ارزیابی گلخانه‌ای و آزمایشگاهی چند عصاره‌گیر جهت تعیین فسفر قابل استفاده

درت در بعضی از خاکهای آهکی استان فارس

على مراد قنبری، منوچهر مفتون و نجف علی کریمیان

چکیده
عصاره‌گیرهای متعددی جهت ارزیابی فسفر قابل استفاده‌گیاه در خاکهای مختلف پیشنهاد شده است. در حال حاضر در خاکهای آهکی ایران بیشتر از روش اولین استفاده می‌شود. اما درباره منابع این روش با سایر روش‌ها مطالعه زیادی صورت نگرفته است. این تحقیق به منظور به دست آوردن چندین اطلاعات انجام شد. غلظت فسفر در ۳۰ نمونه از خاکهای آهکی استان فارس با ویژگی‌های لزیکی و شیمیایی متفاوت، توسط‌ه ن عصاره‌گیر اندازه‌گیری شد. ۲۰ نمونه از این خاکها در یک آزمایش گلخانه‌ای با دوز شاخص چهار مقطع فسفر (صفر، ﺑ، ۱۰۰ و ۲۰۰ میلی‌گرم فسفر در کیلوگرم خاک) نیز به کار رفت. نتایج به دست آمده نشان داد که فسفر عصاره‌گیری شده توسط روش‌های نگه‌داری به ترتیب زیرکاهش دیده شد:

رازینی > کولول > مورگان > اولسن > بی‌ری > بی‌ری > اولسن = کولول = بی‌ری > اولسن = بی‌ری. مقادیر فسفر استحکامی با کلیه روش‌ها، به جز بری، دارای همبستگی معنی‌داری بین آنها، در حالی که روش‌های زینی، کولول، اولسن و آب دارای ضریب همبستگی بزرگتری نسبت به بقیه روش‌ها بودند. تجزیه و تحلیل نشان داد که فسفر عصاره‌گیری شده با کلیه روش‌ها، به جز بری، تحت تأثیر ماده آلی و روی اجزای خاک می‌باشد. فسفر استحکامی جاده‌بندی که بر روش اخری، با افزایش کربن معمولی خاک کاهش می‌یابد، بین وزن خشک قسمت هوازی، رشد نسبی و قسمت توسط دمای یا فسفر عصاره‌گیری شده به وسیله روش‌های زینی، کولول، اولسن و آب همبستگی معنی‌دار بالایی وجود داشت. این باعث شد که فسفر عصاره‌گیری شده توسط روش‌های سلطانی و شواب و مورگان همبستگی ضعیف و معنی‌داری نشان داد. غلظت فسفر در درگاه فلط با فسفر عصاره‌گیری شده توسط روش‌های اولسن و کولول همبستگی معنی‌داری داشت. به طور کلی، در این تحقیق به نظر می‌رسید که روش‌های زینی، اولسن، کولول و آب جهت استخراج فسفر قابل استفاده مناسب می‌باشند. مواردی که جهت انتخاب عصاره‌گیرهای مناسب، مطالعه بیشتر ضروری است.

واژه‌های کلیدی - فسفر، خاک، عصاره‌گیرهای شیمیایی، استان فارس، پاسخ‌های ذرت

مقدمه
ظریه پنج‌گانه گلگشتی، محققین به منظور ارزیابی فسفر قابل استفاده در خاک، روش‌های متعددی پیشنهاد نموده و موادی

5- به ترتیب کارشناسی و استادان خاک شناسی، دانشکده کشاورزی، دانشگاه شیراز

41
گوناگون از جمله استدلالی، بازه‌ای و نمک‌های مختلف را مورد آزمایش قرار داده‌اند.

استفاده از محلول‌های سدیم 5/6 مولار با پ-های 8/5 و متده گیاهی در تولید غلات خاکی که اثر مقدار بالای توجهی خاک‌ها به سنگ‌های مرطوب که با مواد طبیعی عصاره‌گیری می‌گذشته و این استفاده از آن سبب سرطان‌جویی در وقت و هزینه می‌گردد.

