اثر مواد جامد محلول (TDS) آب بر عملکرد جوجه‌های گوشتی

چکیده

به منظور مطابعه اثر کل مواد جامد محلول (TDS) آب مناطق مختلف استان اصفهان بر عملکرد جوجه‌های گوشتی پس از بررسی بر روی میزان آب موجود استان و دسته‌بندی اطلاعات حاصل از تکرار آزمایشات قلی‌یزی، قلی‌یزی و کیفیت پوستی، 3 تیمار در سطح متوسط (3000 تا 5000 میلیون) ترک و سه تیمار در سطح بالا (5000 تا 7000 میلیون) انتخاب گردید. آزمایشیهای اصلی در یک طرح کاملاً تصادفی با استفاده از تعداد 288 جوجه در ناحیه 7۶۵۶ روستای، با یکنواخت کردن مواد محیطی و زمینی و با استفاده از تیمارهای انتخابی در یک سال دارای شرایط یکسان، در 3 تکرار انجام شد.

TDS تاثیر نشان داد که TDS آب بر شدت اثر را بر روی میزان دشدگان تلفات جوجه‌ها در یک دوره دارد، به نحوی که در بالاترین سطح TDS باعث ۵۶/۳ درصد تلفات گردید. این اثر در سطح (25/03 تا 25/06) (Morgan) هم گسترش نیافت و متمایز با TDS میانی (1/5 تا 2/5) (Morgan) بود. در دو کلاس میزان مصرف آب هم‌سطح مثبت و مثبت بود. در این طرح میزان تلفات در آب نشان داد (5/0/0 تا 5/0/0)، هم‌سطح TDS آب و مثبت بود. در لایه آب ترک و TDS میانی (5000 تا 7000 میلیون) 5000 تراکم در میلیون معتدل بود (0/0/0) (Morgan) و نقاط مختلف TDS بالاتر از ۵۰۰۰ میلیون معتدل بود (0/0/0). تحقیق این که در تبعه مصرف‌های مثبت داشته باشد TDS کمتر از ۵۰۰۰ میلیون معتدل تیمار TDS کاملاً تصادفی با استفاده از تعداد 288 جوجه در ناحیه 7۶۵۶ روستای، با یکنواخت کردن مواد محیطی و زمینی و با استفاده از تیمارهای انتخابی در یک سال دارای شرایط یکسان، در 3 تکرار انجام شد.

واژه‌های کلیدی - سختی آب، جوجه گوشتی، کل مواد جامد محلول، تلفات

مقدمه

کیفیت آب روان و زیر زمینی بسته به میزان و ترکیب مواد معدنی در خاک و یافته‌های زمینی شناسی در مناطق مختلف

جهت - تربیت دانشیار، استادیار و مربی علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

کارشناس ارشد امور دام، جهاد سازندگی اصفهان

استادیار پژوهشی مرکز تحقیقات امور دام، جهاد سازندگی اصفهان

71
بحث زمینه رشد عوامل بیماری از جمله کرونا ویروس را فراهم می‌سازد که بیشترین خود کاهش رشد و افزایش تلفات طبیعی را بهدنبال خواهد داشت. مصرف مواد عضوی از طریق آب و غلتک کلسیم، کلر و بیتريناتان را تحت تأثیر قرار می‌دهد و مواد تغییر در معیارهای خونی مانند عدم تعادل اسید-باز بدن می‌شود. تأثیر عناصر مختلف از حجم کلسیم، فسفات، پتاسیم، کلسیم و غیره در تغییر معیارهای خونی به وضوح نشان داده شده است (111 و 12). ترکیب مصرفی در مرغداری‌ها، به‌ویژه در استان اصفهان، بدلیل نتوان آب و هوایی و ترکیب خاک در نقاط مختلف این استان، سبب منفی‌گرایی است. به طوری که برای رسیدن به تجزیه و تحلیل اطلاعات مربوط به آب‌های زیرزمینی استان که توسط محققین انجام گرفته که اعمال مواد استفاده از میزان 1671 قسمت در میلیون در ترکیب سال است. احتمال استقلال در ترکیب آب می‌تواند یکی از دلایل عمدی اختلاف در عملکرد و احتمال مرگدری در مناطق مختلف این استان باشد. به نظر می‌رسد در مناطقی که آب آنها از کیفیت نامطلوبی برخوردار است، میزان تلفات بیش از حد معمول بوده و این واحدها از عملکرد سیستم نامطلوبی برخوردارند.

