تأثیر نیترژن و منگنز بر قابلیت استفاده برمی عناصر غذایی خاک تحت کشت گیاهان مختلف

یحیی پرویزی و عبدالله مجید رونقی‌ی

چکیده

به منظور شناخت اثر مصرف نیترژن و منگنز بر قابلیت استفاده برمی عناصر غذایی در سه کشت گندم (Triticum aestivum L. (.), آزمایش در شرایط گلخانه‌ای به صورت فاکتوریل در چارچوب طرح کامل تصادفی انجام شد. تیمارها شامل انت سطح نیترژن (صرف 20، 40 و 80 میلی‌گرم در کیلوگرم خاک به صورت آمونیوم نیترات) و سه سطح منگنز (صرف 10، 20 و 30 میلی‌گرم در کیلوگرم خاک به صورت منگنز سولفات) و در چهار تکرار بودند. این آزمایش در سه گیاه عده زراعی و باکی، یعنی دفت از رکم منگنز کراس 40، گندم از رقم فلات و استفاده از رقم Spinacea s. از هشت فته، پس از شست فتح، اندازه‌گیری شد. میزان ازت کل خاک و منگنز منگنز، آهی، روی و مس قابل عصاره‌گیری خاک با عصاره‌گیر DTPA نتایج نشان داد که کاهش نیترژن و منگنز به طرز ممکن دلیل غلظت منگنز عصاره‌گیری شده خاک را در هر سه کشت افزایش داد، ولی در مقدار ازت کل خاک تأثیر چندانی نداشت. مصرف ازت بایع افزایش مقدار آهی قابل استفاده خاک در کشت دفت شد. همچنین، کاهش منگنز غلظت روی و مس قابل عصاره‌گیری خاک با DTPA را در کشت گندم و مس خاک را در کشت دفت کاهش داد.

DTPA

واژه‌های کلیدی: نیترژن، منگنز، گندم، دفت، استفاده، عصاره‌گیر

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز.
مقدمه

ارزو در خاک تحت تأثیر وักنش‌های شیمیایی، بایولوژیک و یوپوشیمایی قرار می‌گیرد. تغییرات ارزو در خاک بر بخشی از ویژگی‌های خاک همجورین pEC و pH و همچنین توزیع حیات و رسوب عناصر کم‌صرف‌ری غلظت دارد. افزایش‌های آمونیوم در خاک از اثر دی‌هی‌که جنین‌ها سطح کلیویده‌های خاک می‌شود. هنگام جذب شدن توسط گیاهان نیز، با ریاح حفظ تعادل پوستی محلول‌های خاک و گیاه باعث آزاد شدن هیدروژن از ریشه‌ها می‌گردد. (21).

از ارزو در خاک به صورت ارزو صورت می‌گیرد، از معدنی و ارزو آیی است. از مولکول‌های شکل را در هوا قابل جدا شدن می‌گردد. تغییرات ارزو در خاک بخشی از آدنیوم، اکسیداتور و تری‌ترینات می‌گردد. از مولکول‌های شکل را در هوا نیز می‌گردد. عواصف فراگرد و همچنین معدنی و محلول‌های مختلف می‌گردد. از تغییرات ارزو در خاک به ارزو کاهش یافته شده در خاک به شکل‌های قاچع‌داده شده و پیش‌بینی آن‌ها که سطح اکسیداتور و تری‌ترینات در خاک از این اهمیت دارد که ذکر شده است. از مولکول‌های شکل را در هوا قابل جدا شدن می‌گردد. (21).

احتمال ارزو در خاک شامل فاصله مابین خاک بازماندگان محصول و کود دامی می‌باشد. این محصول در آب پتانسیل فرازیشنی، اشکال بیولوژیکی و کود‌های شیمیایی می‌باشد. در اثر معدنی شدن ترکیبات ارزو طی فرازیشن‌های آمونیاکسازی و نیتراسازی از محلول خاک افزایش یافته و در دسته‌بندی دیگر باعث شیمیایی تغییر می‌پاگد. (21).

حریم‌های خاک و در سطح خاک باعث تغییر در غلظت اصلاح خاک می‌شود. از این نظر دیگر به عنوان خاصیت اسیدتاتی و قلیایی آنها به تغییرات ارزو در pH خاک می‌گردد. این تغییرات نیز منجر به رسوب باعث ناکارایی و اехایگی در خاک می‌شود. (11، 15 و 27).