در روشهای مذکور به علت این که عصاره‌گیری با بعضی از اجزای خاک و اکتشافات انجام می‌دهند، ماهیت خاک تغییر می‌کند. بنابراین شرایط استفاده از روشهای برای افزایشی فسفر خاک استفاده شده ماهیت خاک را تغییر می‌دهد. از جمله این روشهای می‌توان زرین نیترات ایونی 29 نام برده (13). استفاده از زرین نیترات ایونی بار خاک تولید که مایل به خردی در پیشنهاد و یا نیترات که می‌توان آن به این روشهای خاک و فسفر عصاره‌گیری شده با این روشهای فسفر آزمایش گردند.

هر چند عصاره‌گیری فسفر با محلول حاوی فلورید آمونیوم و تصویر کردن در نسبت 16 خاک و عصاره‌گیری برای بررسی فسفر قابل استفاده در خاک‌های آماده پیشنهاد شده، معکول‌ترند (39). عقیده‌های دانسته‌ای این روش به 150 با 1000 افزایش یابد می‌توان آن برای خاک‌های آماده کارکن‌تری از 1/20 کرنیت‌های قابل استفاده نمود.

1. Buffering capacity
2. Correlation coefficient
3. Ethylene diamine tetraacetic acid (EDTA)
4. Anion exchange resin
روشها و بعضی از خواص فیزیکی و شیمیایی خاک.

3- تغییر همیستگی میان فسفر عصاره گیری شده و پاسخ‌های

مواد و روش‌ها

تعداد ۳۹ نمونه خاک از قسمت سطحی (۳۰- سانتیمتری)
ته و یپس از خشک‌کردن در میان کدو میلی‌متری عبور داده
شد. بعضی از ویژگی‌های فیزیکی و شیمیایی خاکا به ترتیب رد
رس به روش هیدرومتری (ب) - با وسیله خیاری شاخه، به وسیله
الکترود شیمیایی، ماده آلی به روش واکی و بلاک (۶۲) هر
کلیسه معادل به وسیله خشک کردن با کالدریریک اسید (۴) -
ظرفیت تبادل کاتیونی با جات مثبت کربنات‌ها به وسیله
استات سدیم (۱۱) و یپس از عصاره گیری توسعه گیرید. (۴)
(۴۴) اندازه‌گیری شد، که تا نهایت حاصله در جدول ۱ نشان داده
شد است.

اندازه‌گیری فسفر قابل استفاده، توسط عصاره‌گیری شیمیایی
خصوصیات عصاره‌گیری شیمیایی، شامل نام و پ - هاش عصاره‌گیری،
نسبت خاک و عصاره‌گیری و منتیشم عصاره‌گیری با تار در
جدول ۲ آمده است. در روش‌های اولین؛ یک ول، خیار، و سلطان
و ریز ریزگردهایی از کریستال فلزی استفاده شد. در روش
آب، به مدت ۲۴ ساعت در ترکیب خاک، ابتدا ترکیب معلق به
مدت ۴ ساعت و ۴۰ دقیقه با ۲۰۰۰ گرم ضخامت یافته شد، سپس
در دمای ۸۰ درجه سانتی‌گراد و ۵ دقیقه با ضخامت استفاده
کردن با گذشت ودیده و شستشوی آب مقطع جوشیده
به حجم ۵۰ میلی‌لیتر رسانید. شدت و منجره نسخه توسط روش
مرفی و رایلی (۷۸) تعیین گردید. وزن خاک، شدت نسبی
(۷۸) وزن خاک تولید در شکل حداکثر وزن خاک
خاک تولید ناشی از مصرف ۷۵ و ۲۰۰ میلی‌گرم فسفر
در هر کلوگرم خاک) غلظت جذب کل فسفر توسط درشت به
عنوان پاسخ‌گیری گاهی در نظر گرفته شد. این پاسخ‌گیری به وسیله
پرتواساسیس‌های SPSS فسفر عصاره‌گیری