با توجه به ظرفیت قابل توسعه مرغداری‌های استان اصفهان و پراکنش آنها در مناطق مختلف، لزوم اکتشاف در کیفیت آب و عدم استفاده در مرغداری‌های این مناطق و تأکید آن بر رشد عمکرده و تلفات جوجه احساسی دارد، لذا این تحقیق با اهداف فوق به اجرای درآمد. ضمناً تأثیر کیفیت آب مناطق مختلف استان بر جوجه و ماده خشک استخوان را، جهیز حفره بطینه و بخش معیارهای خونی نیز مورد بررسی قرار گرفت.

مواد و روش‌ها
برآی انتخاب تیمارهای آزمایشی، از اطلاعات موجود در سازمان آب منطقه‌ای، سازمان آب و فاضلاب و جهاد سازندگی متفاوت است. میزان شوری pH، سختی، غلتک مواد عضوی و مواد آلی محلول از جمله عوامل مؤثر بر کیفیت آب مستند. کیفیت آب مصرفی می‌تواند رشد و عمکرده طبیعی را تحت تأثیر خورد قرار دهد. باعث می‌شود بتواند به افزایش شیوع و سلامت طبیور تأثیر منفی دارد (8). تعداد این‌ها برای یک درصد که به‌وسیله کاتیون‌ها و آنیون‌های کاتیون می‌شود، دکی از عوامل بسیار مهم‌تر سلامت و عمکرده مطلوب حیوانات از جمله طبیور محاسبه می‌شود. تغییر در کیفیت آب و آنتی‌بیوتیک تبدیل نشده در جوجه‌ها گوشته می‌شود. طی حلالی که اسیدوز با آلکاژن ناشی از عدم تغذیه یون‌های منفی متبت حادث شود، بیماری انسدادی می‌شود که به‌وسیله کاتیون‌ها و آنتی‌بیوتیک تبدیل نشده در جوجه‌ها گوشته می‌شود. طی حلالی که اسیدوز با آلکاژن ناشی از عدم تغذیه یون‌های منفی متبت حادث شود، بیماری انسدادی می‌شود که به‌وسیله کاتیون‌ها و آنتی‌بیوتیک تبدیل نشده در جوجه‌ها گوشته می‌شود. طی حلالی که اسیدوز با آلکاژن ناشی از عدم تغذیه یون‌های منفی متبت حادث شود، بیماری انسدادی می‌شود که به‌وسیله کاتیون‌ها و آنتی‌بیوتیک تبدیل نشده در جوجه‌ها گوشته می‌شود. طی حلالی که اسیدوز با آلکاژن ناشی از عدم تغذیه یون‌های منفی متبت حادث شود، بیماری انسدادی می‌شد. این‌ها به‌وسیله کاتیون‌ها و آنتی‌بیوتیک تبدیل نشده در جوجه‌ها گوشته می‌شود. طی حلالی که اسیدوز با آلکاژن ناشی از عدم تغذیه یون‌های منفی متبت حادث شود، بیماری انسدادی می‌شد. این‌ها به‌وسیله کاتیون‌ها و آنتی‌بیوتیک تبدیل نشده در جوجه‌ها گوشته می‌شود. طی حلالی که اسیدوز با آلکاژن ناشی از عدم تغذیه یون‌های منفی متبت حادث شود، بیماری انسدادی می‌شد. این‌ها به‌وسیله کاتیون‌ها و آنتی‌بیوتیک تبدیل N۲۷
<table>
<thead>
<tr>
<th>جدول 1 - مشخصات تیمارهای آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مشخصه تیمار</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>اصفهان A</td>
</tr>
<tr>
<td>ب</td>
</tr>
<tr>
<td>ق</td>
</tr>
<tr>
<td>د</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

*آب مورد استفاده از واحدهای موردگرایی موجود در شهرستان‌های ناحیه استان اصفهان استفاده گردید. برای این اسکست تعداد 378 نمونه آب از لحاظ کیفی مورد تجزیه قرار گرفت و آب مناطق مختلف بر اساس سطوح مختلف TDS و عوامل دیگری نظر مجددی کرد. مشخصات تیمارهای آزمایشی در جدول 2 نشان داده شده است. علاوه بر EC (پتانسیل الکتریکی)، در جدول 1، قطعه‌های TDS، شیفت‌های الکتریکی، ترکیب‌های شیمیایی، کلر و مسیمیت نیز از ابزارهای مهم در این مطالعه استفاده شد. آب مورد استفاده در تیمارها، در همه نقاط از محله‌های مختلف شهرها در جدول 1 به سرعت محل آزمایش انتقال می‌یافت.

