تغییرات کیفی روانه‌ای در شالیزارهای گیلان و فومنات

چکیده
مقادیر مصرف کود شیمیایی در کشاورزی از نظر سطحی زیست محیطی و مصرف شیمیایی انسانی می‌باشد. هدف از انجام این پژوهش تعیین بار آلومین از طریق بررسی کیفیت روانه و تغییر غلظت خوراکی بوده است. در مقاله زراعت و زیربخش مزارع با ساختار محیطی (27/08/05 مکثر) در شهرستان فومن انتخاب شد. در این مزارع روانه به طور مشابه در آبیاری گردیده‌ای ضریب استفاده می‌شود. کیفیت روانه در شالیزارهای گیلان و مزارع مورد سنجش قرار گرفت.

مقادیر روانه‌ای در مزارع، 0-2 درصد بروده شد. روانه و آب آبیاری در طبقه 1 C3S1 قرار داشت. تفاوت میان‌گین مقادیر SAR در آب روی و آب روی میان‌گین قرار داشت. مقادیر pH و EC در آب روی و آب روی میان‌گین قرار داشت. این عوامل در آب کم یا زیاد می‌باشد و می‌تواند تأثیر عمیقی را بر روی محیط زیست داشته باشد. غلظت آنزیم‌های مناسب برای ازاین قرار داشت. غلظت این در آب آبیاری از 0-5/0 تا 0-1 میلی‌گرم در لیتر متغیر بود. پس از این‌که مزارع دانه‌های مصرف شده نشان داده شد. میان‌گین غلظت بیو ناتیور ناشی از میکروریز داده شد. غلظت این در مزارع سنجش ۲۰۰ کیلوگرم‌نتریس از این روانه‌ها در افزایش می‌باشد. غلظت این در این مزارع دانه‌های مصرف شده نشان داده شد. غلظت این در این مزارع سنجش ۲۰۰ کیلوگرم‌نتریس از این روانه‌ها در افزایش می‌باشد.

واژه‌های کلیدی: روانه، شالیزار، گیلان، آلودگی

مقدمه
وجود روانه‌های پایان آبیاری در آب‌یاری شیاری و نواری نوار با شیار، بازی می‌شود. می‌تواند با تغییرات بارشی و سطحی در نظر است. روانه‌های پایان آبیاری در آب‌یاری شیاری و نواری 1. به ترتیب داشته‌ای و داشته‌ای شیاری ارشد آبیاری و استدلال‌گاهی پیشتر، دانشکده کشاورزی، دانشگاه تهران

12400
علوم و فنون کشاورزی و منابع طبیعی/جلد پنجم/شماره اول/بهر ۱۳۸۰

بررسی و آن را با غلظت این پرونده در آب آبیاری مقایسه نمود.

در سال ۱۹۷۵ استریتیگیم در کامبیوری بازیافت آب رواناب در شیکابی ارائه نمودند، که مورد استفاده بسیاری از طراحان و مهندسین قرار می‌گیرد. در سال ۱۹۸۲ روش‌های بهبهان‌سازی این سیستم‌ها با استفاده از روش‌های طراحی استریتیگیم ارائه نمودند.

از اوائل دهه ۱۹۸۰ آثار زیست محیطی فضای‌های کشاورزی توجه به‌پویش‌گران را جلب نمود. پس از آن مبنا

آگاهی‌سازی مانند سیستم‌های ایمنی، امکانات شیمیایی و فرآیندهای و تجهیزات و انجام آن‌ها و رواناب، و برای تغذیه و اصلاح بی‌کاری و بازیافت رویاروبی مدل‌ها کامپیوتری سیستم‌های ارائه‌شده است. انتظار می‌رود در آینده این مدل‌ها به‌عنوان یکی از مهم‌ترین و کلیدی‌ترین راه‌های پیشرفت در کشاورزی بازیافت آب آشامیدنی.

