انتخاب عصاره‌گیر مناسب برای استخراج پتاسیم قابل جذب در خاک‌های منطقه مرکزی استان اصفهان

مهدی شریفی و محمود کلیسی‌آباد

چکیده

پتاسیم در گیاه نه تنها از نظر مقدار، بلکه از نظر نقش فیزیولوژیک و بیوشیمیایی نیز یکی از مهم‌ترین کاتیون‌ها محسوب می‌شود. به منظور پرورش و پیشگیری پتاسیم و ارزیابی عصاره‌گیری‌ها رایج برای استخراج پتاسیم قابل اکتشاف در خاک‌های منطقه مرکزی استان اصفهان، ۴۶ سری خاک متمایلی به منطقه انتخاب و بر اساس پایداری و پتاسیم استخراجی با استان‌آموزی به ترتیب ۱۵ سری خاک برای مطالعات بعده‌ی انتخاب شد. پتاسیم قابل عصاره‌گیری این خاک‌ها با استفاده از عصاره‌گیریهای استان‌آموزی (پتاس عصاره‌گیری، کاربنیکسیم (دو روش)، کلرید‌سادگی (دو روش)) و DTPA با سلول‌های از Zea mays L. رقم می‌گیرد که در ۷۴۹ به عنوان گیاه محکم و دو تیار صفر و ۱۵ میلی‌گرم پتاسیم در کیلوگرم، در قالب یک آزمایش چکن‌بولی با طرح کاملاً تصادفی و سه تکرار استفاده شد. بر اساس مطالعات شناسایی کاتیون‌ها، ابزارهای عنوان‌کننده غلب در خاک‌های منطقه اصفهانی شد. مقادیر پتاسیم استخراجی به وسیله عصاره‌گیریهای کاربنیکسیم (۲ مولار) و استان‌آموزی (واقعی و خشک) به دست آمده در سیدمآد (در سطح اول) به گذشته و خلق نسبت پتاسیم در دوام ارزیابی شده‌اند. عصاره‌گیریهای کاربنیکسیم (۲ و ۴ مولار) و استان‌آموزی (واقعی و خشک) به علت بالا رساندن ضرایب هم‌سانتی‌گی با جذب (ب) مدل‌سازی دیده شد (۲) به ترتیب ۶۵/۸۵ و ۶۵/۸۵ درصد سیگما/اندکس. به عنوان مثال بالا، مقدار پتاسیم قابل استخراج خاک‌های مورد مطالعه عامل محدود کننده‌ای برای رشد گیاه می‌باشد. با این حال، حدود بزرگی یکی از عصاره‌گیری‌های پیشنهادی با استفاده از عصاره‌گیری پتاسیم قابل استخراج در خاک‌های زیر می‌باشد.