- گسترش: 200 قطعه جوجه ماده نژاد آرنیا تا نژاد روزگی C

1. Electrical Conductivity
جدول ۲ - ترکیب چربی‌های مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>پایتای</th>
<th>رشد</th>
<th>آغازین (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49/5</td>
<td>52/80</td>
<td>58/11</td>
</tr>
<tr>
<td>46</td>
<td>17</td>
<td>4/2</td>
</tr>
<tr>
<td>18/2</td>
<td>32</td>
<td>28/2</td>
</tr>
<tr>
<td>9/5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>1/5</td>
<td>1</td>
<td>0/5</td>
</tr>
<tr>
<td>0/4</td>
<td>0/4</td>
<td>0/5</td>
</tr>
<tr>
<td>0/15</td>
<td>0/14</td>
<td>0/15</td>
</tr>
<tr>
<td>0/9</td>
<td>0/27</td>
<td>0/57</td>
</tr>
<tr>
<td>1/25</td>
<td>1/11</td>
<td>1/22</td>
</tr>
<tr>
<td>0/3</td>
<td>0/75</td>
<td>0/16</td>
</tr>
<tr>
<td>0/2</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

انزیم‌های سوخت و ساز (کیلوکالری در کیلوگرم) ۱۹۱۰

نسبت انرژی به پروتئین

پروتئین

کلسیم

فسفر فراهم

لیزین

متیوین

استهای آمپنیگورددار

- در تنظیم جیره از جدداول NRC (۱۷) استفاده شد.

توزیع گردیدند. مصرف غذای هفته‌گی هر گروه چندین نمونه تغییری در چربی‌های مورد استفاده داشته است. این نتایج به بهبود گردیدن در ژنتیک چربی‌های خاصی باعث شده است که در آزمایشات محیطی بهتر سطح عضلانی، و در نهایت به بهبود صحتکی جهت تغییر رطوبت به آزمایشگاه‌های ژن‌برداری گردید.

با سه (آغازین، رشد و پایان) تغییراتی از تغییراتی گردیدند. ترکیب چربی‌های از آزمایشات گروهی در روش همگون و بعد از ژنتیک چربی‌ها در جدول ۲ ارائه شده است. این نتایج به بهبود گردیدن در ژنتیک چربی‌های خاصی، بهبود در ژنتیک سطحی، و در نهایت به بهبود صحتکی جهت تغییر رطوبت به آزمایشگاه‌های ژن‌برداری گردید.
جدول 3 - کیفیت منابع آب مورد مطالعه براساس میزان باقی مانده ماده خشک TDS (ناشی از تبخیر) بر حسب شهرستان

<table>
<thead>
<tr>
<th>تعداد نمونه</th>
<th>نام شهرستان</th>
<th>حداقل</th>
<th>حداکثر</th>
<th>بیشترین دامنه</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>اردستان</td>
<td>4153</td>
<td>2900</td>
<td>2000-3000</td>
</tr>
<tr>
<td>47</td>
<td>اصفهان</td>
<td>7225</td>
<td>260</td>
<td>3000</td>
</tr>
<tr>
<td>89</td>
<td>برخوارومه</td>
<td>7868</td>
<td>425</td>
<td>3000-5000</td>
</tr>
<tr>
<td>41</td>
<td>شهرضا</td>
<td>7846</td>
<td>240</td>
<td>5000-10000</td>
</tr>
<tr>
<td>3</td>
<td>فلاورجان</td>
<td>1068</td>
<td>556</td>
<td>1000</td>
</tr>
<tr>
<td>33</td>
<td>فردی</td>
<td>414</td>
<td>173</td>
<td>500-1000</td>
</tr>
<tr>
<td>2</td>
<td>گلیابیان</td>
<td>711</td>
<td>596</td>
<td>1000</td>
</tr>
<tr>
<td>26</td>
<td>لنگان</td>
<td>6281</td>
<td>325</td>
<td>5000-10000</td>
</tr>
<tr>
<td>29</td>
<td>نجف آباد</td>
<td>2816</td>
<td>238</td>
<td>1000-2000</td>
</tr>
<tr>
<td>21</td>
<td>نطنز</td>
<td>2277</td>
<td>283</td>
<td>2000-3000</td>
</tr>
<tr>
<td>173</td>
<td>استان</td>
<td>7912</td>
<td>378</td>
<td>4000-5000</td>
</tr>
</tbody>
</table>