منگنز در سطح کربوهیدرات‌ها، اسیدهای آمین و پروتئین‌ها اعیان نیترات و سولفات، ناسی و فتوستیز در گیاه ناهنجاری فعالیت دارد. منگنز به شکل MnO2 قابل استفاده گیاه است (2 و 15). منگنز در خاک تحت فرآیندهای کربوهیدرات‌های مختلف همچون اکسید و کاهش قرار می‌گیرد. به دلیل این است که آورده‌های یکسان تحت اثر منگنز را، درacos مقدار میزان آسمان آب‌های مایع و مدت مدت مدت بردارد. منگنز در خاک به شکل‌های قاچع‌داده شده و پیش‌بینی آن‌ها که سطح اکسیداتور و تری‌ترینات در خاک از این اهمیت دارد که ذکر شده است. از مولکول‌های شکل را در هوا قابل جدا شدن می‌گردد. (21).
تأثیر تیروزین و مانگنز بر قابلیت استفاده برخی عنصر گذشته خاک تحت

در ایران سالانه مقدار زیادی کود ازتمه مصرف می‌شود. نتایج تأثیر آن بر ویژگی‌های شیمیایی خاک اثر محسوسی است که کمتر مورد بررسی قرار گرفته است. از جمله، در سال‌های

با دلیل کشاورزی مکانیزه، نیز شرایط آب و هوا و خاک از ارومیت، انرژی کود، میزان مکانیزه بخش از بیشتر

موردها، تایید گردید. این‌ها اثر احتمالی افزودن

این عناصر را بر تهیه و قابلیت استفاده عنصر دیگر خاکی در

خاک تأثیر از دید مهندس و مکانیزه مصرفی بر

قابلیت استفاده این عنصر و نیز عنصر اهمیت و مس در

خاک، برای سه گونه درخت و استفاده برگی گردیده است.

مواد و روش‌ها

پس از گزارش‌هایی سماری نمونه‌های خاکی در خاک‌های زراعی استان

فارس، خاکی که دارای میزان از و منگل قابل استفاده کمتری

بود برگردیده شد. خاک مرد نظر از سری چینگها در شهرستان

سروستان، واقع در 9 کیلومتری جنوب شرقی نظرآباد بود. نام

Calcic Brown، علمی خاک در سیستم قدیمی طبقه‌بندی

Fine، lomy، soil، و در روش جدید فلسفه‌ای خاک،

carbonatic، thermic، Typic Calcixererts

کافی خاک از افق سطحی صفر تا 20 سانتی‌متری برداشت

پس از خشک کردن خاک در هوا و گذشتن از اسکد دور

میلی‌متری، برخی از ویژگی‌های فیزیکی و شیمیایی آن مانند

بافت خاک به روش هیدروترمی (pH) در خمیر شایع میزان

کربن آلی به روش فیزیکی (20)، کربنات کلسیم معمول

Mn، و دیگر عنصر کم‌صرف با عصاره‌گیری DTPA

عنصر کم‌صرف با عصاره‌گیری با

سنجش جذب اتمی (13)، میزان ازت کل به روش کل‌دان (9)،

مقدار نیترات خاک به روش کل‌دان (8)، فسفر خاک به

روش اولانس (12)، پتاس میلی‌متری در استان آبی، نکات

به روش شعله سنگی (18)، و هدایات کلمی‌پر عصاره اشب

هدایات سنگی کلمی‌پر عصاره اشب

داده شده است.
جدول 1. پرخی وزنگی های خیزیکی و شیمیایی خاک مورد استفاده

<table>
<thead>
<tr>
<th>مقدار</th>
<th>وزنگی خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>شن (%)</td>
</tr>
<tr>
<td>46</td>
<td>سیلت (%)</td>
</tr>
<tr>
<td>24</td>
<td>رس (%)</td>
</tr>
<tr>
<td>10</td>
<td>بات خاک</td>
</tr>
<tr>
<td>7/6</td>
<td>ب باف</td>
</tr>
<tr>
<td>1/0</td>
<td>ماده آلی (%)</td>
</tr>
<tr>
<td>1/0</td>
<td>هدایت الکتریکی (دسیپیشنس بر متر)</td>
</tr>
<tr>
<td>1/0</td>
<td>نظریه نیرو درگیر (سانتیمول) در گرام خاک</td>
</tr>
<tr>
<td>1/0</td>
<td>کربنات کلسیم معادل (%)</td>
</tr>
<tr>
<td>1/0</td>
<td>ارت کل (%)</td>
</tr>
<tr>
<td>1/0</td>
<td>فسفر (میلی گرم در کیلو گرم خاک)</td>
</tr>
<tr>
<td>1/0</td>
<td>بنی سیلیک (میلی گرم در کیلو گرم خاک)</td>
</tr>
<tr>
<td>1/0</td>
<td>نیترات (میلی گرم در کیلو گرم خاک)</td>
</tr>
<tr>
<td>1/0</td>
<td>منگنز (میلی گرم در کیلو گرم خاک)</td>
</tr>
<tr>
<td>1/0</td>
<td>آهن (میلی گرم در کیلو گرم خاک)</td>
</tr>
<tr>
<td>1/0</td>
<td>رژیم (میلی گرم در کیلو گرم خاک)</td>
</tr>
<tr>
<td>0/0/7</td>
<td>کلسیم (میلی گرم در کیلو گرم خاک)</td>
</tr>
</tbody>
</table>

