گزینش هم‌زمان برای عملکرد و پایداری با آماره‌های مختلط پایداری

مجید طاهریان، محمد باصفایان، اعظم نیک‌فطراط، احمد جعفری و سید علی طباطبایی

چکیده
جهت کاهش اثر متقابل زنونامی، عملکرد و پایداری لایه‌ها بايد هم‌زمان بررسی شود. یکی از روش‌های کاربردی گزینش هم‌زمان برای عملکرد و پایداری، آماره R^2 است. در این مقاله، نتایج روش مذکور با نتایج حاصل از گزینش لاک‌ها برای یک عملکرد تجربی مربوط به متغیرهای S^2، ضریب تغییرات محتوای (CV) پیوسته رگرسیون (b) از نظر سنجش منطقه طی سال‌های زراعی 1377-89 و مورد ارزیابی قرار گرفته است. نتایج تجزیه و تحلیل نشان داد که اثر متقابل سه جانبه S، R^2 و b در سطح 1% اینکه عملکرد دانه قابل توجهی بوده و با معیار فیزیکی عملکرد تفاوت معنی‌داری در نتایج با معیار عملکرد بعلاوه ضریب تغییرات محتوای b به میانگین مربعات با استفاده از آماره R^2، با میانگین مربعات جمعیت از R^2 و بسیاری از روشهای مختلف S-دیامتری ارتباطی بین روش‌های مختلف گزینش دیده شد. نما می‌توان چندین تیت در نمود که با استفاده از روش گزینش هم‌زمان برای عملکرد و پایداری به واسطه تأکید بیشتر بر چهار پایداری می‌توان با اطمینان بیشتری فرآیند گزینش را انجام داد.

واژه‌های کلیدی: جو بدون پوشش، گزینش هم‌زمان، پایداری

1. مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی
2. مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان
3. مرکز تحقیقات کشاورزي و منابع طبیعی برد

nbasafa@yahoo.com

مجله تولید و فراوری محصولات زراعی و باغی / سال چهارم / شماره دوازدهم / 1392
مقدمه

مرفوعی لایه‌ای با عملکرد بالا و پایدار در برای مناطق مختلف

با راه‌حل آب و هوایی متنوع یکی از راه‌های افزایش تولید جو

است. به علت وجود اثر مقابل بین زنوتیپ و محيط، ارزیابی

ارقام جدید در محیط‌های مختلف تولید توسط نمادگران یک

پرورش محصول می‌شود. اثر مقابل زنوتیپ محیط در جریان

از عدم اطمینان در انتقال گیاهی برای هر زنوتیپ را تناش

می‌دهد. این عدم اطمینان با برگ گرد شدن این اثر مقابل افزایش

می‌یابد. برای انتخاب و معرفی ارقام پرمحصول و پایدار،

آزمایش‌های مقایسه عملکرد و نکاردار در سال‌های سال و چند

میکان انجام می‌شود. در این آزمایش‌ها معمولاً پاپ از تجربه

و ارزیابی مکرک داده‌ها، در صورتی که بین زنوتیپ‌ها و محیط

اثر مقابل معنی‌دار وجود داشته باشد، ضروری است علاوه بر

معمار عملکرد دانه، میزان پایداری زنوتیپ‌ها نیز در معرفی آنها

مد نظر قرار گیرد.

به طور کلی به ارقام سازگاری اطلاعی می‌شود که در طرفی از

محیط‌ها، توان زنوتیپ عملکرد بالا و پایدار برز هدف. ارقام

با سازگاری وسیع در یک سری از محیط‌ها عملکرد متوسط و

پایدار دارند و اقلیمی که فقط در شرایط مطلوب، توانایی

زنوتیپ محصول‌دهی بالا داشته و در شرایط تاحیل، دارای

عملکرد ضعیف‌هستند به عنوان ارقامی با سازگاری محدود

شناخته می‌شوند (15). این دو دهه گذشته نتیجه زیادی به ادامه

مؤثر اثر مقابل زنوتیپ و محیط عملکرد برای ارزیابی

ارقام در آزمایش‌های کوتاه مدت شده است. کمک و قدرت (11)