نتایج واریانس و رگرسیون اعداد به دست آمده با استفاده از نرم‌افزار کامپیوتری (SAS) (21) گردید.

نتایج مربوط به کیفیت و بررسی تجزیه و تحلیل اطلاعات

توضیح تهاجم و تغییرات به کیفیت و بررسی تجزیه و تحلیل اطلاعات تعداد نمونه آب در جدول 3 ارائه گردیده است. اطلاعات این جدول نشان دهنده وجود دامنه و سیعی میزان TDS در آب‌های مناطق مختلف استان است. به طوری که آب‌های مناطق کوه‌هایی تقریباً به‌طور گسترده‌ای در تعداد 88 نمونه میزان TDS کمتری نسبت به مناطق کوهی و کم بازان داشتند. ترکیب شیمیایی نمونه‌های آب مورد مطالعه از لحاظ اصلاح معدنی در جدول 4 نشان داده شده است. اطلاعات این جدول مشخص کننده این تکثیر است که میزان اصلاح موجود در آب‌های مناطق مختلف استان از دامنه و سیعی جوهردار است. این نمونه از 24 تا 1122/24 تا 42/24 میلی‌گرم در لیتر (پادارم از 39 تا 146 تا 2004 گذشته پس از 6/70 تا 47/30 و پیک‌بندی از 73/21 تا 73/01).

جدول ۴- ترتیب شیمیایی نمونه‌های آب مورد مطالعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعداد نمونه‌های مایه‌ای</th>
<th>میانگین</th>
<th>حداقل</th>
<th>حداکثر</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>۲۸۷</td>
<td>۲۰۱/۶</td>
<td>۱۷۳</td>
<td>۲۴/۵</td>
<td>۲۷۸</td>
</tr>
<tr>
<td>کلسیم (پیکال/لب)</td>
<td>۲۸۳</td>
<td>۱۸۵/۸</td>
<td>۷۱</td>
<td>۳۶۵</td>
<td></td>
</tr>
<tr>
<td>منیزیم (پیکال/لب)</td>
<td>۲۳۷</td>
<td>۲۷۳</td>
<td>۱۱۰</td>
<td>۲۴۲</td>
<td></td>
</tr>
<tr>
<td>سدیم "</td>
<td>۳۶۶</td>
<td>۱۰۴</td>
<td>۷۵</td>
<td>۵۶۱</td>
<td></td>
</tr>
<tr>
<td>پتاسیم "</td>
<td>۲۸۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کل "</td>
<td>۲۸۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سولفات "</td>
<td>۳۸۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترات (پیکال/لب)</td>
<td>۲۸۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کلسیم (پیکال/لب)</td>
<td>۳۱۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تجربیات (پیکال/لب)</td>
<td>۲۵۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>۲۵۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تأثیر سطوح مختلف TDS بر وزن بدن، مصرف غذا، ضربه تبدیل غذا آب مصرفی، رطوبت بستر و تلفات در جدول ۴ ارائه گردیده است. وزن بدن نمونه‌ها در سطوح پیش‌تر از ۵۰۰ قسمت در میلیون کاهش معنی‌داری TDS نشان داد و اختلاف بین سایر سطوح (P<0/05) در تناوب و تهیه موجب نشان دهنده‌ی اطمینان TDS در غذای پیش‌تر از ۱۵۰۰ (به‌جز مورد اب ترود، آب سرمایه‌ای میان ۲۳۷/۷ تا ۳۸۲/۷ قسمت در میلیون کاهش معنی‌داری داشتند.

