اثر مواد جامد محلول (TDS) آب بر عملکرد جوجه‌های گوشتی

چکیده

به منظور مطالعه اثر کل مواد جامد محلول (TDS) آب محلول مختلف استان اصفهان بر عملکرد جوجه‌های گوشتی، پس از برسی بر روی متابنه آب موجود استان و دسته‌بندی اطلاعات حاصل از تکرار آزمایش‌های تجربی - شیمیایی و مکروبروپولیز، ۶ تیمار در مساحت ۵۰۰۰ میلیون متر مربع تهیه شدند که به صورت تصادفی با استفاده از تعداد ۲۸۸ جوجه در فاصله ۷۵ روزگی، با کنواخت کردن مواد محتوایی و زمانی و با استفاده از تیمارهای انتخابی در چهار سال دارای شرایط یکسان، در ۳ تکرار انجام شد.

تایپ: رضوانی، هاشم نصر اللهی، عبدهحسین سعی، مهدی محمد علی پور، و اکبر اسدیان

واژه‌های کلیدی - سختی آب، جوجه گوشتی، کل مواد جامد محلول، تلفات

مقدمه

کیفیت آب‌های روان و زیر زمینی بسته به میزان و ترکیب مواد معدنی در خاک و به‌شکلی زمین‌شناسی در مناطق مختلف

ب - ترجمه دانشگاه استادیور، مریم علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
- کارشناس ارشد امور دام، جهاد سازندگی اصفهان
- استادیور پژوهشی مرکز تحقیقات امور دام، جهاد سازندگی اصفهان

71
متفاوت است. میزان شوری pH, محتویات ماده معدنی و مواد آلی محلول از طعم عوامل مؤثر بر کیفیت آب می‌باشد. گیاهان آب مصرفی می‌توانند به سیستم تغذیه‌ای املاح معیاری و یا باکتری‌ها در آب بر عمل می‌کنند و سلامت طیور تأثیر منفی دارد (8). تعلل است. باز بنده در سازمان‌های ملی کشور و آنها کنترل می‌شود. نکته از عوامل پس از دریافت سلامت و عملکرد مطلوب حیوانات از جمله طیور محصول می‌شود.

گیاهان در تولید کاتیون‌ها و آنیون‌ها به هر دلیل که باشد موجب کاهش رشد و بذردهشدن ضریب تبدیل غذا در جوجه‌ها می‌شوند، زیرا در حالتی که سیدوز یا آلکاژن ثانی از عدم تعادل بین منتنی و متبل حادث شده، سیاستی از مسیرهای متابولیک به‌خوراکی تغذیه شده، باید در تنظیم محیط داخلی بدن درکی می‌شود و کمتر به فرآیندهای تولیدی می‌پردازند (16). هنگامی که هرکدام از املاح گذشته کلی، سدیم، ناتریوم و فسفر به‌طور جداکننده از جوجه‌ها در سیستم‌های متابولیک نشانه‌ی پیشبرد و شفایی کامل می‌باشد (18 و 19). کاهش رشد و عملکرد آملاح محلول آب به‌طور پیوسته تغذیه غذایی از حد بهتری از املاح معیاری گزارش شده است (17).

و جوی این واکنش از املاح معیاری درآماده به رهمان‌دان است. داده‌های دستیابی‌اندازه‌گیری انسان‌شناسی و رازخوانندگی زمین حاوی اطلاعات مربوط به آمارهای ایجاده‌های محلولی در مناطق مختلف انسان‌شناسی باشد. به‌طور معمول یکی از سیستم‌های متابولیکی می‌باشد. از این واکنشات میزان تغذیه‌ای فیبرهای بارک خونی به‌طور معمول وارد بدن و این واکنشات از عملکرد بسیار تاثیرگذار است. گیاهان در اثر تغذیه غذایی از حد بهتری از املاح گذشته‌ها به‌طور پیوسته تغذیه غذایی از حد بهتری است.