معمولاً بطور کلی اثر مقابل افت و محیط و انجام

گزینش دقیق، عملکرد و پایداری عملکرد با پایدار به طور

هنژمان در نظر گرفته شوند. آزمایش‌های پایداری معمولی برای

بررسی پایداری زنوتیپ‌ها نسبت به یک صفت ابتدایی و آزمون

شنیده‌اند (۱۶ آماره‌های (A, B, C, D, I, II, III) پایداری را به سه نوع

لیبل و بیشینه (۱۵ آماره و آزمایش درون

مکاپرا به عنوان آماره چند) (IV) به دست دسته‌بندی اضافه

نمودند. در آماره‌های نوع I یک زنوتیپ زمانی پایدار می‌باشد

که واریانس بین محیط‌های آن کوچک است. آماره‌های نوع

زنوتیپ را پایداری معنی‌سازی نمی‌کنند که یک اکس عمل آن

نسبت به محیط‌های مورد آزمایش موارد بیشتر می‌توانست

عمل کلی زنوتیپ‌ها در آزمایش باشد. در آماره نوع III

زنوتیپ پایدار دارای مناطق انرژی (MS) باقی مانده، کوچک

حاصل از یک مدل رگرسیونی نسبت به شاخص محیطی است.

آماره‌های گروه A همانند واریانس محیطی روتر،

و ضریب تغییرات محیطی درمانی و کنترل (V) مربوط

با پایداری نوع I یک در W5(1) و B همانند اکوئالاسیون ریک،

واریانس پایداری شولاکی s2,

و ارائه بازه‌ای از یک خط رگرسیون ابرهای و

MS اندازه‌گیری و محاسبه D رو به رو

ارقام اندازه‌گیری از تغییر از دو امکان است. صورتی که بین زنوتیپ‌ها و محیط

اثر مقابل معنی‌دار وجود داشته باشد، ضروری است علاوه بر

عبارتی ثابت شود که در آزمایش‌های کوتاه مدت می‌تواند

ارقامی به دست آید. در این روش ممکن است که در

یک سری از محیط‌ها عملکرد میانگین و پایدار می‌باشد.

که در تماشا برای استفاده در گزینش هنژمان برای

عملکرد پایداری مناسب نیستند.

عملکرد و ارزیابی ارائه دادن (9).

محققین چندین روش برای ارزیابی هنژمان عملکرد و

پایداری ارائه کرده‌اند (6، 9). تکنیک (9) روش گزینش

هنژمان برای عملکرد و پایداری را برای اهداف واریانس واریانس پایداری

شاک‌اری و مورد ارائه و استفاده قرار داد. این روش تلفیقی پایداری

با عملکرد برای گزینش زنوتیپ‌های پایداری عملکرد بالاست

و هر دو صفت عملکرد و پایداری نمودار در یک گراف می‌شوند

تا اثر زنوتیپ و محیط کاهش یافته و گزینش‌ها دقیق تر و قابل

ارزیابی شوند. این روش ورودی‌های برای عملکرد و

پایداری در نظر گرفته می‌شود همچنین در این روش قابلیت

تعیین منجر اشتباه نوع اول و دوم گزینش عملکردی و جزء

پایداری و جزء دارد. کنگ (8) آماره جدید را به عنوان آماره

عملکرد- پایداری (YS) نام گذاری نمود.
گزینه همزمان برای عملکرد و پایداری با آمارهای...

نتیجه‌های و همکاران (18) به منظور تعیین پایداری عملکرد و بررسی اثر متقابل زننیب و محیطی، بیست زننیب می‌درخش جو را در هفت ایستگاه مناطق مختلف کشور به مدت دو سال زراعی مورد بررسی قرار دادند. آنها توانستند با استفاده از آمارهای واریانس می‌سنجی رومر، ضریب تغییرات محیطی، واریانس پایداری شوکولا میانگین مربعات انحراف زننیب و ضریب تبیین، سه زننیب جو که در اغلب روش‌های مذکور، پایداری مطلوب‌تری را نمودند گزینه تماشای شد.