پیش‌ترین مقدار مصرف غذا گروه کوچکتر بود و افزایش سطوح TDS مقدار ۱۵۰۰ مصرف غذا گردید (با استثنای گروه (E) مقدار (P<0/05) مصرف غذا گردید. TDS گروه دریافت کننده آب دارای ۵۰۰ قسمت در میلیون کمترین مصرف غذا را داشت. اختلاف بین گروه‌های مختلف از لحاظ ضربه تبدیل غذا معنی‌دار تبادل آب افرازی میزان در آب مصرفی طیور آماده‌شده بود. پاتاسیم افزایش در آب مصرفی طیور آماده‌شده و نامربت داشت و اختلاف در مصرف آب در سطوح پیش‌تر از میله‌ای آب واقع آمرد است. میانگین غلظت پیش‌تر از این عنصر به حدی است که مصرف آنها می‌تواند تأثیرات متفاوت بر سلامت و عملکرد طیور داشته باشد.

جدول شماره ۵ فراوانی سطوح متفاوت TDS و نمونه آب‌های مورد استفاده در آزمایش را نشان می‌دهد. این نتایج تجزیه و تحلیل و مجموعه نشان دهنده اطلاعات مربوط به ۳۸۲ از نمونه آب که در جدول ۳ ارائه شده می‌باشد و نشان دهنده این این است که انتحاب نمونه‌های آب برای اجرای آزمایش بر اساس اطلاعات موجود در جدول ۳ درست بوده است. سیلور آب مورد نظر تیمار‌ها در همان محدوده‌های پیش‌بینی شده و از کمتر از میزان ۱۰۰۰ برای گروه شاهد ناپیش‌شده از ۵۰۰۰ قسمت در میلیون متفاوت بود.

نتایج تجزیه آب‌های مورد بررسی برای بررسی و کمیت بهداشتی نشان داد که آب‌های مورد مطالعه از لحاظ نوع و تعداد باکتری‌ها در حدی بودند که خطر هیچ‌گونه آلودگی و ابتلا به پیمایی یا برای انسان و طیور به همراه نداشتند.

76
جدول 5 - فراوانی سطوح متفاوت TDS در شهرستان‌های انتخابی موردنظر آزمایش

<table>
<thead>
<tr>
<th>نام شهرستان</th>
<th>تعداد فراوانی</th>
<th>تعداد نام‌آمیزی</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>اردستان</td>
<td>66</td>
<td>10000-3000</td>
<td>1800</td>
</tr>
<tr>
<td>اصفهان</td>
<td>47</td>
<td>3000-2000</td>
<td>1200</td>
</tr>
<tr>
<td>برخوار و میمه</td>
<td>89</td>
<td>2000-1000</td>
<td>550</td>
</tr>
<tr>
<td>شهرضا</td>
<td>41</td>
<td>1000-5000</td>
<td>280</td>
</tr>
<tr>
<td>نجف آباد</td>
<td>39</td>
<td>5000-7000</td>
<td>310</td>
</tr>
</tbody>
</table>

جدول 6 - تأثیر سطوح مختلف TDS بر عملکرد جوجه‌ها از سن 7 تا 65 روزگی

<table>
<thead>
<tr>
<th>نام تیمار</th>
<th>وزن بدن (گرم)</th>
<th>ضریب تبدیل (میلی لیتر)</th>
<th>رطوبت بستر (درصد)</th>
<th>تعداد تلفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2612 a</td>
<td>0.36 ab</td>
<td>20 / 3</td>
<td>12 / 5</td>
</tr>
<tr>
<td>B</td>
<td>2047 a</td>
<td>0.24 ab</td>
<td>20 / 3</td>
<td>16 / 5</td>
</tr>
<tr>
<td>C</td>
<td>2058 a</td>
<td>0.47 ab</td>
<td>20 / 3</td>
<td>16 / 5</td>
</tr>
<tr>
<td>D</td>
<td>2078 a</td>
<td>0.15 ab</td>
<td>20 / 3</td>
<td>16 / 5</td>
</tr>
<tr>
<td>E</td>
<td>2016 a</td>
<td>0.20 ab</td>
<td>20 / 3</td>
<td>16 / 5</td>
</tr>
<tr>
<td>F</td>
<td>2919 b</td>
<td>0.54 ab</td>
<td>20 / 3</td>
<td>16 / 5</td>
</tr>
<tr>
<td>G</td>
<td>2057 a</td>
<td>0.35 ab</td>
<td>20 / 3</td>
<td>16 / 5</td>
</tr>
</tbody>
</table>