1. Dispersion

43
جدول 1 - تعیین فاکتورهای نیزکی و شیمیایی خاک‌های مورد آزمایش

<table>
<thead>
<tr>
<th>شماره</th>
<th>نام سری خاک</th>
<th>رس به وسیله</th>
<th>تبادل</th>
<th>کربنات کلسیم</th>
<th>نمک</th>
<th>هیدروژن</th>
<th>دی‌تی‌پ (میلی‌گرم)</th>
<th>در کیلوگرم (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>کورشک 1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>کورشک 2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>3</td>
<td>کورشک 3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>26</td>
<td>13</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>27</td>
<td>14</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>28</td>
<td>15</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>29</td>
<td>16</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

* بیانک: که در آزمایش گلخانه‌ای استفاده شده است.
جدول 2 - خصوصیات عصاره‌گیری شامل نام عصاره‌گیری، تعداد خاک به عصاره‌گیری، پ - حاش عصاره‌گیری و مدت تماس

<table>
<thead>
<tr>
<th>منبع</th>
<th>نام روشن</th>
<th>تعداد خاک به عصاره‌گیری</th>
<th>مدت تماس (دقیقه)</th>
<th>ماده عصاره‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>اولسن</td>
<td>30</td>
<td>8/5</td>
<td>پ - کریت‌ت سدیم 1/5 مولار</td>
</tr>
<tr>
<td>12</td>
<td>کولول</td>
<td>96</td>
<td>8/5</td>
<td>پ - کریت‌ت سدیم 1/5 مولار</td>
</tr>
<tr>
<td>9</td>
<td>بیر 1</td>
<td>1</td>
<td>3/5</td>
<td>فلورید آمونیوم 3/5 ترمال - اسید کلریدریک 25/5 ترمال</td>
</tr>
<tr>
<td>32</td>
<td>بیر 1</td>
<td>1</td>
<td>3/5</td>
<td>فلورید آمونیوم 3/5 ترمال - اسید کلریدریک 25/5 ترمال</td>
</tr>
<tr>
<td>44</td>
<td>سلطان‌پور و شواب (مرکزی)</td>
<td>15</td>
<td>7/6</td>
<td>پ - کریت‌ت آتونیوم 1 ترمال - دی متی پیا 5/0 ترمال</td>
</tr>
<tr>
<td>26</td>
<td>مرکزی</td>
<td>1</td>
<td>4/8</td>
<td>اسید استیک 5/5 ترمال - استات سدیم 1/8 ترمال</td>
</tr>
<tr>
<td>5</td>
<td>رزین تبادل آلیونی</td>
<td>1400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>ای دی تی ا</td>
<td>30</td>
<td>7/0</td>
<td>ای دی تی ا 5/0 ترمال</td>
</tr>
<tr>
<td>42</td>
<td>آب</td>
<td>60</td>
<td>-</td>
<td>آب</td>
</tr>
</tbody>
</table>