واژه‌های کلیدی: پتاسیم قابل استخراج، عصاره‌گیریهای پتاسیم، درت، DTPA

مقدمه

هدف اولیه فرآیند عصاره‌گیری شیمیایی از رایج مقدار قابل استخراج عصاره‌گیری پتاسیم خاک به دو معیار توجه داشت: اولً، به ترتیب داشته‌اند که ۱/۳. داشته‌اند که ۱/۳. داشته‌اند که ۱/۳. داشته‌اند که ۱/۳.
عصاره‌گیری باید از مانع لیبل‌یافتن هم فناور و ناگهانی باشد، ثانیاً روش
عصاره‌گیری باید بسیار تکرار و تجدید و انتقادات باشد (۶) طیف وسیعی از عصاره‌گیری‌ها برای تهیه تناسب قابل
استفاده خاک‌های مختلف به کار گرفته شده است. که راهی برای
آنها محلول ملایم میدرند و خشک هستند (۴) و (۴) ۱۵ آنها. این عصاره‌گیری در ایران نیز (بنابراین این که تحقیقات جامعی
روی آن انجام شده شده است) به عنوان تنها عصاره‌گیری استخراج
پاتسیم مورد استفاده قرار می‌گیرد. سایر عصاره‌گیری‌های متناول
پاتسیم در دنیا عصارته‌انداز ملیخ ۱۶ و (۷) بی‌کریات
آمونیوم DTPA-کلرید، DTPA-ملكول ۴۰ مولار، کلریدسیدر
ملیخ ۱۶ ۳ و (۷) بی‌کریات
نوری و لکاتس آمونیوم را برای ارزیابی پاتسیم قابل استفاده خاک‌های
مجزا و میکرو‌ماقیسه قرار داده که هر دو عصاره‌گیری را برای
تعیین تناسب قابل استفاده خاک‌های مربوطه مناسب تشخیص
داد. سالامون (۲۷) روش کلینرکس ۱۵۰ مولار را بی‌روش
لکاتس آمونیوم اسید استبیک (روش منادوی در سوئد) برای
استخراج پاتسیم قابل جذب گیاه در مورد مقدار
پاتسیم که گرچه کلریدی پاتسیم ۱۵۰ مولار پاتسیم کمتری از
خاک استخراج می‌کند ولی می‌تواند جایگزین خوبی برای
روش منادوی باشد. وندیست و هوراکووا (۲۶) نیز این
عصاره‌گیری را به عنوان عصاره‌گیری مناسب برای تخیم تناسب
قابل استفاده در موارد کردند.

به طور کلی دلیل اینکه یک عصاره‌گیری در یک خاک موفق
و در خاک دیگر ممکن است ناموفق باشد، احتمالاً نقش
متغیری که پاتسیم خاک (با توجه به نوع و مقدار
متغیری که پاتسیم خاک (با توجه به نوع و مقدار
کاتیون موجود در خاک) در تأمین نیازهای گیاهی می‌باشد.
نظر به اینکه هر این الگوی افزایش دارد و در مورد ارائه
قابل استفاده و مصرف کودهای پتاسیم در خاک‌های
خشک و نیمه خشک ارتباط می‌شود و یکی از
گردها است، تحقیقات حاضر با هدف بررسی وضعیت
ثبت‌نیت نیز برای تعیین ارتباط در
خاک‌های متفاوت مربوطه با تحقیقاتی است، از
از برای استخراج تناسب قابل استفاده در آن خاک‌ها
انجام گرفت.

1. Labile
انتخاب عصاره‌های مناسب برای استخراج پتاسیم قابل جلب در خاک‌های...

مواد و روش‌ها
تحقیق انجم شده شامل نمونه‌برداری، مطالعات آزمایشگاهی و مطالعات گلخانه‌ای بود. نمونه‌برداری در مرحله اول انجام شد. در مرحله اول، 26 سری خاک در محله‌های مختلفی از جمله سه محله مستحیل (صفر تا ساتنی) به صورت مرکب نمونه‌برداری گردید. سپس برای هر سری خاک، پتاسیم قابل عصاره‌گیری با روش استاندارد آمونیوم-کربنات انجام شد. سپس پتاسیم با روش پیت تیونین شد و سپس خاک براساس مقدار پتاسیم قابل عصاره‌گیری در مقیاس کم (50-550 میلی‌گرم در کیلوگرم)، متوسط (600-750 میلی‌گرم در کیلوگرم) و بالاتر (یا بیش از 750 میلی‌گرم در کیلوگرم) تشخیص گردید.