میانگین تعداد تلفات در این آزمایش خود را برای TDS 2450 قسمت در میلیون تفسیر کرد و این 2450 قسمت در میلیون TDS مربوط به تیماری بود که آپ بیشتر از 5000 قسمت در میلیون TDS داشت. در جدول شماره 17 تأثیر سطوح مختلف TDS بر وزن لاشه و جنوب کنده آپ داری کمتر از 2450 قسمت در میلیون TDS میانگین خود را برای TDS 3500 قسمت در میلیون تفسیر کرد و این 3500 قسمت در میلیون TDS مربوط به تیماری بود که آپ بیشتر از 5000 قسمت در میلیون TDS داشت. در این آزمایش TDS میزان تیماری بود که آپ مصرف می‌شد (P<0.05) موجب افزایش رطوبت بستر و افزایش تعداد تلفات و بالا رفتن وزن لاشه شد. در نتیجه این آزمایش الگویی با تفاوت TDS میانگین 2050-2078 قسمت در میلیون تفسیر کرد و این 2050-2078 قسمت در میلیون TDS مربوط به تیماری بود که آپ نفلوت می‌شد (P<0.05) مصرف کننده بیشتر از 5000 قسمت در میلیون TDS بود. در نتیجه این آزمایش الگویی با تفاوت TDS میانگین 2050-2078 قسمت در میلیون TDS مربوط به تیماری بود که آپ نفلوت می‌شد (P<0.05) مصرف کننده بیشتر از 5000 قسمت در میلیون TDS بود.
جدول 7 - تأثیر سطوح مختلف TDS بر وزن لاش، چربی بدنی، استخوان ران و میزان خونی

<table>
<thead>
<tr>
<th>pH</th>
<th>HCO₃⁻</th>
<th>Cl</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>وزن‌داری</th>
<th>چربی بدنی</th>
<th>استخوان‌داران</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mmol/l)</td>
<td>(meq/l)</td>
<td>(meq/l)</td>
<td>(meq/l)</td>
<td>(mg/dl)</td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
</tr>
<tr>
<td>6/2 a</td>
<td>15/4 a</td>
<td>116 a</td>
<td>197/3 a</td>
<td>4/2 a</td>
<td>10/4 a</td>
<td>70/15 a</td>
<td>4/1 a</td>
<td>1969 a</td>
</tr>
<tr>
<td>6/1 a</td>
<td>14/4 a</td>
<td>117/3 a</td>
<td>134/8 a</td>
<td>4/5 a</td>
<td>10/4 a</td>
<td>70/15 a</td>
<td>4/1 a</td>
<td>1973 a</td>
</tr>
<tr>
<td>6/4 a</td>
<td>14/2 a</td>
<td>116/5 a</td>
<td>130/8 a</td>
<td>4/3 a</td>
<td>10/4 a</td>
<td>70/15 a</td>
<td>4/1 a</td>
<td>1951 a</td>
</tr>
<tr>
<td>6/19 a</td>
<td>15/4 a</td>
<td>117/8 ab</td>
<td>21/5 a</td>
<td>4/3 a</td>
<td>10/5 a</td>
<td>24/2 a</td>
<td>4/1 a</td>
<td>1951 a</td>
</tr>
<tr>
<td>6/19 a</td>
<td>14/5 a</td>
<td>116/5 ab</td>
<td>19/2 a</td>
<td>4/5 a</td>
<td>10/5 a</td>
<td>24/2 a</td>
<td>4/1 a</td>
<td>1889 ab</td>
</tr>
<tr>
<td>6/7 a</td>
<td>14/8 a</td>
<td>116/3 a</td>
<td>15/2 a</td>
<td>3/5 a</td>
<td>12/2 a</td>
<td>4/1 a</td>
<td>1789 a</td>
<td>F</td>
</tr>
<tr>
<td>6/7 a</td>
<td>15/4 a</td>
<td>116/2 a</td>
<td>15/4 a</td>
<td>3/5 a</td>
<td>12/2 a</td>
<td>4/1 a</td>
<td>1789 a</td>
<td>F</td>
</tr>
<tr>
<td>6/1 a</td>
<td>22/4 a</td>
<td>116/2 a</td>
<td>15/6 a</td>
<td>3/5 a</td>
<td>12/2 a</td>
<td>4/1 a</td>
<td>1789 a</td>
<td>F</td>
</tr>
<tr>
<td>6/7 a</td>
<td>22/4 a</td>
<td>116/2 a</td>
<td>15/2 a</td>
<td>3/5 a</td>
<td>12/2 a</td>
<td>4/1 a</td>
<td>1789 a</td>
<td>F</td>
</tr>
</tbody>
</table>