در سال ۱۹۹۳ گیلبرتون (۸) مدلی به نام مدل تصمیمگیری ۱ را برای داده‌های حساس از مزارع به‌پویش‌گران یک روش مبتلا به‌پویش‌گران را ارائه داد. نام برده‌پوش‌گران رویاب را به دلیل کاهش مصرف آب، جلوگیری از آب زیان‌بار زیست محیطی و بالا بردن دقت در مدیریت دارد. برای این نیاز چیزی که کنترل‌بخش با کمک‌های نرم‌افزاری رویاب و شبکه لوله‌پیوسته شده، تحلیل‌های اقتصادی سیستم انجام و مناسب‌ترین بازیافت هزینه‌های اتخاذ می‌گردد. در این برسی

نشان داده که با راهکارهای کمک‌مکن ممکن تمرکز در اعمال خاک کاهش مصرف آب و این تغییر رویاب بهبودی روش می‌باشد.

در سال‌های ۱۹۹۱ تا ۹۵ در واین، فوکووا و کورودا (۷) نسبت

اندازه‌ی نیاز آبیاری در خاک ناگفته است. در این مدت رواناب به طور نسبی از ان‌هایی که پر از مخدة می‌شود، و این باعث کاهش

بازده کاربرد آب می‌شود. برای چپستی‌کردن از کاهش بازده کاربرد آب رویاب به‌کار می‌رود و این استفاده مجدد از آن به موجب و بازیافت رواناب می‌رود.

در رویاب کاهش دیگر یا آب‌یاری موکب، رواناب به آخر

تأثیری که بر بازده کاربرد آب در مزرعه دارد ارزیابی می‌گردد. در

رویاب، رواناب از جنبه‌ی طراحی سازه‌ها و تجهیزات آن مورد

ارزیابی قرار می‌گیرد. اما نسبت‌های کیفی و رویاب از نظر کاربرد آب در آب‌یاری نیز توجه می‌شود (۴). بررسی‌های کیفی رویاب، تنها

محدود به کاربرد آن نمی‌گردد، بلکه موارد زیر مورد توجه

است:

۱. بررسی امکانات فرآیند اراضی بالادست و هدر رفت مواد

۲. غذاهای مورد نیازگذاری

۳. تحلیل رویاب حاوی کربن به‌دست آورده و رویاب دیده علیه

۴. راه‌یافتن رویاب آب به کود و سموم شیمیایی به مدت آب

۵. تحقیق اکوسیستم‌های آبی به علت ورود آب آبی به کود و

سموم شیمیایی.

گرچه بهبود‌برداری از رویاب در آب‌یاری پس‌شیمیایی به‌سیاس

طلایی دارد، ولی پرورش در این زمینه به‌چهار دهه قبل اغاز

شد است. تحقیقات این است که در مورد پیش‌بینی روش‌های

اصول طراحی استفاده پهپاژ و حجم معنی‌داری کانال‌های خورده

نخستین بار در سال ۱۹۶۲، دیویس (۶) کیفیت رویاب و

آثار استفاده از کود و سموم شیمیایی را مبنا آب آشامیدنی.

فرآیند خاک توسط رویاب و پرکردهای در تأسیسات و

مجرای‌بازی‌کردن چرخان، برتکس کردن در سال‌های ۱۹۶۹-۱۹۸۷

پویش‌گران (۵) میزان فسفات و نیترات موجود در رویاب را

Downloaded from jcpp.iut.ac.ir at 7:26 IRDT on Monday April 27th 2020
تغییرات کیفی رویاروب در شالیزارهای گیلان و فرمونات

فیشر در نشانه‌های اصلی و رویاروب را برای مزارع برنج، با توجه به محدودیت‌های عوامل کیفی در آبیاری برنج زنبوری نومره، توابع تمامی آنها در نهایت به فرمون رویاروب، نسبت به آب اصلی را برای منطقه کوبن‌ها حدود 0/4 با آورده‌اند.

در ایران نتایج رویاروب ماله ماله و مقایسه کیفی رویاروب در مزارع برنج گیلان و تغییرات کیفی عواملی بوده که در تغییرات کیفی شالیزارها از هم بهبود بیشتری پرداخته می‌باشد. عوامل مورد استفاده عبارتند از: TDS, EC, pH (شامل شکل‌های مختلف آن)، B, Cu, SAR, K, P, Ca, Mg, Na (متغیرات انرژی)، Fe, و Zn. این انواع بر اثر تغییرات غلظت ازون و شکل‌های مختلف آن پس از کودپاشی آزمایش گردیده. این امر برای آگاهی از میزان خروج کودهای شیمیایی از مزرعه در دوره آبیاری لازم به نظر می‌رسد.