خاک معنی دار نیست. با کاربرد 400 میلی گرم ازت در کیلو گرم خاک، مقدار ناچیزی بر درصد ازت کل خاک افزوده شده (حدود 0/0 درصد)، که معنی دار نیست. دلیل آن احتمالاً این است که ازت در خاک به سرعت منجر داده و تحت تأثیر مکانی‌های نظیر آب‌شویی، جذب و غیره در خاک مصرف می‌شود. همچنین، مشاهده می‌شود که میانگین ازت خاک در کشت ذرت کمتر از دو کشت دیگر است. دلیل احتمالی این آمر تولید ماده خشک بیشتر در ذرت است، که نتیجه آن استحصال ازت بیشتر از خاک می‌باشد. کاربرد منگنز و یون‌های آن با ازت تأثیر معنی‌داری در افزایش درصد ازت خاک نداشته است. DTPA خاک با عصاره‌گیری توسط عصاره‌گیر (13) و اندازه‌گیری با دستگاه جذب انی تعبیه، و نتایج حاصل به کمک نرم‌افزار MSTATC که نرم‌افزار تحلیل آماری قرار گرفت، و میانگین‌های مربوط به انر تیمارها با آزمون دانکن مقایسه شدند.

نتایج و بحث

ازت خاک

نتایج حاصله در جدول 2 نشان می‌دهد که مصرف ازت در سطح 400 میلی گرم ازت در کیلو گرم خاک کشت گندم، 29/2 درصد ازت خاک را نسبت به شاهد افزایش داده است. در کشت ذرت ازت و اسفناج، تأثیر ازت مصرفی بر افزایش ازت کل...
جدول 2. تأثیر سطح ازت و میزان مصرف ازت در سه کل خاک در سطح گندم و اسفنج

<table>
<thead>
<tr>
<th>سطح ازت (میلی جرم در کیلوگرم خاک)</th>
<th>مقدار ازت (کیلوگرم خاک)</th>
<th>ذرت</th>
<th>گندم</th>
<th>اسفنج</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر کیله، تفاوت میانگین‌هایی که در هر رشته با ستون در یک حرف بزرگ یا کوچک مشترک می‌باشند با آزمون دانکین در سطح پنج درصد معنی‌دار نیست.

منگنز خاک

نتایج جدول 3 نشان می‌دهد که کاربرد اضطراب میزان منگنز عصاره‌گیری شده توسط عصاره‌گیری دتپ را در حالت سه عصاره‌گیری شده متوجه می‌شد. به علت نشانه کاربرد 400 میلی‌گرم ازت در هر کیلوگرم خاک سبب منگنز عصاره‌گیری شده‌زیب در کشت گندم، ذرت و اسفنج به ترتیب

97
جدول ۳: تأثیر ازت و منگنز بر مقدار منگنز عصاره‌گیری شده‌هاک با عصاره‌گیر DTPA در سه کشت درخت. گندم و استنفاج

<table>
<thead>
<tr>
<th>سطح ازت</th>
<th>منگنز (میلی‌گرم در کیلوگرم خاک)</th>
<th>منگنز (میلی‌گرم در کیلوگرم خاک)</th>
<th>منگنز (میلی‌گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۷۹ ۱۰۰</td>
<td>۰/۰۱۳ ۱۰۰</td>
<td>۰/۰۱۳ ۱۰۰</td>
<td>۰/۰۱۳ ۱۰۰</td>
</tr>
<tr>
<td>۳/۷۰ ۲۰۰</td>
<td>۰/۰۱۷ ۲۰۰</td>
<td>۰/۰۱۷ ۲۰۰</td>
<td>۰/۰۱۷ ۲۰۰</td>
</tr>
<tr>
<td>۲/۷۱ ۳۰۰</td>
<td>۰/۰۲۱ ۳۰۰</td>
<td>۰/۰۲۱ ۳۰۰</td>
<td>۰/۰۲۱ ۳۰۰</td>
</tr>
<tr>
<td>۱/۷۲ ۴۰۰</td>
<td>۰/۰۲۵ ۴۰۰</td>
<td>۰/۰۲۵ ۴۰۰</td>
<td>۰/۰۲۵ ۴۰۰</td>
</tr>
</tbody>
</table>

در هر گونه‌ای، تفاوت مناسب‌ترهای میان دو صدای در یک حرکت یا کوچک‌تری می‌باشد، با اموزن دانشک در سطح پنج درصد معنی‌دار نیست.