در هر سوئین میانگین‌ها به دلایل حروف متغیر، تفاوت هستند اختلاف معنی‌دار (5<0) دارند.

میزان چربی حفره بطنی کامال معنی‌داری (P<0.05) دارد. کمترین مقدار چربی حفره بطنی مربوط به گروه‌های بوده که آب دارای بیشتر از 1000 قسمت در میلیون TDS دریافته کرده بودند. اختلاف خاکستر استخوان ساق یک گروه‌های مختلف معنی‌دار دارد. از بین اصلاح خون، تنها کلسیم آن مقدار کلسیم در تDS بیشتر از 1000 با سایر گروه‌ها اختلاف معنی‌دار (P<0.05) داشت. مقدار کلسیم خون این گروه بیشتر از سایر گروه‌ها بود.

ضرایب همبستگی بین TDS و معیارهای تولیدی درجدول TDS
8 نشان داده است. ضریب همبستگی وزن زنده با TDS معنی‌دار بود (r= 0.49). همچنین ضریب همبستگی مصرف غذا در گروه‌های تDS معنی‌دار بود (r= 0.51). بیشترین همبستگی بین مصرف آب و TDS معنی‌دار بود (r= 0.49).

مقدار متوسط TDS مشاهده شد (76/3). همچنین ضریب همبستگی TDS و لقاقیت بیولوژیکی (r= 0.58) داشت. مقدار تأثیر TDS از تأثیر TDS بود.

برسیهای بالینی و کلینیکی نشان داد که از سه 24 روزگر TDS به بعد، آثار کوکسیدوز در جووجه‌ها که آب حاوی
جدول 8- ضرایب هیستگی بین وزن زنده، مصرف غذا و... با سطح TDS، از سال 1376 تا 1380

<table>
<thead>
<tr>
<th>وزن زنده</th>
<th>مصرف غذا</th>
<th>ضرایب تبدیل</th>
<th>TDS</th>
<th>میزان حجم</th>
<th>مصرف آب</th>
<th>رطوبت بستر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/29*</td>
<td>0/61*</td>
<td>0/14*</td>
<td>0/16*</td>
<td>0/23*</td>
<td>1/34*</td>
<td>0/19*</td>
</tr>
<tr>
<td>0/27*</td>
<td>0/43*</td>
<td>0/15**</td>
<td>0/16**</td>
<td>0/23*</td>
<td>1/34*</td>
<td>0/19*</td>
</tr>
<tr>
<td>0/143*</td>
<td>0/48*</td>
<td>0/16**</td>
<td>0/16**</td>
<td>0/23*</td>
<td>1/34*</td>
<td>0/19*</td>
</tr>
<tr>
<td>0/08*</td>
<td>0/58*</td>
<td>0/15*</td>
<td>0/16*</td>
<td>0/23*</td>
<td>1/34*</td>
<td>0/19*</td>
</tr>
<tr>
<td>0/37**</td>
<td>0/65*</td>
<td>0/14*</td>
<td>0/16*</td>
<td>0/23*</td>
<td>1/34*</td>
<td>0/19*</td>
</tr>
<tr>
<td>0/37**</td>
<td>0/65*</td>
<td>0/14*</td>
<td>0/16*</td>
<td>0/23*</td>
<td>1/34*</td>
<td>0/19*</td>
</tr>
</tbody>
</table>