مصرف آب تحت تأثیر عوامل مختلفی از جمله میزان املاح TDS محلول‌های آب فراگیر می‌باشد (1). تأثیر خود غذای مصرفی آب توسط طیور می‌گردد. در نتیجه دفع بیش از حد برخی املاح معیاری بیش از حد آب و مولوتوپشند بسته پرورشی می‌گردد. رطوبت حاصل در

1. Total dissolved solid
جدول 1- مشخصات تیمارهای آزمایشی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>TDS</th>
<th>میزان (قسمت درمیلیون)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1000</td>
<td>اصفهان</td>
</tr>
<tr>
<td>B</td>
<td>1500</td>
<td>نجف آباد</td>
</tr>
<tr>
<td>C</td>
<td>2400</td>
<td>اردستان</td>
</tr>
<tr>
<td>D</td>
<td>3500</td>
<td>جویبار</td>
</tr>
<tr>
<td>E</td>
<td>4500</td>
<td>برخوار</td>
</tr>
<tr>
<td>F</td>
<td>5800</td>
<td>شهرضا</td>
</tr>
</tbody>
</table>

7- آب مورد استفاده از واحدهای مرغداری موجود در شهرستانهای نامبرده استان اصفهان استفاده گردید. برای این اساس تعداد 787 نمونه آب از لحاظ کیفی مورد تجزیه قرار گرفت و آب مناطق مختلف بر اساس سطوح مختلف و عوامل دیگری نظر مواد معدنی و كاتیونها و آسیدها اصلی مؤثر بر کیفیت آب مورد سرویس واقع شد. تراکم واحدهای مرغداری در سطح هر شهرستان به عنوان می‌باشد. جهت حصول اطمینان از نتایج اخذ شده و پرطرف نمودن خطا‌های آزمایشگاهی، از هر نمونه آب دو نمونه انتخاب و سپس با مراجعه مستقیم به محل، بر اساس اصول نظیر نمونه‌گیری در 2 تکرار صورت گرفت و نوسان‌ها جهت اندادگی عوامل موجود بر آب آزمایشگاهی ارسال شد. نمونه‌برداری در اینجا از انجام پذیرفت و جهت اندادگی میزان پار میکروبی آب از آزمایشگاه‌های شبکه دامپزشکی استان و میکروبیولوژی مرکز پژوهشی معاونت امور دام جهادسازندگی استان اصفهان استفاده شد. تیارهای آزمایشی بر اساس نتایج بدست آمده بر مبنای سطوح و عدد MPN و همچنین مسافت و امکان دسترسی به TDS منابع آبی، مشخصه‌گرایی‌گرندند. آب آشامیدنی شهر اصفهان با سطح TDS کمتر از 1000 قسمت در میلیون به عنوان تیمار شهاد (A) در نظر گرفته شد. سایر تیمارها به شرح جدول 1 انتخاب گردیدند. همچنین ترکیب جیره‌های آزمایشی در جدول 2 نشان داده است. علاوه بر TDS، EC (هیدرات الکتریکی)، فاقد بسته به کیفیت می‌باشد. لازم به ذکر است که این شرایط نیز ایجاد کننده یک تیمار در اینجا بوده است. آب مورد استفاده در تیمارهای و روزانه از محله‌های ذکر شده در جدول 1 به سالان محل آزمایش انتقال می‌باشد.

تعداد 200 قطعه جوجه تر و 200 قطعه جوجه ماده نژاد آرین تا 7 روزگی، تحت شرایط بکسانه و جیره مشابه جدول 2 پرورش یافتند. سپس در سن 7 روزگی، پس از توزیع انفرادی جوجه‌ها (28 قطعه هر جنس) که میانگین وزنی یکسانتی داشتند داشتند و به 18 گروه (تکرار 16 قطعه و 8 قطعه ماده) تکرار شدند. در هر تکرار 16 قطعه (8 قطعه تر و 8 قطعه ماده) وجود داشت.