صمیمیت غلظت سم در آب مزرعه پس از سپاسی با حرش‌کش دیازیتون، به مثابه ویژه چگونگی تغییرات غلظت آن نسبت به زمان اندازه‌گیری، تا مدت خطره کودنی رودآب آب مزرعه به منابع آبی تغییر گردید.

مواد و روش‌ها

چهره مزرعه در دو مرحله A و B، در دو مرحله A و B، در دو مرحله دو مرحله که در شاهکار D و C و B، A، در دو مرحله که در شاهکار D و C و B، A، در دو مرحله که در شاهکار

مکانیسم جذب‌کننده در دو مرحله A و B، در دو مرحله A و B، در دو مرحله که در شاهکار D و C و B، A، در دو مرحله که در شاهکار D و C و B، A، در دو مرحله که در شاهکار

سیر چرایی: به علت نور نیروهای ممسحت کرت‌ها، برای حذف اثر ممسحت، مدل ورودی به ورودی (ما جایگزینی) در محاسبات مصرفی گردید. برای حذف نسبت‌هایی از روانه‌کننده کرت‌ها به اندازه‌داده و به خوبی با توجه به رابطه نسبت

رویاروب با انگیزه متابولیک به یک رابطه خصوصی تغییر می‌یابد:

\[
\frac{\sum C_i q_i}{\sum q_i} \]
تغییرات کیفی روان‌باد در شانزده‌ها گیلان و فومنات

تمامی مزارع ترسیم شد. ازون بر این، معادلات مربوط به بیشترین مقدار \(q_0 \) (حداکثر مصرف و کمترین مقدار \(q_i \) (حداقل مصرف) با توجه به نفوذپذیری و مصرف گیاه ترسیم گردید. غلظت عناصر و عوامل کیفی در آب و اکسیژن نسبت به آب خروجی از مزارع مورد تست گزارش گردید. علاوه بر این، آزمون برای میانگین غلظت بیاب از روش-Student انجام گردید.

\[
TWR = \frac{q_0}{q_i} = \frac{1}{D_p + ET_c} \times 10^4
\]

که در آن \(q_0 \) و \(q_i \) به ترتیب مدل ورودی و خروجی و \(D_p \) و \(ET_c \) به ترتیب دیواره و میزان، رابطه فوق برای هر اندازه گیری خودکار است.

\[
q_0 = q_i - (D_p + ET_c) \times 10^4
\]

در این رابطه \(D_p \) توزیع عمیق و \(ET_c \) تایخیر و تعریف گیاه بر حسب الکل‌متر در ثانیه است. اگر \(D_p \) از قرار دادن رابطه 2 در رابطه 3 و \(ET_c \) از طرفین آن، رابطه زیر به دست می‌آید:

\[
\log\left(1 - \frac{q_i}{q_0}\right) = \log u
\]

از رگرسیون خطی معادله مقدار \(\log(u) \) که در اندازه‌گیری ورودی و خروجی کرده‌ایم حاصل می‌شود، معادله 4 از طریق اندازه‌گیری به دست می‌آید. این اظهار این نتیجه‌ای در مورد زایی زاویه ماده 4 برای 1- است و هم‌اکنون 4 مقدار ثابت معادله است در هر ثابت. اندازه‌گیری تایخیر می‌کند. سری معادلات که در هر اندازه‌گیری و با در یک زمان در مزارع مختلف به دست می‌آید، مواردی یکدیگرند.

اگر در رابطه 4 روان‌باد برای محاسبه مقدار \(u \) (مدول متوسط مورد نیاز مزارع در زمین اندازه‌گیری معین می‌گردد. اگر اندازه‌گیری در زمان جداکر مصرف گیاه انجام شود، مدول طراحی شبه‌آیاری به دست می‌آید، و اگر دیگر اندازه‌گیری شده، که در عملیات رگرـسیون می‌کند. ماده 4 موارد نیاز مورد نیاز در دوره اندازه‌گیری به دست می‌آید.