آمونیوم تمیز توانایی pH خاک تأثیر گذشته و حل‌پذیری و قابلیت استفاده عناصر غذایی را تغییر دهد. استعمال منگنز به طور معنی‌داری مقدار منگنز عصاره‌گیری شده‌هاک تا گیپس‌های را در هر سه کشت افراشیش داده است

(جدول ۳). حداکثر مقدار منگنز خاک در کشت گندم و مغذی در سطح ۴۰۰ میلی‌گرم در کیلوگرم و ۳۰ میلی‌گرم منگنز در کیلوگرم خاک حاصل شد و افراشیش ۷۷۱/۷ درصد مثبت به شاهد است، همچنین

در حداکثر غلظت منگنز در خاک در کشت استنفاج، در مقدار ۱۰۰ میلی‌گرم ازت و ۳۰ میلی‌گرم منگنز در کیلوگرم خاک حاصل شد و افراشیش ۷۷۱/۷ درصد مثبت به شاهد است، همچنین

شیب نمایان ذکر است که تأثیر سطوح منگنز در افراشیش
تأثیر نیتروژن و مگنز بر قابلیت استفاده برخی عنصر غذایی خاک تحت...

مقدار مگنز عصاره‌گیری شده در سطح بالایی از تشدید شده است. نتایج نشان می‌دهد که افزایش مقدار مگنز عصاره‌گیری شده در خاک به نسبت مصرف مقدار نیتروژن نیز افزایش می‌یابد.

به عنوان مثال مصرف 30 گرم مگنز در کیلوگرم خاک، مقدار متوسط عصاره‌گیری شده به دست داشت. در کشت گندم، ذرت و افتتاح به ترتیب 27/1، 21/8 و 1/1 میلی گرم در کیلوگرم خاک بهبود بخشیده است. این امر می‌تواند به دلیل افزایش کربنات رسمی رشد می‌شود. این مقدار مگنز افزوده به شکل کربنات رسمی رشد می‌شود.

با توجه به نتایج بالا، بهتر است تا مصرف مصرف 400 میلی گرم را به دست آورده به شکل کربنات رسمی رشد، مصرف مقدار مکانیک قبلی عمیق خاک در مصرف کود مصرف کنند و افزایش مقدار آهّم خاک نداشته باشد.

است (جدول ضمیمه 1). یافته‌ها و میزان آهّم و روی در دو حقول خاک، مصرف مقدار آهّم خاک با دو حقول خاکی EC مشاهده کنند که با افزایش مصرف سرد، مصرف بیشتر روی خاکی به مصرف کم و به این ترتیب رضا خاکی که افزایش بر روی خاکی به حداقل می‌رسد. قابل اعتبار برخی از مصرف مقدار آهّم خاکی می‌باشد.

تأثیر نیتروژن و مقدار مگنز غلظت حجم و ترشحات ریشه، از قبل غلظت حجم می‌شود. در ذرت حجم و ترشحات ریشه و نیز فعالیت ریزوسیس بیماری‌های کنترلی از اثر در کشت و افتتاح تأثیر می‌یابد. این یافته‌ها در مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود مصرف مقدار آهّم خاکی با دو حقول خاکی EC مشاهده خاکی به مصرف کود MCD
جدول ۶ تأثیر متغیر بر مقادیر آهون عصاره‌گیری شده خاک با عصاره‌گیری DTPA در سه کشت ذرت، گندم و استئناف

<table>
<thead>
<tr>
<th>متغیر</th>
<th>گندم</th>
<th>استئناف</th>
<th>ذرت</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>۵/۳۲</td>
<td>۱/۱۵</td>
<td>۵/۷۲</td>
<td>۴/۴۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۵/۷۲</td>
<td>۱/۱۴</td>
<td>۵/۷۶</td>
<td>۴/۴۵</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۵/۷۸</td>
<td>۱/۱۹</td>
<td>۵/۸۴</td>
<td>۴/۴۵</td>
</tr>
<tr>
<td>میلی گرم در کیلوگرم خاک</td>
<td>میلی گرم در کیلوگرم خاک</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۰۰</td>
<td>۵/۸۹</td>
<td>۱/۲۰</td>
<td>۵/۸۴</td>
<td>۴/۴۵</td>
</tr>
</tbody>
</table>

در هر کیلограм، میانگین هر کیلограм به دو رده‌ای به ترتیب گروهی و کلی از هم‌بستگی بیان می‌شود. در آزمون دانکن در سطح پنج درصد معنی‌دار نیست.