در طول دوره آزمایش جوجه‌ها با چرخ‌پیکسانه که متناسب

1. Electrical Conductivity
جدول ۲- ترکیب چروک‌های مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>آغازین</th>
<th>پایانی</th>
<th>رشد</th>
<th>(درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۹/۵</td>
<td>۵۲/۸۰</td>
<td>۵۸/۱۱</td>
<td>ذرت</td>
</tr>
<tr>
<td>۲۶</td>
<td>۱۷</td>
<td>۲/۴</td>
<td>گندم</td>
</tr>
<tr>
<td>۲۰/۵</td>
<td>۲۳</td>
<td>۸/۱۱</td>
<td>سویا</td>
</tr>
<tr>
<td>۲۰/۵</td>
<td>۶</td>
<td>۶</td>
<td>پودر ماهی</td>
</tr>
<tr>
<td>۲۰/۴</td>
<td>۱</td>
<td>۱</td>
<td>پونجه</td>
</tr>
<tr>
<td>۲۰/۴</td>
<td>۱</td>
<td>۱</td>
<td>مکمل</td>
</tr>
<tr>
<td>۲۰/۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>نمک</td>
</tr>
<tr>
<td>۲۰/۴</td>
<td>۵۵</td>
<td>۵۵</td>
<td>موکوسیمیسنفات</td>
</tr>
<tr>
<td>۱۲/۵</td>
<td>۱۲</td>
<td>۱۲</td>
<td>صدف</td>
</tr>
<tr>
<td>۲۰/۳</td>
<td>۱۶</td>
<td>۱۶</td>
<td>متوهیون</td>
</tr>
<tr>
<td>۲۰/۵</td>
<td>۲۰</td>
<td>۲۰</td>
<td>لازیون</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>جمع</td>
</tr>
</tbody>
</table>

انزیقت قابل سوخت و ساز (کیلوکالری در کیلوگرم) ۲۹۱۰

نسبت انرژی به پروتئین
پروتئین
کلسیم
فسفور فراهم
لیزرین
متوهیون
اسیدهای آمینه گروگردار

در تنظیم جیره از جدول NRC (۱۷) استفاده شد.

نویز گردیدن. مصرف غذای هفتگی هر گروه جهت تغییر ضریب تبدیل غذا از سوی گروهی شدت، میزان آب مصرفی زونه نیز با استفاده از باقی مانده آب هر آبخوری اندوزه گیری گردید. در پایان هر هفته، از هر قسم سه نمونه به سه جمع آوری و در ظروف پلاستیکی جهت تعیین رطوبت به آزمایشگاه منتقل گردید.
جدول ۲ - کیفیت میانگین آب مورد مطالعه براساس میزان باقیمانده ماده خشک TDS (ناشی از تبیکر)، برحس شهرستان

<table>
<thead>
<tr>
<th>تعداد نمونه</th>
<th>تعداد نمونه</th>
<th>حاداقل</th>
<th>حداکثر</th>
<th>بیشترین دامنه</th>
</tr>
</thead>
<tbody>
<tr>
<td>اردستان</td>
<td>۶۶</td>
<td>۵۶۸</td>
<td>۴۱۵۳</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>اصفهان</td>
<td>۴۷</td>
<td>۲۰۶</td>
<td>۷۲۲۵</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>برخورودیه</td>
<td>۸۹</td>
<td>۴۲۰</td>
<td>۴۷۸۶</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>شهرضا</td>
<td>۴۱</td>
<td>۳۴۰</td>
<td>۲۷۳۶</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>فارورجان</td>
<td>۴۲</td>
<td>۴۰۶</td>
<td>۱۸۴۸</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>فردیان</td>
<td>۳۳</td>
<td>۲۷۳</td>
<td>۱۷۴۸</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>کلیاگان</td>
<td>۲۱</td>
<td>۵۴۲</td>
<td>۴۵۱۸</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>لنجان</td>
<td>۲۶</td>
<td>۲۳۳</td>
<td>۲۸۱۶</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>نجف‌آباد</td>
<td>۲۹</td>
<td>۲۸۶</td>
<td>۲۴۷۷</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>نطنز</td>
<td>۲۱</td>
<td>۱۸۱۶</td>
<td>۲۴۰۷</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
<tr>
<td>استان</td>
<td>۳۷۸</td>
<td>۱۷۳۲</td>
<td>۷۹۱۲</td>
<td>۲۰۰۰-۳۰۰۰</td>
</tr>
</tbody>
</table>
جدول ۴- ترکیب شیمیایی نمونه‌های آب مورد مطالعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعداد نمونه‌آزمایشی</th>
<th>میانگین</th>
<th>دوآکثر</th>
<th>حداکثر</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td></td>
<td>278</td>
<td>1478/3</td>
<td>2014/6</td>
<td>173</td>
</tr>
<tr>
<td>کلسیم</td>
<td></td>
<td>283</td>
<td>167/2</td>
<td>2/3</td>
<td>24/0/5</td>
</tr>
<tr>
<td>منیزیم</td>
<td></td>
<td>283</td>
<td>60/3</td>
<td>3/3</td>
<td>0/40</td>
</tr>
<tr>
<td>سدیم</td>
<td></td>
<td>283</td>
<td>398/3</td>
<td>7/1</td>
<td>3/65</td>
</tr>
<tr>
<td>پتاسیم</td>
<td></td>
<td>283</td>
<td>398/3</td>
<td>7/1</td>
<td>3/65</td>
</tr>
<tr>
<td>کلر</td>
<td></td>
<td>283</td>
<td>398/3</td>
<td>7/1</td>
<td>3/65</td>
</tr>
<tr>
<td>سولفات</td>
<td></td>
<td>283</td>
<td>398/3</td>
<td>7/1</td>
<td>3/65</td>
</tr>
<tr>
<td>تیتریت</td>
<td></td>
<td>283</td>
<td>398/3</td>
<td>7/1</td>
<td>3/65</td>
</tr>
<tr>
<td>کیانات</td>
<td></td>
<td>283</td>
<td>398/3</td>
<td>7/1</td>
<td>3/65</td>
</tr>
<tr>
<td>بیکرتیت</td>
<td></td>
<td>283</td>
<td>398/3</td>
<td>7/1</td>
<td>3/65</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>283</td>
<td>398/3</td>
<td>7/1</td>
<td>3/65</td>
</tr>
</tbody>
</table>