شام محمدی و همکاران (21) به منظور تعیین پایداری عملکرد زننیب یکی از مناطق سردسیر کشور، از پارامترهای پایداری واریانس می‌سنجی، ضریب تغییرات محیطی، اکووالنس ریک و واریانس پایداری شوکولا ضریب رزگسیری خطر و چند پارامتر پایداری دیگر استفاده نمودند. آنها در مجموع با در نظر گرفتن تمام روش‌های تجربی پایداری، یک زننیب را به عنوان پایدارترین زننیب گزارش نمودند.

هدف از این مطالعه عملکرد بررسی و انتخاب لایح‌های از طریق گزینه همزمان برای عملکرد و پایداری، مقایسه متوسط عملکرد لایحه‌ای انتخابی روش‌های مختلف گزینش برای مقایسه می‌باشد. روش‌های مختلف بررسی عبارتند از: 1) گزینش فقط براساس متوسط عملکرد لایحه‌ای 2) گزینش براساس میانگین عملکرد لایحه‌ای به علاوه آمارهای پایداری گره‌های A 3) گردها براساس میانگین عملکرد لایحه‌ای به علاوه آمارهای پایداری گره‌های D و C 4) گردها براساس آماره عملکرد پایداری پیشنهاد شده متوسط کنگ (9).

مواد و روش‌ها
در این پژوهش به‌سیستم جوی بدون پوششی (جدول 1) در قالب طرح بلورهای کامل تصادفی در سه تکرار در دو سال زراعی 88-89 و 1388-89 1388-89 در استان‌های اسلام‌آباد جهت انتخاب لایحه‌ای با عملکرد دانه و پایداری مناسب
جدول ۱. شجره‌ای امید بشق جو لخت

<table>
<thead>
<tr>
<th>Parents/Pedigree</th>
<th>شجره‌ای/پدیگری</th>
<th>زننده‌تیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>EH83-16</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>PINON/CANTUA</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>M9878/CARDO/QUINA/3/PETUNIA 1</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>LINAZA-BAR/HIGO/4/CEDRO/MATNAN/EH165/3/MATICO/5/…</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>PINON/3/CHAMICO/TOCTE/CONGONA</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>JACI/7/PALLIDUM48/NORDIC/563.6.5/3/CEL-B/5107/4/11012.2/…</td>
<td>۶</td>
<td></td>
</tr>
<tr>
<td>CHAMICO/TOCTE/CONGONA/3/PETUNIA 1/4/PETUNIA 2</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>STIPA/3/CHAMICO/TOCTE/CONGONA/4/PENCO/CHEVRON-BAR</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>PINON/3/CHAMICO/TOCTE/CONGONA</td>
<td>۹</td>
<td></td>
</tr>
<tr>
<td>ZIGZIG/5/MOLA/SHYRI/MORA/3/MINN DESC 2/4/LINO/6/PETUNIA 2</td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>RABANO/CHINIA/HIGO/3/ATACO/BERMEJO/HIGO/4/PETUNIA 1</td>
<td>۱۱</td>
<td></td>
</tr>
<tr>
<td>Alanda/Lignee 527/Arar/3/BF891M-653</td>
<td>۱۲</td>
<td></td>
</tr>
<tr>
<td>Alanda/Lignee 527/Arar/3/BF891M-653</td>
<td>۱۳</td>
<td></td>
</tr>
<tr>
<td>Alanda/Lignee 527/Arar/3/BF891M-653</td>
<td>۱۴</td>
<td></td>
</tr>
<tr>
<td>CHAMICO/TOCTE/CONGONA</td>
<td>۱۵</td>
<td></td>
</tr>
<tr>
<td>CHAMICO/TOCTE/CONGONA</td>
<td>۱۶</td>
<td></td>
</tr>
<tr>
<td>JAZMIN/MINN DESC 2/CALI92</td>
<td>۱۷</td>
<td></td>
</tr>
<tr>
<td>CERRAJA/3/AGAVE/BERMEJO/HIGO/4/DC-B/SEN</td>
<td>۱۸</td>
<td></td>
</tr>
<tr>
<td>CONDOR-BAR/ALELI</td>
<td>۱۹</td>
<td></td>
</tr>
<tr>
<td>EH84-3</td>
<td>۲۰</td>
<td></td>
</tr>
</tbody>
</table>