مطالعات گلخانه‌ای در قالب یک آزمایش فاکتوریل 2×2 با طرح کاملاً تصادفی و سه تکرار انجام شد. در این آزمایش تعداد خاک‌ها 16 و تیمارهای پتاسیم شامل دو مقدار صفر و مایلی‌گرم پتاسیم در کیلوگرم بود. گیاهان به مدت 24 سال زاده شدند. در مرحله نهایی (Zea mays L.) رشته سیگال کراس 604 بود و از مواد اصلی پلاستیکی با انگلیسی چهار کیلوگرم به عنوان گلخانه استفاده گردید. پتاسیم به صورت پودر موجود در سوپرساتنیت با خاک هر گلدان مخلوط شد. فسفر و روی به صورت کودهای سوپرفسفات تری‌تیتیوم و سولفات‌های رود به ترتیب به مقدار 100 و 10 میلی‌گرم در کیلوگرم خاک گلدان‌ها مخلوط گردید. از آنجا که باید نمونه‌برداری مجدد صورت گرفت، مقادیر کمی از نمونه‌های آماده شده برای انجام تجربه‌های فیزیکی و شیمیایی با آزمایشگاهی متوقف شد. پس از اضافه شد. آن به صورت سکسترین 138، به مقدار 10 میلی‌گرم در کیلوگرم، 20 روز از اکت‌میلی‌گرم به صورت مخلوط به خاک اضافه گردید.

در هر گلدان سه عدد بذر تنظیم شد. کشت شد، که پس از یک هفته، به خاک گیاه در هر گلدان کاشت که پس از یک هفته، به خاک گیاه در هر گلدان کاشت. در مجموع 46 گلدان مورد استفاده قرار گرفت. آماری با آب مقطع صورت گرفت و سعی شده تا رطوبت خاک‌ها در حدود نظریت مورد نگهداری شود. هشت هفته پس از کاشت، گیاهان از یک سانتی‌متر بالای سطح خاک فضع و با آب مقطع شسته شدند. سپس به مدت 48 ساعت در آن تهیه دارد با دمای 45 درجه سانتی‌گراد کشت شد. عصاره‌گیری با روش پیت تیونین شد. سپس خاک براساس مقدار پتاسیم قابل عصاره‌گیری در مقیاس کم، متوسط و بالاتر (یا بیش از 750 میلی‌گرم در کیلوگرم) تشخیص گردید.

1. X-Ray Diffraction
جدول 1. مشخصات روش‌های عصاره‌گیری مورد استفاده

<table>
<thead>
<tr>
<th>شماره</th>
<th>نام عصاره‌گیر</th>
<th>تکان دادن</th>
<th>مدت زمان</th>
<th>تکان دادن</th>
<th>پمغش</th>
<th>ب‌هاش</th>
<th>غلظت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>استاتیموم - 1</td>
<td>15/1</td>
<td>20 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>استاتیموم - 2</td>
<td>15/1</td>
<td>20 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>استاتیموم - 3</td>
<td>15/1</td>
<td>20 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>استاتیموم - 4</td>
<td>15/1</td>
<td>20 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>کلریدسمدین - 1</td>
<td>15/1</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>کلریدسمدین - 2</td>
<td>15/1</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>استاتیموم - 1</td>
<td>15/1</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>استاتیموم - 2</td>
<td>15/1</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>استاتیموم - 3</td>
<td>15/1</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>استاتیموم - 4</td>
<td>15/1</td>
<td>30 دقیقه</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>20 ساعت</td>
<td>15/1</td>
<td>7</td>
<td>6/5</td>
<td>15</td>
</tr>
</tbody>
</table>