تأثیر سطح مختلف TDS بر وزن بدن، مصرف غذا، ضربت تبید غذا، آب مصرفی، رطوبت بستر و تلفات در جدول ۶ ارائه گردیده است. وزن بدن نمونه در سطوح بین 473 و 529 قسمت در میلیون کاهش معنی‌داری TDS داد و اختلاف بین سایر سطوح 1500 قسمت در میلیون کاهش معنی‌داری TDS داشتند. میزان مصرف غذا در آب با تغییرات TDS اتفاق نمی‌افتاد. تغییرات در pH این آب مورد نظر تغییرات بر حسب تغییرات TDS پیوستند. TDS اکنون در جدول ۶ دوباره میزان TDS در مورد نظر برای تیمارها، در همان محدوده‌های پیشین می‌باشد. این نتیجه نشان می‌دهد که این آب مورد نظر به عنوان یک تیمار مفید برای وضعیت میان نمونه‌آزمایشی، برای موارد مختلف مطالعه در تحقیقات معرفی می‌گردد.

میلیون مصرف کننده TDS ۱۵۰۰ مورد در میان ۱۵۰۰۰ مورد از آب مورد نظر برای آزمایش در میان ۱۵۰۰۰ مورد این آب مورد نظر رضایت و تاثیر مثبت می‌باشد. این نتایج نشان می‌دهد که این آب مورد نظر می‌تواند به عنوان یک تیمار مفید برای وضعیت میان نمونه‌آزمایشی در آب مورد نظر برای آزمایش بررسی شود. این نتایج نشان می‌دهد که این آب مورد نظر می‌تواند به عنوان یک تیمار مفید برای وضعیت میان نمونه‌آزمایشی در آب مورد نظر برای آزمایش بررسی شود.
جدول 5 - فراوانی سطوح متفاوت TDS در شهرستان‌های انتخابی مورد آزمایش

<table>
<thead>
<tr>
<th>تعداد فراوانی</th>
<th>تعداد نمونه</th>
<th>میانگین</th>
<th>TDS</th>
<th>بیشترین دامنه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2277</td>
<td>23</td>
<td></td>
<td>2000-3000</td>
<td></td>
</tr>
<tr>
<td>2750</td>
<td>11</td>
<td></td>
<td>2000-2400</td>
<td></td>
</tr>
<tr>
<td>2147</td>
<td>5</td>
<td></td>
<td>2000-3000</td>
<td></td>
</tr>
<tr>
<td>3212</td>
<td>7</td>
<td></td>
<td>5000-6000</td>
<td></td>
</tr>
<tr>
<td>1085</td>
<td>12</td>
<td></td>
<td>1000-2000</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6 - تأثیر سطوح مختلف TDS بر عملکرد چوجه‌های گوشی