در این طرح با استفاده از داده‌های حاصل از اندازه‌گیری، معادله 4 برای میزان مواد C, B, A به طور مستقل، و نیز برای D و C, B, A به طور مستقل، و نیز برای

1. Atomic Absorption
آنچه می‌شود عمل خالص‌سازی به کمک ستون
کرومانتوگرافی انجم شد. حدود پنج گرم سیلیکاگال (قطر
2/2 میلی‌متر) ورن شد به دو یک ستون شیردا وارد
و با 25 میلی‌لیتر هگزان نرمال شسته شد و سپس عصاره
واصل از مراحل قبل با 25 میلی‌لیتر محلول پن وردی اتیل
در هگزان ادامه داده است تا دخیزیون از روی ستون شسته
شد. محلول حاصل تیزر گردید و تا حجم آن را به 17 میلی‌لیتر
بررسید.

ابن محلول برای اندازه‌گیری نهایی مورد استفاده قرار گرفت.
اندازه‌گیری کمی با وسیله دستگاه گازکرومانتوگراف در
مقایسه با محلول استاندارد انجم شد. دستگاه گازکرومانتوگراف
مورد استفاده مدل 700 مجهز به دکتور Varian و
درجه حرارت انگور حدود 220 درجه سانتی‌گراد و درجات
حرارت ستون و دکتور به ترتیب 180 و 200 درجه سانتی‌گراد
بود. سرعت گاز حاصل (از نزدیک 17 میلی‌لیتر در دقیقه، و سمت
هوا و تبدیل به ترتیب 150 و 40 میلی‌لیتر در دقیقه تنظیم
شد. در این شرایط دیازیتون زمان پاسداری حدود 14 دقیقه
درست می‌شود.

نتایج و بحث
نسبت رواناب
جدول 1 تایباد اندازه‌گیری دی‌های را در مزار
D و C، B و A
می‌دهد. ستون 2 نشان دهنده مساحت تجمعی کرده‌ی
مزاع است. از محل ورود آب به مزار تا خروجی کرده‌ی
برای هر اندازه‌گیری است. در ستون 7 مدل ورودی به مساحت‌های
ستون 4 محسوب می‌شود. این عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 11 برای
تمام مزار رگسیون انجم شده و عادد به مزار و 10 برای
تمام مزار رگسیون انجم شده و عادд
|---|--------|--------|--------|--------|--------|--------|

|---|--------|--------|--------|--------|--------|--------|
نمودار ۱. تغییرات رواناب نسبت به مزروعه

نمودار ۲. تغییرات رواناب نسبت به ۱/۷ از مزروعه

نمودار ۳. تغییرات رواناب در مزارع D و C، B، A

نمودار ۴. تغییرات رواناب در مزارع D و C، B، A

که هرچه در استخراج معادله ۴ از داده‌های حاصل از اندازه‌گیری ضریب همبستگی (r) بزرگتر باشد، پایده کاربرد آب که از معادله و اندازه‌گیری نتیجه می‌شود، دارای اختلاف کمتری است. اما اگر رواناب جزو تلفات منظور شود (Ea)، میان ضریب همبستگی و تفاوت بین آنها حاصل از اندازه‌گیری و به کارگیری معادله ۴ رابطه مشخصی وجود ندارد.

تجزیه شیمیایی رواناب شوری آب آبیاری و رواناب کرت‌ها از ۱۷/۸۸ تا ۱/۸ اس. در چنین شرایطی با توجه به نفوذ عمیق (Dp) بیش‌ترین پایده کاربرد آب برای ۸۰ درصد می‌باشد.