1. عمل تکان دادن با سرعت 100 دور در دقیقه انجام شد. در عصاره‌گیری 1 حım تکان دادن دوباره هر بار با 25 میلی لیتر عصاره‌گیری و در عصاره‌گیری 2 و 3 حیم تکان دادن سه بار هر 15 دقیقه عصاره‌گیری مورد به 25 میلی لیتر عصاره‌گیری صورت گرفت. عصاره‌گیری 2 مدت 3 ساعت 20 دقیقه و عصاره‌گیری 3 مدت 5 ساعت 20 دقیقه انجام شد.
2. شامل اسید کلریدریک 5/05 مولر و اسید سولفوریک 2/5 مولر
3. شامل استاتیموم 2/5، استاتیموم 1/5، استاتیموم 1 مولر، فلورید آمینوم 0/15 مولر و نیترات آمینوم 1/5 مولر
4. شامل کورتنت آمینوم 7/25 مولر، استاتیموم 1/5 مولر و استاتیموم 0/15 مولر
5. شامل استاتیموم 0/25 مولر و نیترات آمینوم 2/25 مولر
6. به‌طور کلی، استاتیموم 0/25 مولر و نیترات آمینوم 2/25 مولر، اسید تتریک 1/30 مولر و EDTA 0/5 مولر، اسید تتریک 1/30 مولر و DTPA 0/5 مولر و DTPA 0/5 مولر
7. شامل مولکول‌های ستاره‌ای 1/5 مولر، استاتیموم 0/15 مولر و استاتیموم 0/15 مولر
8. درجه سانتی‌گراد خشک و عملکرد اندام هوابی گیاهان تغییر گرفت. مولکول‌های ستاره‌ای با آسیب به میلی لیتر عصاره‌گیری انجام دیده و در فاصله 25 مولر تا 1 مولر، مقدار یک گرم از نمونه گیاهی بود که در دمای 50 درجه سانتی‌گراد گزارش شده بود.
9. از این آن که به وسیله دستگاه سبک کروماتوگرافی مورد استفاده در عصاره‌گیری انجام شده بود.

در نتیجه، با استفاده از فرمول‌های ذیل محاسبه گردید:

\[\text{فرمولهای ذیل محاسبه گردیده:} \]
انتخاب عصاره‌گیری مناسب برای استخراج پتاسیم قابل جذب در تکانه‌ها

در بخش محاسبات آماری، به منظور بررسی ارتباط عصاره‌گیری پتاسیم با یکدیگر و نسبت‌های عصاره‌گیری مشابه، ضرایب همبستگی بین مقادیر پتاسیم استخراجی به وسیله روش‌های مختلف عصاره‌گیری بررسی و معنی دار بودند. بر اساس نتایج، تجربه و پایداری آزمایش‌ها فاکتوریل انجام و معنی دار بودن اختلافات بین تیمارها از نظر عملکرد، جذب پتاسیم و فلزات پتاسیم، با استفاده از آزمون‌های مانک–لوون، مشخص گردید. همچنین برای انتخاب عصاره‌گیری مناسب، رابطه بین شاخص‌های گیاهی و پتاسیم استخراجی به وسیله عصاره‌گیری، با استفاده از همبستگی ساده معین گردید.

نتایج و بحث

نتایج نظریه‌ای و کاربردی خاک‌های مورد مطالعه در جدول 2 آراشت. است. یکی از طریکه‌های مورد ارزیابی می‌شود. پتاسیم استخراجی به وسیله این عصاره‌گیری همبستگی گویای به‌صورت خاصی از این عصاره‌گیری است. در مثال DTPA-آسیتوامین (7/6 و 7/6) نشان داده است. بنابراین، این دو عصاره‌گیری نیز به احتمال زیاد قادرونه باعث می‌شود که نتایج تکانه‌های گیاهی احتمالاً به دلیل تغییر سختی از پتاسیم سخت نسبت به استخراج کند.