<table>
<thead>
<tr>
<th>تعداد تلفات</th>
<th>مصرف آب (میلی لیتر)</th>
<th>ضریب تبادل</th>
<th>مصرف غذا (گرم)</th>
<th>وزن بدن (گرم)</th>
<th>تام تیمار</th>
<th>نام تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/c</td>
<td>40 b</td>
<td>1473 b</td>
<td>2/35 a</td>
<td>2162 a</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>18 bc</td>
<td>20/6 b</td>
<td>1525 b</td>
<td>2/37 a</td>
<td>2437 a</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>24/4 bc</td>
<td>19/4 b</td>
<td>1495 b</td>
<td>2/18 a</td>
<td>3580 a</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>41/17 ab</td>
<td>74 a</td>
<td>18155 a</td>
<td>2/23 a</td>
<td>2616 a</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>37/1 bc</td>
<td>37/4 b</td>
<td>1810 a</td>
<td>2/30 a</td>
<td>3297 a</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>21/5</td>
<td>16500</td>
<td>2/29</td>
<td>3552</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>18/7 a</td>
<td>18/5 a</td>
<td>1850 a</td>
<td>2/27 a</td>
<td>2983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>162</td>
<td>1000</td>
<td>0/53</td>
<td>20/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین تیمار در ستون که با حروف مختلف مشخص شده‌اند اختلاف معنی‌دار دارد (P<0/05).

مربوط به تیماری یود که آب آن بیشتر از 5000 قسمت میلیون داشته، TDS میزان تأثیر سطوح مختلف TDS در جدول شماره 7 بر وزن

لاغه، چربی جزء بطن و خاکستر استخوان ران و همچنین تعدادی از اصلاحی معنی‌داری گزارش داده شده است. وزن لاغه TDS مصرف آب مصرفی به‌طور معمولی، روند مصرف آب طیور صحیح بطور که اخلاق در روش تیماری که آب مصرفی آنها حاوی TDS بیشتر از 3500 قسمت در میلیون بود با سایر گروه‌ها معنی‌دار (P<0/05)

بود. گروه مصرف کننده بیشتر از 5000 قسمت از میلیون

آب مصرفی، TDS کمترین وزن لاغه را داشت. با افزایش سطح TDS آب مصرفی، 3500 قسمت در میلیون TDS، در مقایسه با گروه‌های مصرف

کمتری آب دارد کمتر از 3500 قسمت در میلیون معنی TDS در این آزمایش افزایش میزان TDS آب مصرفی به‌طور معمولی معنی‌داری (P<0/05) موجب افزایش رطوبت بستر و افزایش طیور آزمایش با افزایش سطح TDS مصرفی روند کاهشی نشان داد و بر اکثریت افزایش TDS بیشتر از 3500 قسمت در میلیون بود با سایر گروه‌ها معنی‌دار (P<0/05)

گردید. با افزایش میزان TDS آب، میزان تلفات بطور معنی‌دار (P<0/05)
جدول 7- تأثیر سطوح مختلف TDS بر congratulate客ی، چربی بینی، استخوان و میزان خونی

