکل ۳، نتیجه می‌شود:

$F = \frac{B \times h}{e} \Rightarrow F = \frac{B(h-e)}{h}$

$F = \frac{e \times h \times B + B \times e(h-e)}{2 \times h}$

$F = \frac{F_d(\gamma h - e)}{h}$

$\tan \alpha = \frac{F_d(\gamma h - e) \sin \alpha - k \mu a e h^{\rho g}}{h \mu F_d(\gamma h - e) \sin \alpha + h a e h^{\rho g}}$

$\sin \alpha = \frac{F_d(\gamma h - e) \sin \alpha - k \mu a e h^{\rho g}}{h \mu F_d(\gamma h - e) \sin \alpha + h a e h^{\rho g}}$

$\mu a e h^{\rho g}$

$\mu F_d(\gamma h - e) \sin \alpha + h a e h^{\rho g}$

$\mu F_d(\gamma h - e) \sin \alpha$
بررسی عوامل مؤثر در ذخیره سازی رطوبت خاک

شکل ۴. نیروی مقاوم مؤثر بر تیغه

شکل ۵. تأثیر گره خاک بر تیغه

شکل ۶. حجم تقریبی خاک

۲۱۵
با استفاده از روابط مثلثی، رابطه 9 به صورت زیر خواهد شد:

\[
\frac{(1 + \mu) \gamma (k.a.e.h \rho \cdot g)^{1/3}}{\sin \alpha + (1 + \mu) \gamma (k.a.e.h \rho \cdot g)^{1/3}} \geq \sin \alpha
\]

[10]

رابطه 10 که رابطه کابردی خواهد بود، که در آن:

\[
\alpha = \frac{90}{\gamma a}\]

\[
F_d = \text{نرخ کشش (نیتریلی)}
\]

\[
h = \text{حداکثر عمق کارزیرشکن (سانتی‌متر)}
\]

\[
e = \text{ارتقاف نیروی سانه زیرشکن (سانتی‌متر)}
\]

\[
\rho = \text{جرم مخصوص ساخک (گرم بر سانتی‌متر مکعب)}
\]

\[
\phi = \text{ضریب حجم خاک}
\]

\[
S_{1} / L_{w} \Rightarrow V_{w_{1}} = \frac{V_{w_{1}}}{L_{w}} = \frac{5500 \times \pi}{4} \times \frac{5}{2} = 442 \text{ سانتی‌متر مکعب}
\]

[11]

\[
\text{حجم مقدار سبسوی است که باید در یک دور دچار زمین گرد گردید در خاک تزریق گردید.}
\]

\[
V_{w} = \frac{10}{3} \times \frac{5}{3} \times \frac{5}{3} = 442 \text{ سانتی‌متر مکعب}
\]

[12]

\[
\text{برای تزریق حجم سبسو در یک دور دچار زمین گرد 5550 سانتی‌متر مکعب.}
\]

\[
\text{برای انجام این عمل محاسبه می‌گردد.}
\]

\[
V_{w} + V_{h} = N
\]

[12]

\[
N = 5550 + 442 = 5992
\]

بتای 12/5

\[
\text{برای کانتینه دستگاه طراحی می‌گردد.}
\]

\[
\text{باید محور هیلیس تزریق در زیر خاک پیدا اید.}
\]

\[
\text{کانال‌های محوری هیلیس، به وسیله یک جعبه دهنده به صورت طراحی می‌گردد.}
\]
ناتج وبحث

نگهداری بندی مطابق با استفاده از ازدحامی و ضایعات مقدار مؤثر بر تیغه و بخش پراکنده انتخابی، زاویه آن را محاسبه نمود، نیروی کشش بر حسب عمق کار برای کارایی مختلف بین 120 تا 380 نیوتن (N/cm متغیر است) (2)، در اینجا از 380 نیوتن

\[n_0 = n_0 \Rightarrow n_v = 2/8 \]

10 عدد انتخاب می شود برای اینچ: (n_i) به تعداد دنده ای دارای دنده مخروطی، با تعداد 9 و 16

\[n_0 \times N_0 = n_0 \times N_0 \Rightarrow 2/8 	imes 1/1 \times N_0 = N_0 = 28 \]

تعداد دنده های چرح دنده شماره 3 هم مخور با چرح زمین گرد است. از سوی دیگر، برای تزیین سیبوس با قطر 5 سانتی متر، نتایج محاسبات به صورت زیر خواهد بود.

\[n_v = N_0 \Rightarrow n_v = 2/14 \]

\[n_0 \times N_0 = n_0 \times N_0 \Rightarrow 2/8 	imes 1/14 \times N_0 = N_0 = 22 \]

چرح دنده شماره 7 دارای 22 دنده بوده و مطالعه شکل 11، با چرح دنده های شماره 2 و 6 هم مخور خواهد بود.