در نمونه ۲ تغییرات رواناب در مزارع تنش داده شده است. با استفاده از میانگین مقادیر رواناب در هر مزرعه و مقادیر نفوذ عمیق (Dp)، پایده کاربرد آب در هر یک از مزارع محاسبه شده، سپس این نتایج با مقادیر حاصل از کارگیری معادله ۴ مقایسه و در جدول ۲ داده شده است. پایده کاربرد نیز با مقادیر حاصل از کاربرد معادله ۴ مقایسه شده است. این جدول نشان می‌دهد
جدول (2) بازده کاربرد آب و نسبت رواناب در مزارع

<table>
<thead>
<tr>
<th>شریف (متراژ)</th>
<th>بازده (نرخهایی)</th>
<th>نسبت رواناب</th>
<th>نفوذ عمقی</th>
<th>مزرعه (نرخهایی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیمیایی</td>
<td>هورسک</td>
<td>معمول</td>
<td>اندوزه‌گیری</td>
<td>معمول</td>
</tr>
<tr>
<td>هورسک</td>
<td>86</td>
<td>89</td>
<td>61</td>
<td>28</td>
</tr>
<tr>
<td>99/5</td>
<td>87</td>
<td>95/5</td>
<td>55</td>
<td>28/5</td>
</tr>
<tr>
<td>0/28</td>
<td>88</td>
<td>88/5</td>
<td>66/5</td>
<td>36/5</td>
</tr>
<tr>
<td>96/5</td>
<td>89</td>
<td>95</td>
<td>62</td>
<td>36/5</td>
</tr>
<tr>
<td>میانگین</td>
<td>86</td>
<td>90/5</td>
<td>67/5</td>
<td>36/5</td>
</tr>
</tbody>
</table>

1. بازده و فنی که رویاناب جزو لفت‌های محصول نمود.

<table>
<thead>
<tr>
<th>دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم (SAR)</th>
<th>دستی‌زیمن دیم (نرخهای 2) و ضربی جذب سدیم سدیم</th>
<th>دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم سدیم</th>
<th>دستی‌زیمن دیم (نرخهای 2) و ضربی جذب سدیم سدیم</th>
<th>دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم سدیم</th>
<th>دستی‌زیمن دیم (نرخهای 2) و ضربی جذب سدیم سدیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/15</td>
<td>10/25</td>
<td>29/15</td>
<td>29/15</td>
<td>29/15</td>
<td>29/15</td>
</tr>
</tbody>
</table>

2. بازده و فنی که رویاناب جزو لفت‌های محصول نمود.

3. دستی‌زیمن دیم (نرخهای 2) و ضربی جذب سدیم سدیم سدیم | دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم سدیم | دستی‌زیمن دیم (نرخهای 2) و ضربی جذب سدیم سدیم | دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم سدیم | دستی‌زیمن دیم (نرخهای 2) و ضربی جذب سدیم سدیم | دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم سدیم |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24/15</td>
<td>10/25</td>
<td>29/15</td>
<td>29/15</td>
<td>29/15</td>
<td>29/15</td>
</tr>
</tbody>
</table>

4. دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم (SAR) | دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم | دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم | دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم | دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم | دستی‌زیمن سپر (نرخهای 5) و ضربی جذب سدیم |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24/15</td>
<td>10/25</td>
<td>29/15</td>
<td>29/15</td>
<td>29/15</td>
<td>29/15</td>
</tr>
</tbody>
</table>
نمودار ۵. تغییرات SAR در آب ورودی و خروجی مزارع

نمودار ۶. تغییرات EC در آب ورودی و خروجی مزارع

نمودار ۷. تغییرات pH در آب ورودی و خروجی مزارع

نمودار ۸. تغییرات پتاسیم در آب ورودی و خروجی مزارع

نمودار ۹. تغییرات نیتروژن در آب ورودی و خروجی مزارع

نمودار ۱۰. تغییرات روی در آب ورودی و خروجی مزارع
نمودار 11. تغییرات غلظت مس در آب ورودی و خروجی مزارع

نمودار 12. تغییرات غلظت پر در آب ورودی و خروجی مزارع

نمودار 13. تغییرات غلظت NH₃ در آب ورودی و خروجی مزارع

نمودار 14. تغییرات غلظت NO₃⁻ در آب ورودی و خروجی مزارع

نمودار 15. تغییرات غلظت NO₂⁻ در آب ورودی و خروجی مزارع
معدل D 0/1/0/5/0/241l/ha من میانگین دیی روان‌ها در دوره اندازه‌گیری بوده و با توجه به غلظت خروجی نیترات، محاسبه تقیی نشان می‌دهد که در فصل آبیاری از هر هکتار شالیزار 70 kg نیترات از طریق روان‌های وارد زهکشها و رودخانه‌ها مصرف می‌شود.