* 1 یک قسمت خاک، یک قسمت رژین و 100 قسمت آب
نتایج و بحث
مقايسه روش‌های عصاره‌گیری نفس
میزان نفس عصاره‌گیری شده توسط روش‌های مختلف در جدول ۳ و ضریب همبستگی میان نفس عصاره‌گیری سه توسط عصاره‌گیری را
می‌توان این ترتیب نشان داد: رزین بادام آبیونی کولون> مورگان اولسون> براي ۱۵۰< سلطانی و شربای کیلی
تی»< ژیره آب. دندان‌های کانکو (۱۸) گزارش می‌کند که توانایی روش‌های مختلف در عصاره‌گیری نفس از خاک‌های
لارسیک هندوستان به‌صورت‌های ژیره، جروش کاژولینی شمالی و روشنیزین و کولون در واقع تمام نفس لیبل یا عصاره‌گیری می‌نمایند. در
حالی که روش‌های دیگر قسمتی از این شکل نفس را از خاک خارج می‌سازند (۸ و ۲۴). از طرفی، آن‌چه که توانایی
عصاره‌گیری مختلف در انحلال شکل‌های مختلف نفس
متافتاً (۳۶ و ۱۴۰)، اختلاف در مقدار نفس استخراجی از
خاک‌ها در انتظار نمی‌باشد. به علاوه، تفاوت در مدت زمان
عصاره‌گیری و نسبت خاک و نوشیدن عصاره‌گیری نیز بر مقدار
نفس عصاره‌گیری شده به تایید نیست (۲۴ و ۲۶). همانطور که
مشاهده می‌شود مقدار نفس عصاره‌گیری شده توسط روش
اولس، مورگان، براي و آب متفاوت بوده است. آن‌ها هیچ یک از
روش‌های فوق را به‌همین واقعیت مقدار نفس قابل استفاده
در خاک‌های آمک ذیق نمی‌دانند. همچنین نسبت به علت
اختلاف زیاد در مقدار اندکی در کسب کنمی باشد. اما
روش مورگانها را به علت دارای بدن ضریب بارا ژیانی، مناسب‌تر
از سایر روش‌ها می‌دانند (۱). اما قایسیه سه روش
اولس، مورگان و براي در خاک‌های آمک ذیق به‌نظر می‌رود که روش
سوم روش‌های به‌پیشنهال نیست. این مشاهده در

1. Labile phosphorus
2. Quantity factor
3. Intensity factor

۱۷۶۸
جدول 3 - میزان نفسر عصاره‌گیری شده از خاک (میکروگرم در گرم خاک) توسط روش‌های مختلف (مجرد عدد میانگین‌های تکرار است)

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>سلول‌تولیدکننده</th>
<th>رزین اسیدی</th>
<th>آب و شوراب</th>
<th>کولربری</th>
<th>پری 1 (150)</th>
<th>پری 2 (167)</th>
<th>والربری</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/5</td>
<td>3/0</td>
<td>25/0</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
<td>1/0</td>
<td>17/9</td>
<td>29/2</td>
<td>6/6</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>3</td>
<td>1/5</td>
<td>1/0</td>
<td>27/3</td>
<td>19/5</td>
<td>12/3</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>4</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>5</td>
<td>1/5</td>
<td>0/0</td>
<td>21/3</td>
<td>17/4</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>6</td>
<td>1/5</td>
<td>0/0</td>
<td>8/0</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>7</td>
<td>1/5</td>
<td>0/0</td>
<td>4/1</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>8</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>9</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>10</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>11</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>12</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>13</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>14</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>15</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>16</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>17</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>18</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>19</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>20</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>21</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>22</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>23</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>24</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>25</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>26</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>27</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>28</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>29</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>30</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>31</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>32</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>33</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>34</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>35</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>36</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>37</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>38</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>39</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>40</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>41</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>42</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>43</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>44</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>45</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>46</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>47</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>48</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>49</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>50</td>
<td>1/5</td>
<td>0/0</td>
<td>6/6</td>
<td>7/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>میانگین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{S}</td>
<td>\mathcal{S}_1</td>
<td>\mathcal{S}_2</td>
<td>\mathcal{S}_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{S}_0</td>
<td>\mathcal{S}_0</td>
<td>\mathcal{S}_0</td>
<td>\mathcal{S}_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{S}_1</td>
<td>\mathcal{S}_1</td>
<td>\mathcal{S}_1</td>
<td>\mathcal{S}_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{S}_2</td>
<td>\mathcal{S}_2</td>
<td>\mathcal{S}_2</td>
<td>\mathcal{S}_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{S}_3</td>
<td>\mathcal{S}_3</td>
<td>\mathcal{S}_3</td>
<td>\mathcal{S}_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
آب از خاکی‌یکی که کورد آب آنها اضافه شده بود به مراتب بیشتر از خاکی‌های بدون پودر آب بوده است. ماده آماده با پوشاندن نقاط جذب در کلود خاک (29) و ازدیجی فضاهای توسط آنتونیاالی مدل نیل سیستم مالات و اکسالات (17) سبب کاهش جذب سطحی فسفر توسط ذرات خاک می‌شود. از طرفی، تولید آسیاهالی می‌تواند حامل از تجزیه ماده آلی با استفاده بهبودی فسفر در خاکی‌های آمیزی مسینی (10 و 16) در میان روی بومی خاک و فسفر عصاره‌گیر شده توسط کلیه روشهایی که جنگ‌های همبستگی می‌شود. میزان درجه تعدد دانایی تغییرات در نظام پیچیده (3) با استفاده از افزایش میزان عصاره‌گیری بری به 150 و 150 برای خاکی‌های آمیزی با پیش از درصد کلینیک آینه‌ای چندین تنادار، جنگ‌های ضعیف آن عصاره‌گیری به راحتی توسط کریتی‌ها کلیسی می‌شود.

