چکیده
در این مقاله یک مدل هندسی برای حل حریان یک بعدی آب در محیط غیررشابع معرفی گردیده است. حریان آب در این محیط غیررشابع تابع یک وضعیت الکتریکی است که حل تحلیل آن به این در موارد محدود و ساده شده امکان پذیر نیست. در این تحقیق مدلی برای حل اختیارات دیفرانسیلی حریان آب در کانال ایجاد گردید که جایگزین کردن معادلات دیفرانسیلی جزئی با یک روش هندسی معادلات تقریبی مشابه کرده که قابل حل کردن با روش های عددی حسابی است. به همین دلیل، این مدل در پرداختن به این حریان محقق و قابل قبول می‌باشد.

واژه‌های کلیدی: جریان در محیط غیررشابع، مدل سازی مکان آب خاک، روش عملگرهای مرجع

مقدمه
مدل‌های حریان آب در محیط غیررشابع از دیروز مورد نیزه دانشمندان علوم آب بوده است. با کمک‌های (6) جریان آب در محیط غیررشابع یا صحرا تحت تأثیر از گردانان مکانیک که از فشار می‌پیگیری نمایش می‌گیرد. مدل‌های دیفرانسیلی حریان آب در خاک توسط ریچاردز (7) با استفاده از تشکیل بین انتقال حرارت و جریان آب در محیط مخلوط حل گردید.

معادلات جریان آب در محیط غیررشابع، یک دسته

1. استادیار آپاری و زکری: دانشگاه تربیت مدرس
مواد و روش‌ها

در این پژوهش از روش عمل‌گرهای مرجع برای حل معادله یک مدل مشترک بوده است که در حالت بتوانده ساده‌ای انجام محاسبات را حفظ کند.

استفاده از یک روش عقدی عمومی که بتواند مدل‌ها مشترک بوده، ارائه یک مدل با محاسبه‌های کمتر و عمویت بیشتر بوده که در عین حال بتوانده ساده‌ای انجام محاسبات را حفظ کند.

\[\frac{\partial}{\partial z} \left[K(\theta) \left(\frac{\partial h}{\partial z} + 1 \right) \right] = C(h) \frac{\partial h}{\partial z} + q \]

[1]

که در آن:

\[K(\theta) \] هدایت هیدروپلیک غیرشباع خاک و تابعی از مقدار

\[\theta \] رطوبت

\[h \] مکان آب خاک (بار فشاری منفی)

\[z \] مختصات نقاط در جهت محور عمودی

\[z \] زمان

\[q \] عامل تخلیه و یا تخلیه

\[S_w \] میزان

\[S_w \] درجه اشباع خاک

\[\phi \] تخلیه خاک

\[\phi \] اشباع خاک

روح‌های متدی برای محاسبه رابطه پیش‌بینی دچار شدید

\[S_w = \left[1 + (zh)^n \right]^{-m} \]

[2]

1. Method of reference operators
2. Finite Volume
3. Soil-water suction (negative pressure head)
حل عددي معادله جبری یک بعدی آب در خاک

فرآیند میزان، شامل 1 نمونه از نوع شیکه است. گرداز محل تلاقی خطوط به وجود آمده و هفرگ، و وسیله دارندیس k و n مشخص می‌گردد. در حالی که یک، فواصل گردازها ممکن است به صورت تامنی تغییر کند، و هفرگ با یک اندازه مشخص می‌شود. در روش سیمگرهای مرزهای، با استفاده از فرمول‌گرین 1، برای مشقت‌های اول تابع Ω نسبت به x رابطه زیر را می‌توان نوشت (12):

\[\int_{\Omega} \nabla \cdot \mathbf{u} \, d\Omega = \int_{\partial \Omega} \mathbf{u} \cdot \mathbf{n} \, dS \]

که در این رابطه S سطح بسته‌ای است که حجم دلخواه را u تابع پیوسته با مشتق‌های جزئی روی تابع Ω است.