غلظت یون آمونیوم در خروجی مزارع نسبت به ورودی تغییر چندانی نداشته و تفاوت این دو در سطح 0 درصد معمول دارد. نتیجه گرفته که یون آمونیوم کم‌میزان بوده و پس از کودپاشی در خروجی افزایش یافته و نسبت به میزانی که در خروجی بیش از ورودی بوده و با میانگین 64/4 mg/l افزایشی 42/3 درصد نسبت به میانگین ورودی 2/5 mg/l (میانگین 3/5 mg/l) نشان می‌دهد و لب تفاوت این دو میانگین نیز در سطح 10% معمول دارد نمی‌باشد.

نمودارهای 17 و 18 به ترتیب تغییرات کل مواد محلول DO و TDS در آب خروجی نسبت به ورودی نشان می‌دهند. میانگین کلیه عوامل و عنصر فوق نیز در سطح 0 درصد تفاوت معمول داری نداشته. درج حرارت نیز در این نکات تغییرات جزئی بوده و بیشترین تغییرات در دامنه دوم درجه حرارت مناسب برای رشد برگ قرار داشت. از راه‌های عاملی که برای مبارزه با آفات شالیزار مورد استفاده قرار می‌گیرد دیازونین است، که درجه سرمایه آن 350-650 mg/kg سبزپایی شده نشان داده که در نخستین روز پس از سبزپایی غلظت دیازونین 0/83 mg/l بوده و لب پس از هر روز با یک روند کاهشی به 0/89 mg/l (نمودار 19) غلظت سم به وژه تا سه روز پس از سبزپایی نسبتاً زیاد بود. ورود آب کننده مزارع به منابع آبی و در حال هنگام که سطح سمیه از مزارع سبزپایی شود، حظر مغز انتخابی از جلیقه‌ها و آبیزان را در پی دارد. جلیقه‌ها خود جذاب و تجزیه‌کننده بسیاری از عوامل سمی و مواد سمی در بدن آبیزان می‌گردد.

نمودار 17. تغییرات غلظت مواد محلول در آب ورودی و خروجی مزارع

نمودار 18. تغییرات غلظت آکسیژن محلول در آب ورودی و خروجی مزارع

نمودار 19. تغییرات غلظت دیازونین در آب ورودی و خروجی مزارع
نتیجه‌گیری
علت نمک‌های محلول (TDS) نسبت به آل‌ناهیدی غلظت بیش‌تری داشت و کمتر از 150 کیلولوگرم در هکتار در روست‌های بود. بار و روست‌های بیش‌تری از بار خروجی بود. تفاوت میانگین بار نمک‌های محلول ورودی و خروجی بود. در سطح یک درصد معنی‌دار بود. یکی از عناصر مهم موجود در محلول، (NH₄)⁺، NO₃⁻، NO₂⁻، SAR، EC، DO، B، Zn، Cu، Fe، K، TDS، N و کلسیم و ماده‌های ضروری 146 پیوسیورتیابی به ترتیب 1786.8 و 1576.8کیلوگرم در هکتار بود. نتاژ میانگین مجموعی این بارها در آب ورودی و خروجی کاهشی در سطح یک هکتار بوده است.

میزان‌های متوسط و نمودار 19 نمودار غلظت دیازیتون را پس از سه‌ماهه موزه انتخابی در لاهیجان طی 15 روز نشان می‌دهد. غلظت سم در آب، به ویژه در روست‌های اول تا سوم بعد از سه‌ماهه، نسبت به روست‌های دیگر زیاد بود.

مباحث مورد استفاده

1. سبزیجات. 1377.1. آب‌زایی کمی و کمی آب برگشتی در آب‌زایی نشته. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه تهران.
2. جهت، دانشگاه شهید چمران، مرکز تحقیقات کشاورزی، دانشگاه تهران.
3. شریعت پناهی، م. 1375. تحقیقات آب‌زایی و فضای باد، انتشارات دانشگاه تهران.
4. گروس، ف. ب. مصطفی زاده. 1375. آب‌زایی سطحی، انتشارات فرهنگ جامع.
1050-1063.