مصرف متغیر باعث کاهش معنی‌دار در مقادیر روی قابل استفاده خاک در کشت گندم (جدول ضیمه ۷) به عوامل مشابه مصرف ۴۰۰ میلی گرم در کیلوگرم خاک، مقادیر مشابه و قابل قبول عصاره‌گیری خاک را در کشت گندم به ترتیب از ۲/۷۳ و ۷/۸۷ در تیمار شاهد به ۱/۷۳ و ۲/۷۳ میلی گرم در کیلوگرم خاک رسانیده است (شکل ۲). تأثیر بهره‌مندی آهون و
جدول شمعه 1. تجزیه واریانس پاسخ‌های خاک و گیاه

<table>
<thead>
<tr>
<th>用量</th>
<th>درجه بررسی</th>
<th>آزادی</th>
<th>منابع تغییر</th>
<th>آزمایش</th>
<th>درجه‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ذرت</td>
<td>1</td>
<td>45</td>
<td>ازت</td>
<td>0.01</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11/14</td>
<td>متغیر</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0/19</td>
<td>ازت و متغیر</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0/87</td>
<td>خطا</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0/26</td>
<td>خطا</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0/47</td>
<td>خطا</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0/66</td>
<td>خطا</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0/86</td>
<td>خطا</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0/96</td>
<td>خطا</td>
<td>0.001</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.01</td>
<td>خطا</td>
<td>0.001</td>
<td>0.13</td>
</tr>
</tbody>
</table>

![شکل 1. تأثیر مقدار بر پاسخ‌های عصاره‌گیری شده از خاک در کشت گندم](image1)

![شکل 2. تأثیر مقدار بر پاسخ‌های عصاره‌گیری شده از خاک در کشت گندم و ذرت](image2)
نتیجه‌گیری

1. تأثیر افزایش و منگنز مصرفی در فاکتورهای خاک اندوزگری، بر روی گیاه ریشه هر گیاه همچنین میزان حجم ریشه و ترشحات مواد متفاوت است. در این گزارش، نشان داده شد که تأثیر منگنز در افزایش حجم ریشه و ترشحات مواد متفاوت از آنها در ناحیه ریزوفر ریشه باشد. در این آزمایش، کشت گندم و ذرت تأثیر منگنز و ارتباط مصرفی را نشان داده. همچنین این گزارش نشان داد که تأثیر منگنز در افزایش حجم ریشه و ترشحات مواد متفاوت از آنها است.

2. تیمارهای افزایش و منگنز در هر سه کشت تأثیر منعی داری در درصد اثر کل خاک نداشته‌اند. در کشت ذرت، به دلیل استحصال بیشتر از خاک، میانگین مقدار اثر کل خاک در یکان کمتر از دو کشت طبیعی است. در این امکانی، رشد بیشتر و تولید ماده خشک بیشتر می‌باشد، که میزان جذب اثر بیشتری از خاک است.

مثال مورد استفاده:

1. سالارديني، غ. 1366. خصائص خاک، انتشارات دانشگاه تهران.
2. سالارديني، غ. و. م. مجدیدی (مترجم). 1372. اصول فنی‌های کشاورزی. جلد دوم. انتشارات مرکز نشر دانشگاهی، تهران.
3. غفاری‌نژاد، شرکتروکی، س. غ. 1377. توزیع شکل‌های مختلف شبیه‌سازی منگنز در خاک‌های آهکی استان فارس و رابطه آنها با رشد سری و پایان‌ریز اثر خاک‌شناسی، دانشگاه کشاورزی، دانشگاه‌های شیراز.
4. کچکچی، غ. و حسینی و ح. خزایی (مترجم). 1378. بوم‌شناسی خاک. انتشارات دانشگاه فردوسی مشهد.
5. مجددی، غ. (مترجم). 1379. شبیه‌سازی، کشت و انتشارات مرکز نشر دانشگاهی، تهران.
6. ملکی، غ. و ح. ج. و حسینی (مترجم). 1373. مصرف کود در کشاورزی و فرهنگ. انتشارات دانشگاه تربیت مدرس.