با استفاده از تعیین‌های تغییر منطقه و منطقه گریدی به عنوان تابعی از مقدار آن روز مرزهای، می‌توان نوشت:

\[\left(\frac{\partial u}{\partial x} \right)_\Omega = \frac{1}{\Omega} \int_{\partial \Omega} u \, d\Omega = \frac{1}{\Omega} \int S \mathbf{u} \cdot \mathbf{n} \, dS \]

که در آن ω برداری است که در جهت محور x می‌باشد. در یک محیط یک بعدی، برای طول یک سلول پرده و می‌توان نوشت:

\[\left(\frac{\partial u}{\partial x} \right)_\Omega = \frac{1}{\Omega} \int_{b} u \, dx = \frac{1}{\Omega} \int_{b} x \, du \]

برای تعیین دقیقه انگشال در سمت معادله 9 از روش دوگره استفاده می‌شود و با توجه به این که جهت حرکت آب در خاک در راستای نامی در نظر گرفته شده است، از این به بعد از متغیر x به عنوان متغیر طول، با جهت مثبت از بالا به پایین استفاده می‌گردد:

\[\frac{du}{d\varepsilon} = \frac{1}{V_n} \left(u_t - u_{t-1} \right) \]

که در آن α و n مقدار ثابت جبری هستند که به نوع خاک واپسند بوده و \(\frac{m}{n} \) می‌باشد. سپس از جمله اشتباه مؤثر است و رابطه زیر می‌باشد (14):

\[S_e = \frac{S_w - S_{rw}}{1 - S_{rw}} = \frac{\theta_w - \theta_{rw}}{1 - \theta_{rw}} \]

که به ترتیب درجه اشباع بالای مانده، و حداکثر میزان \(\theta_{rw} \) و \(S_{rw} \) رطویت است که در آن جریان آب عملان در خاک متوسط می‌باشد.

در محیط غیر‌شباع، چون فقط قسمتی از تخلخل محیط متحرک برای جریان آب در دسترس است، با اینکه خاک را نسبت به جریان اشباع صحیح کرده و برای این منظور از ضریب به نام ضریب هیدرولیکی نسبی (K\(\theta \)) تولید شده است و رابطه زیر به هدایت هیدرولیکی اشباع ربط داده می‌شود:

\[K_w = K_{rw} K_{sw} \]

که در این رابطه هدایت هیدرولیکی اشباع، و هدایت هیدرولیکی غیرشباع است.

برای تعیین ضریب هیدرولیکی نسبی، روابط ریاضی متعددی ارائه شده است. روابط ریاضی ای در میانی را دارند که استفاده از آنها در مدل‌های عدید ساده‌تر می‌باشد. در مدل حاضر برای تعیین ضریب هیدرولیکی نسبی از رابطه‌ای که توسط وان رانگر (14) ارائه شده است، استفاده گردید:

\[K_{rw} = S_e^\gamma \left(1 - \left(\frac{1 - S_e}{1 - S_w} \right)^m \right)^\gamma \]

روش سیمگرهای مرور

مزیت اصلی روش سیمگرهای مرور، که عموماً توسط دانشمندان روسی بعنوان شده (1970) در استفاده از شبکه نامنظم است، که امکان مدل کردن محیط‌های با مرز نامنظم را

1. Green's Formula
شکل 1. شیبکه نامنظم مورد استفاده در روش عملگرهای مرجع

که مقدار V_{N1} به صورت زیر تعیین می‌شود:

\[V_{N1} = \begin{cases} \frac{z_i - z_j}{\gamma} & \text{اگر } i = 1 \\ \frac{z_{i+1} - z_{i-1}}{\gamma} & \text{اگر } i = 2, \ldots, M-1 \\ \frac{z_M - z_{M-1}}{\gamma} & \text{اگر } i = M \end{cases} \]

برای مشتاق مرتبه دوم و با استفاده از روابط به دست آمده و

\[\frac{\partial^2 W}{\partial z^2} = W \left(\frac{z_i + z_{i+1}}{\gamma} \right) \]

\[\frac{\partial W}{\partial z} \bigg|_{z_i} = \frac{1}{V_{N1}} \left(W_i - W_{i-1} \right) + O(h) \]

که در آن $O(h)$ خطای مرتبه اول قطع کردن در سری تیلور می‌باشد و W یک تابع مشتاق مرتبه اول است. با این حال، برای $\frac{\partial}{\partial z}$ در معادله حفرات می‌توان نوشت:

نتایج و بحث

به طور کلی مدل باید قبل از استفاده ارزیابی شده و نه تنها قابلیت‌های آن مشخص شود. بلکه محدودیت‌های آن نیز تعیین

\[\frac{\partial}{\partial z} \left(K \frac{\partial u}{\partial z} \right) \bigg|_{z_i} = \frac{1}{V_{N1}} \left(\frac{u(z_{i+1}) - u(z_i)}{z_{i+1} - z_i} - \frac{u(z_i) - u(z_{i-1})}{z_i - z_{i-1}} \right) \]

\[K_{i-1} \left(\frac{u(z_i) - u(z_{i-1})}{z_i - z_{i-1}} \right) \]
جدول 1. ویژگی‌های فیزیکی خاک‌ها در مثال ۱ و ۲

θ_t	θ_s	α	K	نوع
(cm$^{-3}$)	(cm$^{-1}$)	(cm/s)	(cm/s)	
۰/۰۲۸۶	۰/۳۶۵۸	۲/۲۳۹۰	۰/۲۰۸	لومی شنی ریز
۰/۱۰۶۰	۰/۴۴۸۶	۱/۳۹۵۰	۱/۰۱۴	لوم ریس سیلیتی

گردید. برای اینکه مدل حاضر من با توجه به جواب‌های صحیح ارائه دهنده، لازم است با حل تحلیلی مقایسه شود. در این مقایسه، حل مدل با یک حل تحلیلی، و با نتایج یک آزمایش فیزیکی مقایسه می‌گردد.

موردل جریان مانندگار آب در حالت یک بعدی عمودی و در مختلف قیمت‌های خاک به ارتفاع شش متر است که از بیشتر شکل و پخته شده و همکارانه به دو متر می‌باشد. جدول ۱ و ۲ ویژگی‌های فیزیکی خاک‌های مورد استفاده را نشان می‌دهد. لازم است به همراه با یک چرخان ورودی ثابت آب با شدت برابر ۵/۰۴۱/۰۰۱/۶۱۰ سانتی‌متر در ثانیه، و مزر باین را بار نشان دهیم. به همراه با حل تحلیلی این مثال، مدل را در نظر بگیریم و مقایسه است. در حل عددی بر اساس مدل ۱۲، سطح خاک به ۶۰ سولو سانتی‌متری تخمین گردد. شکل ۲ توزیع بار نشان دهنده آن با نتایج حل تحلیلی را نشان می‌دهد. که بایان همکاری خوب بین این دو می‌باشد.

آنادزه‌گیری با حل تحلیلی و نتایج مدل عمودی در شکل‌های ۲ و ۳ و نمایش داده شده است. مشخصات دو نوع خاک هم‌ماند مثل اول بوده، و تناها ضریب ۰ برای خاک لومی شنی ریز برابر ۲/۸۵/۰۰۰ می‌باشد.

با در نظر گرفتن خطایی که ممکناً در هنگام اندوزه‌گیری رطوبت وجود دارد، و همینطور عدم اطمینان به توانایی پارامترهای انتخاب شده در مدل با واقعیت می‌توان گفت که مقایسه نتایج‌گیری شده و مدل، نتایج نسبتاً نزدیک یکدیگر را نشان می‌دهند، و نتایج مدل به حل تحلیلی پسپار شده است.

1. Silty Clay Loam
2. Loamy Fine Sand
3. Jornada Test Facility
شکل ۳. مقایسه مقادیر رطوبت بین نتایج مدل، حل تحلیلی و آزمایش

شکل ۴. مقایسه بار فشاری بین نتایج مدل، حل تحلیلی و آزمایش
نتیجه‌گیری
روش عملکردی مرحله‌ای که یک روش تفاضل محدود ولی با عمومیتی بیشتری به‌_PTی‌ها، در این مقاله معرفی گردید. این روش که توسط دانشجویان روسی بسط یافته است، فقط در حیطه ریاضیات باقی مانده بهبود مدل تغییرات شده یکی از اولین کاربردهای عملی این روش در شاخه مهندسی آب می‌باشد.

منابع مورد استفاده