نتایج و بحث

ناتج طراحی بندی

با استفاده از رابطه (1)، می توان برای مقدار مؤثر بر تیغه و بخش پراکنده انتخابی، زاویه آن را محاسبه نمود، نیروی کشش بر حسب عمق کار برای کارایی مختلف بین 120 تا 380 نیوتن (N/cm متغیر است) (2)، در اینجا از 380 نیوتن

\[n_0 = n_0 \Rightarrow n_v = 7/0 \]

20 عدد دنده، و چرح دنده شماره 6 عدد انتخاب شده است، در تئوری، تعداد دور چرح دنده شماره 5 به دست خواهد آمد.

\[n_0 \times N_0 = n_0 \times N_0 \Rightarrow 7/0 \times 2/8 \Rightarrow n_0 = 2/8 \]

چرح دنده شماره 2 با چرح دنده شماره 5 هم مخور است، در نتیجه:

318
جدول ۱. نتایج طراحی تیغه (k برابر ۵)

<table>
<thead>
<tr>
<th>اندکی</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>زاویه تیغه</td>
<td>۴۸/۲ درجه</td>
</tr>
<tr>
<td>طول تیغه</td>
<td>۱۳/۴۱ سانتی متر</td>
</tr>
<tr>
<td>عرض تیغه</td>
<td>۸ سانتی متر</td>
</tr>
<tr>
<td>حداکثر نیروی کشش در خاک لومسی</td>
<td>۱۵/۴ kN</td>
</tr>
<tr>
<td>حداکثر عمق در خاک</td>
<td>۴۰ سانتی متر</td>
</tr>
</tbody>
</table>

جدول ۲. نتایج α زاویه تیغه در اثر تغییرات μ (برحسب درجه)

<table>
<thead>
<tr>
<th>α (درجه)</th>
<th>k</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۸</td>
<td>۵</td>
<td>۰/۸</td>
</tr>
<tr>
<td>۴۴</td>
<td>۰</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۴۰</td>
<td>۱۵</td>
<td>۰/۶</td>
</tr>
<tr>
<td>۳۶</td>
<td>۲۰</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۵۱</td>
<td>۰</td>
<td>۰/۵</td>
</tr>
</tbody>
</table>

شکل ۱۱. موقعیت پایه‌ها

برای هر سانتی متر عمق استفاده شده است (این مقادیر حداکثر در خاک لومسی است). اگر پارامترهای دیگر برای طراحی به شرح زیر انتخاب شوند:

\[0/38 \text{ kN/cm} \]

\[380 \text{ (عمق N/cm)} \]

\[40 \text{ cm} = h \]

\[16 \text{ cm} = c \]

\[0/8 = \mu \]

\[8 \text{ cm} = a \]

\[9/8 \text{ N/kg} = g \]

\[1/\nu \text{ gr/cm}^3 = \rho \]

\[4 = k \]

۲ به دست خواهد آمد.

هم چنین، اگر برای طراحی، پارامترها به مزیتی که قبل اشاره شد در نظر گرفته شوند، برای تغییرات k مقادیر زاویه α، مطالب جدول ۲ به دست خواهد آمد.

نتایج سیستم توزیع سیسوس

بناء بر محاسبات انجام شده، اگر زنجیر روی چرخ دنده شماره ۶ سوار شود، دستگاه توزیع با قطر ۷/۵ سانتی متر را انجام می‌دهد، و اگر روی چرخ دنده شماره ۷ سوار شود، دستگاه نظر گرفته شوند، برای تغییرات μ مقادیر زاویه α، مطالب جدول

\[\alpha \equiv 48/2 = 24/2 \]

درجه ۲۸/۲۸ درجه

\[48/2 = 13/41 \text{ cm} \]

نتایج حاصل در جدول ۱ آمده است. اگر برای طراحی، پارامترها به مزیتی که قبل اشاره شد در نظر گرفته شوند، برای تغییرات μ مقادیر زاویه α، مطالب جدول...
شکل 12. روش‌های حفاظتی در زمین‌های کشاورزی

شکل 13. روش‌های حفاظتی در زمین‌های شهری
بررسی عوامل مؤثر در ذخیره سازی رطوبت خاک

شکل 14. روش‌های حفاظتی در زمین‌های غیرکشاورزی

خویش تبادلی عمليات را پاسخ‌گوی بوده و کاراً دارای ویژگی‌های کاربردی است. در طراحی تهیه دستگاه، رابطه ۱۰ به عنوان یک رابطه کاربردی می‌تواند مورد توجه قرار گیرد. نتایج به دست آمده در جدول ۱۰ و ۱۱ به خوبی ارتباط زاویه تغییر با پارامترهای مرتبط با خاک تأثیر می‌گذارد. بنابراین صورت که تزریق با قطر ۵ سانتی‌متر با انجام خواهد داد. تمامی جرخان‌ها با گام یک‌پکسان و با استفاده از زنجیر صنعتی نمره ۵۰ به کارگرفته می‌شوند.

در نتیجه دیده‌شده در آزمایش‌های زیر، نتایج در عملیات مزرعه‌ای، نشان داد که طراحی ابعاد و مکانیزم‌های دستگاه به
نشانه‌های اسمی/ موضوعی/ جلد پنجم/ شماره دوم/ تابستان 1380

منابع مورد استفاده

1. تابش، ف. 1359. شناخت نظری و عملی ماهیان خاک‌پارداری، انتشارات دانشگاه تهران.
2. شبیعی، س. ا. 1371. اصول ماهیان خاک‌پارداری (تأیید کنر و همکاران)، انتشارات دانشگاه تهران.