| pH | HCO₃⁻ | Cl | Na | K | Ca | نام تیمار | وزن خاکستر | قطره‌بیشتر | میزان قربانی حفره | میزان حفره |
|----|-------|----|----|---|----|-----------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|
| v/32 | 5/5 a | 114 a | 136/4 a | 6/3 a | 10/2 a | 3/18 a | 70/55 a | 1969 a | A |
| v/38 a | 116/5 a | 115/4 a | 148/4 a | 6/5 a | 10/4 a | 3/17 a | 70/33 a | 1933 a | B |
| v/38 a | 117/4 a | 117/4 a | 150/4 a | 7/5 a | 10/5 a | 3/4 a | 70/33 a | 1914 a | C |
| v/39 a | 33/4 a | 116/4 a | 151/4 a | 7/5 a | 10/5 a | 3/5 a | 70/33 a | 1886 a | D |
| v/42 a | 116/4 a | 112/4 a | 156/4 a | 7/5 a | 10/5 a | 3/5 a | 70/33 a | 1886 a | E |
| v/42 a | 116/4 a | 112/4 a | 156/4 a | 7/5 a | 10/5 a | 3/5 a | 70/33 a | 1886 a | F |
| v/42 a | 116/4 a | 112/4 a | 156/4 a | 7/5 a | 10/5 a | 3/5 a | 70/33 a | 1886 a | G |
| v/42 a | 116/4 a | 112/4 a | 156/4 a | 7/5 a | 10/5 a | 3/5 a | 70/33 a | 1886 a | H |

ضزوح میزان تیمار در میزان مصرف زرد کنده و تغییرات میزان خونی در جدول TDS
8

شانس داده شده است. ضریب تیمار ۰.۵ زرد پایا با TDS معنی دارد (P = 0.۵) ضریب TDS میزان مصرف غذایی درصد تلفات مصرف آب و رطوبت بستر معنی دار (P = 0.۵) گردید. بیشترین تیمار بین مصرف آب و مصرف غذایی TDS مصرف غذای TDS و تلفات برای P = 0.۵ به یکدی آب و TDS از تغییر TDS آب پایا بر تلفات می‌باشد.

بیشترین TDS در بالینی و کلینیکی نشان داده که از سن ۲۵ روزگی TDS به بعد، آثار کاهشیدن در جدول TDS که آب حاصل

در هر ستون تیمارهای که دارای حروف مشابه هستند اختلاف معنی دار (P = 0.۵) دارند.
جدول 8- ضرایب همبستگی بین وزن زندگی، مصرف غذا و... با سطح TDS از سال 97 تا 98

<table>
<thead>
<tr>
<th>وزن زندگی</th>
<th>مصرف غذا</th>
<th>ضریب تبدیل</th>
<th>TDS</th>
<th>میزان TDS</th>
<th>مصرف آب</th>
<th>رطوبت پستر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/05</td>
<td>0/05</td>
<td>0/01</td>
<td>0/84</td>
<td>1/44</td>
<td>0/63</td>
<td>0/74</td>
</tr>
<tr>
<td>0/15</td>
<td>0/15</td>
<td>0/02</td>
<td>0/84</td>
<td>0/63</td>
<td>0/74</td>
<td>1/03</td>
</tr>
<tr>
<td>0/25</td>
<td>0/25</td>
<td>0/03</td>
<td>0/84</td>
<td>1/44</td>
<td>0/63</td>
<td>1/03</td>
</tr>
<tr>
<td>0/35</td>
<td>0/35</td>
<td>0/04</td>
<td>0/84</td>
<td>1/44</td>
<td>0/63</td>
<td>1/03</td>
</tr>
</tbody>
</table>

توجه: TDS موجود در آب به دست می‌آید.

بحث

نتایج مربوط به تجزیه و تحلیل آمار نمونه‌های آب جمع آوری شده از سازمان‌های ذیربط استان نشن داد که آب‌های انسانی مختلف ایستادگی به لحاظ میزان سختی و اصلاح معدنی بسیار مختلفتند، به طوری که بعضی از آنها برای انسان و طیور قابل مصرف نشوند و میزان سختی و اصلاح آنها خیلی بیشتر از مقادیر مجاز توصیه شده توسط NRC (17) می‌باشد. متابغ علیک موجود (27) و (5) تناژ این آزمایش می‌پردازد.

کیفیت آب در نقاط مختلف ایستادگی را تأثیر می‌گذارد. تناژ مجتمع‌های ذیربط استان‌ها، بودن آب برای مناطق مختلف در روز، تناژ آزمایش بالا رفت، رطوبت پستر باعث بروز بیماری کوکسیدوز گردید، که می‌توان

79
درصدی از تلفات را به پروتیون بر می‌دارد. موردی از تلفات را به پروتیون بر می‌دا