مدیر فسفر عصاره‌گیری شده با روش سطحی و شواد درصد فسفر عصاره‌گیری شده به این روش می‌تواند است مناسب یک مورد از افزایش فسفر عصاره‌گیری باشد. با این حال همبستگی معنی‌داری میان پیش از روش با یقه روشهایی که جنگ‌های به دست آمد (جدول 3). لیست و سطحی (24) نیز بین پیشینه‌ها آمونیوم - دلیل پی ای دلیل و سپس کریتی‌ها سدیم همبستگی معنی‌داری مشاهده‌کردند.

رایبط‌های آب فسفر عصاره‌گیری شده توسط روش‌های مختلف و خصوصیات خاک

مدیر فسفر استخراج شده با مصرف خاص در ارتباط

چند منطقه همبستگی معنی‌داری به دست آمد (جدول 5).

مدیر ماده آلی بر مقدار فسفر استخراج شده توسط کلینیک روش‌ها به جنگ‌های و ای دلیل ای دلیل مشاهده گردید که فسفر عصاره‌گیری شده توسط روش اولیه و

1. Multiple regression
<table>
<thead>
<tr>
<th>نویسه</th>
<th>معنی</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CEE})</td>
<td>(\text{CEE})</td>
<td>توضیحات 1</td>
</tr>
<tr>
<td>(\text{CEE})</td>
<td>(\text{CEE})</td>
<td>توضیحات 2</td>
</tr>
<tr>
<td>(\text{NZ})</td>
<td>(\text{NZ})</td>
<td>توضیحات 3</td>
</tr>
<tr>
<td>(\text{NW})</td>
<td>(\text{NW})</td>
<td>توضیحات 4</td>
</tr>
<tr>
<td>(\text{OW})</td>
<td>(\text{OW})</td>
<td>توضیحات 5</td>
</tr>
</tbody>
</table>
جدول 6 - ضریب همبستگی (r) رابطه میان پاسخ‌های زرت و فسفر استخراج شده توسط روش‌های مختلف

پاسخ گیری	ظرفیت فسفر (میلیگرم در گرم)	وزن ماده خشک (گرم در گل‌دان)	رشد نسبی (درصد)	روش
اولسن	0/61**	0/48**	0/68**	اولسن
کولرول	0/65**	0/59**	0/80**	کولرول
رزین	0/89**	0/62**	0/81**	رزین
آب	0/83**	0/81**	0/81**	آب
سلطانیور و شراب	0/63**	0/61**	0/61**	سلطانیور و شراب
مورگان	0/50**	0/52**	0/50**	مورگان
ای دی تی ا	0/11 NS	0/12 NS	0/11 NS	ای دی تی ا
بری (17)	0/70 NS	0/12 NS	0/70 NS	بری (17)
بری (15)	0/56 NS	0/10 NS	0/56 NS	بری (15)