بر اساس مقادیر پتاسیم استخراجی از خاک به وسیله عصاره‌گیری، می‌توان عصاره‌گیری مورد استفاده در این ناحیه را به همراه کلی قلم‌زنی کرد. از این عصاره‌گیری شیبی تبدیل شده 1 مولار می‌باشد. فلزات 1 و مولار-ونک (دوم) عصاره‌گیری نسبتی ناقص، شیفت: استثنای آمینوآمین و خشک کلرید سدیم و سلیحه و کلرید سدیم آمینوآمین-آمینوآمین و کلرید سدیم به‌صورت مزدوج در دو تکانه مشابه می‌باشد. می‌باشد. از این عصاره‌گیری می‌توان به کنار همگونی شدن در پاتاسیم را از تعدادی از خاک‌ها به طور معنی‌دار افزایش داده است. دلیل پایین بودن نسبی عملکرد گیاهی، احتمالاً مربوط به عناصر مورد مطالعه در کنار خاک‌ها نیز است. از جمله این عناصر می‌توان به خاک‌های خاک‌های گیاهی اشاره کرد که نسبت عناصری که می‌تواند بر گل‌خانه‌های مختلف سبب شود که نسبت عناصری که می‌تواند بر گل‌خانه‌های مختلف سبب شود. این عناصر شامل عناصری می‌باشند که هم‌اکنون به علاوه نرخ‌های مختلف افزایش عملکرد گیاهی در اثر تیمار پتاسیم در اکثر خاک‌ها، خود بیانگر محدود کننده بودن پتاسیم برای رشد گیاهی، و یا وجود عاملی محدود کننده از فلزات نسبت به خاک برای رشد گیاهی می‌باشد.
انتخاب عصاره‌گیر مناسب برای استخراج پتاسیم تاپل جذب ذرت در خاک‌های...

جدول 2. تجزیه واریانس آزمایش فاکتوریل (صفت مورد مطالعه عملکرد گیاه)

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>میانگین مربعات</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاکتور پذیرش</td>
<td>15</td>
<td>982/66</td>
<td>65/1</td>
<td>25/24</td>
</tr>
<tr>
<td>فاکتور ب (تیمارتاسیم)</td>
<td>1</td>
<td>14/26</td>
<td>14/26</td>
<td>1</td>
</tr>
<tr>
<td>اثر متقابل</td>
<td>15</td>
<td>37/91</td>
<td>2/53</td>
<td>1</td>
</tr>
<tr>
<td>خطأ</td>
<td>64</td>
<td>92/67</td>
<td>1/145</td>
<td>1</td>
</tr>
<tr>
<td>CV = %8/34</td>
<td></td>
<td>113/27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV: در سطح پنج درصد معنی‌دار نیست.
F: در سطح یک درصد معنی‌دار است.

گزینی و ارتلی (8) در تحقیق خود نشان دادند که هرسیتگی زیادی (8/90 تا 99/90) بین عصاره‌گیرهای استان آمودروم، مسیلیک، AB - DTPA، EDMT، بی‌کربنات آمودروم، و مواد قرار می‌گیرد. در این تحقیق نیز ارتباط پتاسیم استخراج بیل سیلیکا عصاره‌گیری‌های مختلف و شاخص‌های غایی ذکر شده، بررسی گردید. نتایج در جدول 7 ایفای نقش شده است. همچنین از آن جا که نوع رس موجود در خاک تأثیر زیادی در ارتباط وضعیت پتاسیم غایی دارد، مطالعات شناسایی کانی‌های سری خاک آن‌ها، اصفهان و زاینده‌رود که بر اساس موقعیت جغرافیایی و احتمال اختلاف در نوع کانی‌ها (با توجه به نظر متخصصان) اختراع شده بودند، با استفاده از دستگاه پرتاب یکسین انجام شد. کانی‌های شناسایی شده در بخش رود و درشت خاک‌های تالوک در جدول 8 آمده است.

در نظر گرفتن این مطالعات، پیکرهای 7/10 و 10 آنگستروم در بخش رس و پیکرهای متنوع مشرقی، سطح زیر بیک 10 آنگستروم از سایر پیکرهای هرسیتگی، که نشان دهنده غالب بودن کانی‌ای است، مطالعات تعدیل کانی‌های شناسی در منطقه نیز صحبت از این امر را تأیید می‌کند. کانی‌های دیگری، از جمله کلریت، اسکوانتیت، کوارتز و بالینی‌ها که در نمونه شناسی مورد نظر خاک‌های غایی از کانی‌ای این اکائی امکان‌ناپذیری گفت از تاسیس غیر تابیده هستند. قابلیت جابجایی این پتاسیم برای گیاه به شدت به سیستم آزاد شدن پتاسیم از آن دارد.