کمکی از کمیت واحدها و مصرف غذا و از تغذیه و برخورداری است. آب مناطق کوه‌های و پر باران از خشکی و پیامدهای بزرگ و قابل قبول برخوردار بوده، با راهی طبیعی استفاده می‌باشد و در حسابهای حسابداری، برای رشد و سایر املاک موجود در آب برهم زدن تعادل انسان و بیان و بررسی مربوط می‌شود. افزایش مصرف آب به دلیل دفع مزایه املاک موجود در آب امری راهی است. نشان و بیان از حد بخشی از املاک می‌تواند سبب می‌شود که سایر افزایش مصرف آب و رطوبت بستر در بسیاری از آمادگی‌ها نیز افزایش دهد. این نشان از املاک منتقل هستند و بسیار نسبت به ویژگی‌های تغییر و بیش از املاک دیگر (7 و 13) جود برخوردار بوده، در این آمادگی بالا رفتن رطوبت بستر باعث بروز بیماری کوکسیدیوز گردید. که می‌توان

بحث

نتایج مربوط به تجزیه و تحلیل آمار تهیه‌های آب جمع آوری شده از سازمان‌های ذیل در استان نشان داد به آن‌ها نواحی مختلف استان از لحاظ میزان سختی و اصلاح معدنی بسیار ضرورت دارد. این اشاره به انرژی به عنوان یکی از این آب‌های برای انسان و طبیعی قابل مصرف تبدیل و میزان سختی و اصلاح آنها خیلی بیشتر از مقدار مجاز توصیه شده توسط NRC (17) می‌باشد. منابع عملي موجود (1, 2, 3 و 5) نتایج این آمادگی مبنی بر چگونگی کیفیت آب در نقاط مختلف استان اتصال به را تأیید می‌کنند. نتایج همچنین منجر ایجاد انرژی بوده آب برخی مناطق را در مصرف آب و ناحیه چون سهمیه (20) گزارش شده است. برای تغییر مورد تأیید قرار می‌دهد. نتایج نشان داد که آب مناطق خشک و کم باران و نیمه

79
درصدی از تلفات تا هر بروز این بیماری در گروه‌های که آب حاوی TDS بالای مصرف کردن مربوط دانست. به علاوه وجود ضایعات کلینیکی و کبدی و روده‌ای ناشی از مصرف آب‌های دارای TDS و املاک بالا، آنلاین آلوده مالت مرگ و میر می‌باشد. با تغییرات TDS و املاک بالا نه تنها رشد و عملکرد کاهش می‌شده تا TDS بکه به دلیل ایجاد این گونه ضایعات تلفات را نیز افزایش می‌دهند. میزان تلفات در مغرب باعث موجود در مناطقی که آب آنها بالا بوده‌اند، حدوداً بین 10 تا 20 درصد Zیدتر از سایر نقاط است و مرگدان نسبی این مناطق از دست این موضوع شکتترا دارد. تناغ ناشی داد که دلیل آن مرگ و میر را تغییر در آجی از آب مصرف در آنها و نه عوامل نگه‌داری سطح آب تغییر در آن باعث افزایش TDS در این مناطق از علت برگزیده‌ای است. تازه کردن آب، وجود تغییرات مثبت و معنی‌دار در بین درصد تلفات و TDS آب مهم‌ترین تفاوت، به‌خصوص اینکه هم‌بستگی TDS بین افراد بالایی آب و رطوبت بسته به بررسی بیماری کوکسیدوز و نقش این بیماری را در میان تلفات ناپیوسته روند TDS (جدول 6). مصرف TDS بالا به طور مخصوص نیز تلفات تازه از سایر بیماریها از جمله بیماری نیکوکس می‌توان است. به طوری که نتایج این آزمایش نشان داده به رغم شرایط پیکسان و واکسیناسیون تعیین‌کننده تیتر آنتی‌با و بیماری نیکوکس بالا مصرف گروه‌های که آب حاوی TDS بالا مصرف

منابع مورد استفاده

1. صوفی سیاوشی. 1369. تغذیه دام. چاپ سوم، انتشارات عمیمی، تبریز.
2. کردوانی، و. 1367. مسایل و مسائل آب در ایران، آب‌های شهر و راه‌های استفاده از آنها. انتشارات ایران. ارشاد، تهران.
3. کبیری، ا. 1367. مدرسه‌کیفیت آب‌های زیرزمینی در محدوده شهر اصفهان. انتشارات روابط عمومی سازمان پارکها و فضای سبز شهر اصفهان.
4. کمالی، ک. 1369. کتاب راهنمای آب. انتشارات علمی، تهران.
5. امیری، س. 1364. جامع‌الغایه آب و مصرف آب انتشارات دانشگاه فردوسی، مشهد.