* و ** به ترتیب معنی دار در سطح 1% و 5% NS - غیر معنی‌دار

ارتباط و رشد درت با فسفر خاک

ضریب همبستگی (r) مربوط به پاسخ درت (وزن خشک) قسمت هوایی، رشد نسبی، ظرفیت و جذب کل فسفر و فسفر عصاره‌گیری شده توسط روش‌های شیمیایی در جدول 6 آمده است. بررسی دقیق این جدول نشان می‌دهد که وزن ماده خشک با فسفر استخراج شده به وسیله برجسته از روش‌ها همبستگی معنی‌داری دارد. ضریب همبستگی مربوط به روش‌های رنگ‌یابی تیادلی، کولرول و آب به هم نزدیک بوده و بیشتر از سایر عصاره‌گیری است. در این تحقیق فسفر عصاره‌گیری شده با ای دی تی ا، بری 17 و بری 15 همبستگی معنی‌داری با رشد درت نشان نداد. مهم‌ترین لیست‌های سلطانیور و سلطانیور (24) گوارش لیست‌های کروش ای دی تی ا به خوبی می‌تواند فسفر قابل استفاده برجسته را در خاک‌های آهکی کرده و بیشترین نماید.

ظرفیت فسفر در بخش هواپیما درت فقط با فسفر عصاره‌گیری شده توسط روش‌های مختلف متفاوت بوده است. از آنجا که این پاسخ‌ها در مورد بخش هواپیما درت تابعی تغییر یافته که از آن برای تعیین میزان ضریب همبستگی استفاده شده‌است.
فسفر در خاکهای آمیک، به عناوین یک عصاره‌گیر بوده، گاهی نموده‌اند.

شده است (۲۴، ۲۵ و ۴۳). اما به نظر می‌رسد یک یا گروه

در مورد خاکهای مورد استفاده در این تحقیق چندان واقعی

نادر نگه داشته می‌گردد که فسفر

عصاره‌گیری شده توسط این روش با پاسخ‌های ذرت، از

همیلتونی بی‌خوراکی شود (جدول ۶). کربن‌های قنبری

(۳۲) مشاهده کردن که از روش‌های اولسن، سیلادان و

شواب، اثربخش‌تر گردیده، روش اولسن نسبی

درت را در خاکهای آمیک زیر سطح درودن بهتر پیشین

در سیلیست و هم‌مانند (۴۰) گزارش می‌کند که میان

پارامترهای پیلولیزیک ذرت و فسفر عصاره‌گیری شده یا

روش‌های اولسن، بری ۱، اسید دویل، سرناگ و از

همیلتونی معنی‌دار نمی‌باشد که جذب کل فسفر

توسط ذرت از فسفر عصاره‌گیری شده توسط روش اولسن از

همیلتونی بی‌خوراکی شود (جدول ۶).

گرچه مقدار فسفر عصاره‌گیری شده توسط آب، در مقایسه با

سایر عصاره‌گیرها کمتر به‌وده، اما به علت دارای بودن ضریب

همیلتونی (۴) نسبتاً بالا از آن می‌توانیم همانند روشهای اولسن،

کربن‌های قنبری جهت ارزیابی فسفر قابل استفاده در خاک‌های

آمیک استفاده نمود. از طرفی، چون آپ به راحتی در دسترس

روه و عصاره‌گیری با یک سه‌فازی کربنول و زرین است

و همچنین به وقت کمتری نیازمند است، به نظر می‌رسد

یتی بررسی وضعیت فسفر در این خاکهای روش مناسبی باشد.

همیلتونی میان پاسخ‌های ذرت (وزن خشک) و جذب کل

فسفر استخراج شده با روشهای سلطانپور و مروگان، در

چند میلی‌متری و در مقایسه با روشهای اولسن، کربن‌های قنبری و آپ کمتر به‌وده (جدول ۶)

لیستور و سلطانپور (۲۴) میان فسفر عصاره‌گیری شده توسط

روه سلطانپور و شواب و جذب فسفر توسط پوئنجه

سیاسی‌گرایی

پدید و وسیله از کمک‌های ارزش‌دهی و صمیمانه‌شدن شوراهای پژوهشی

انشای شوراهای تأثیرگذار مالی لازم جهت انجام این تحقیق

سیاسی‌گرایی و تدریس‌های می‌شود.

phosphorus in some calcareous soils of Iran. J. Environ. Qual. 22: 578-582.