1. Additional uptake
<table>
<thead>
<tr>
<th>Date</th>
<th>1/1/14</th>
<th>1/1/14</th>
<th>3/7/14</th>
<th>5/6/14</th>
<th>6/6/14</th>
<th>7/6/14</th>
<th>8/6/14</th>
<th>9/6/14</th>
<th>10/6/14</th>
<th>11/6/14</th>
<th>12/6/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1/1/14</td>
<td>1/1/14</td>
<td>3/7/14</td>
<td>5/6/14</td>
<td>6/6/14</td>
<td>7/6/14</td>
<td>8/6/14</td>
<td>9/6/14</td>
<td>10/6/14</td>
<td>11/6/14</td>
<td>12/6/14</td>
</tr>
<tr>
<td>2</td>
<td>1/1/14</td>
<td>3/7/14</td>
<td>5/6/14</td>
<td>6/6/14</td>
<td>7/6/14</td>
<td>8/6/14</td>
<td>9/6/14</td>
<td>10/6/14</td>
<td>11/6/14</td>
<td>12/6/14</td>
<td>12/6/14</td>
</tr>
</tbody>
</table>

Table:

- **Date:** Day of the month in the format DD/MM/YYYY.
- **Day:** The day of the week.
- **(iod/aw):** Ionospheric Densities (iod) per week (aw).
- **(iod/8):** Ionospheric Densities (iod) per 8 days.

This table provides a detailed weekly and 8-day schedule of ionospheric density measurements.
<table>
<thead>
<tr>
<th>روز</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماه</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

(1) سال 1389 (83) ماه 1389 (83) روز 2 (83)
<table>
<thead>
<tr>
<th>تاسیسات</th>
<th>ABDTA</th>
<th>V</th>
<th>AB</th>
<th>1</th>
<th>0.5</th>
<th>1.5</th>
<th>2.5</th>
<th>3.5</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>دسته‌بندی (سبک)</td>
<td>شاخص</td>
<td>عامل</td>
<td>جستجو</td>
<td>نتیجه</td>
<td>نتیجه</td>
<td>نتیجه</td>
<td>نتیجه</td>
<td>نتیجه</td>
<td>نتیجه</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>سواد علمی</td>
<td>۱۰/۰</td>
<td>۹/۰</td>
<td>۸/۰</td>
<td>۷/۰</td>
<td>۶/۰</td>
<td>۵/۰</td>
<td>۴/۰</td>
<td>۳/۰</td>
<td>۲/۰</td>
</tr>
<tr>
<td>سواد تکنولوژی</td>
<td>۱۰/۰</td>
<td>۹/۰</td>
<td>۸/۰</td>
<td>۷/۰</td>
<td>۶/۰</td>
<td>۵/۰</td>
<td>۴/۰</td>
<td>۳/۰</td>
<td>۲/۰</td>
</tr>
<tr>
<td>سواد فناوری</td>
<td>۱۰/۰</td>
<td>۹/۰</td>
<td>۸/۰</td>
<td>۷/۰</td>
<td>۶/۰</td>
<td>۵/۰</td>
<td>۴/۰</td>
<td>۳/۰</td>
<td>۲/۰</td>
</tr>
</tbody>
</table>

اتاق‌بندی:

- دسته‌بندی
- شاخص
- عامل
- جستجو
- نتیجه
- نتیجه
- نتیجه
- نتیجه
- نتیجه

نتیجه‌بندی:

- نتیجه

ارائه‌کننده:

- نتیجه
جدول ۸: کانی‌های شناسایی شده در بخش رستری و رس درشت

<table>
<thead>
<tr>
<th>کانی‌های شناسایی شده</th>
<th>نام</th>
<th>شماره</th>
<th>رس درشت</th>
<th>سری</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, Sm, Vm, Ch, Q, K</td>
<td>آشجرد</td>
<td>۱۵</td>
<td>I, Ch, Q, K</td>
<td></td>
</tr>
<tr>
<td>I, Pa, Ch, Sm, Vm, Q, K</td>
<td>اصفهان</td>
<td>۱۰</td>
<td>Q, K, I, Ch</td>
<td></td>
</tr>
<tr>
<td>I, Pa, Ch, Sm, Q, K</td>
<td>زاواند</td>
<td>۱۱</td>
<td>I, Ch, Q, K</td>
<td></td>
</tr>
</tbody>
</table>
انتخاب عصاره‌گیر مناسب برای استخراج پتاسیم قابل جذب در خاک‌های...

پتاسیمی درخت کافی بوده است.

1. سایر عوامل محدود کننده رشد مانند نهاییتی عصاره‌گیری، مواد آلی خاک، هدایت الکتریکی عصاره اشباع، برخی کشت گلخانه‌ای و... منع از پاسخ‌گیا به کاربرد پتاسیم شده باشد.

2. گیاه به علت وجود دیگر یکی از عوامل مورد مطالعه است. این کاتی از عوامل ذخیره یکی از پتاسیم در خاک محسوب شده و دارایی مقدار فراوانی پتاسیم غیرتبادلی است، که ممکن است لایق پیشچ از آن قابل دسترسی برای گیاه باشد.

3. توصیه می‌شود روی دو عصاره‌گیر پیشنهادی مطالعه بیشتری صورت گیرد. و حدود بحورانی پتاسیم این عصاره‌گیرها بر مزارع مختلف تجویز شود.

4. به علت وجود مقدار فراوان کاتی ابیلیت در این خاک‌ها، ارزیابی وضعیت پتاسیم از پیشنهادی خاصی برخوردار است. پیشنهاد می‌شود این ارزیابی با مقایسه سرعت جذب پتاسیم به وسیله گیاهی و سرعت رها سازی پتاسیم از خاک صورت گیرد.

5. توصیه می‌شود برای بهبود دهنده فیتیزاسیون کودی مخلوط‌شده زراعی عمده کشور از پیشنهادی دیق آزمون خاک، با هدف دست‌پایه به معدن‌کوبان و نظارت تغییرات گرمایی جلوگیری از آندوره‌های زیست محیطی و دست‌پایه به کشاورزی پایدار استفاده شود.

نتیجه‌گیری

1. با توجه به ضرایب هم‌سکنی بین جذب پتاسیم و غلافت پتاسیم در اندام‌های گیاه پتاسیم استخراج‌باین و سیستم‌های عصاره‌گیری، و نیز در نظر گرفتن عوامل سایگی، سرعت و انگشتی بودن، و عصاره‌گیر کریستالی دوم ورود و سرعت سدابی و حتی به عنوان عصاره‌گیرهای مناسب برای استخراج پتاسیم قابل استفاده در خاک‌های منطقه مرکزی استان اصفهان معرفی می‌شوند.

2. به لحیه عدم انزال عامل موردک در اثر نیترات پتاسیم، و عدم رابطه بین پتاسیم عصاره‌گیری شده و عملکرد یا عملکرد نسبی گیاهان، پتاسیم قابل استفاده در خاک‌های مورد مطالعه عامل محدود کننده برای رشد درخت نبوده، که ممکن است دلیل آن یکی از موارد دلیل باشد: مقدار پتاسیم قابل استفاده در این خاک‌ها از محلول، تبدیل و غیر تبدیل در این دوره زمانی برای رفع نیازهای متابی مورد استفاده...

1. علی احبابی، م، و. ب. بهبهانی زاده. 1372. شرح روش‌های تجزیه شیمیایی خاک. مؤسسه تحقیقات خاک و آب، نشر شماره 893.