رگسیون تزیدیک به یک (عند تفاوت معنی‌دار با یک) و میانگین مرتبه‌های انحراف از خط رگسیون کوچک و غیر معنی‌دار (با ضریب تبیین بالا) در نظر گرفته شد. به منظور تجزیه‌های آماری این تحقیق از نرم‌افزارهای SAS و EXCEL استفاده شد.

تأیید و بحث

در تجزیه و ارائه مربوط به عملکرد دانه (جدول ۲) اثر سال و اثر مکان معنی‌دار نشد. که این بدان معنی‌ست که بین سال‌ها و
جدول 2. تجزیه واریانس مربوط عملکرد دانه (تی در مکار)

<table>
<thead>
<tr>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>1</td>
<td>25/244</td>
</tr>
<tr>
<td>مکان</td>
<td>2</td>
<td>122/68</td>
</tr>
<tr>
<td>محل کشت</td>
<td>2</td>
<td>56/9/5</td>
</tr>
<tr>
<td>خطای</td>
<td>12</td>
<td>15/56</td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>19</td>
<td>7/56/34</td>
</tr>
<tr>
<td>مکان × زنوتیپ</td>
<td>38</td>
<td>1/51/46</td>
</tr>
<tr>
<td>سال × زنوتیپ</td>
<td>19</td>
<td>2/8/48</td>
</tr>
<tr>
<td>محل کشت × زنوتیپ</td>
<td>38</td>
<td>1/9/76</td>
</tr>
</tbody>
</table>
| سال × محل کشت × زنوتیپ | 228 | 1/6/4 | 0/5/4

درت نیاز متقابل زنوتیپ محیط در تمام آزمایش ها معنی دارد. بود. آنها خاطرنشان کردن زمانی که اثر متقابل زنوتیپ محیط معنی دار است انتخاب براساس عملکرد به ترتیب کانفی نمی‌باشد. در آزمایش‌های دارد مکان و سال یکی از مشکلات اساسی ارزیابی زنوتیپها این است که اثر مکان می‌تواند به طور قابل ملاحظه‌ای از سالهای بالا و این عمل به وسیله معنی‌دار شدن اثر متقابل مکان × سال در جدول تجزیه واریانس معلوم می‌شود (جدول 2).

مطلب است که گروه زنوتیپهای براساس عملکرد به ترتیب کنگ (9) و گروه هم‌زمان برای عملکرد دانه و پایداری در جدول‌های دانه است. سپس مربوط به ترتیب تصحیح شده عملکرد این جدول از جمع چگرای رتبه عملکرد و میزان تصحیح نسبت به نوع زنوتیپ حاصل شده است. این رتبه‌ها هر یک در مجموعه زنوتیپ می‌شماره 4 بیشترین عملکرد و زنوتیپ شماره 8 کمترین عملکرد را دارا بودند. در
جدول 3 مراحل محاسبه آماره عامل‌کردن-پایداری (Y+S) برای گروه‌های همزمان برای عامل‌کردن و پایداری

<table>
<thead>
<tr>
<th>عدد</th>
<th>عامل‌کردن</th>
<th>تصحیح رتبه عامل‌کردن</th>
<th>واریانس</th>
<th>نماد</th>
<th>(Y+S) زنتیبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/5</td>
<td>1.69</td>
<td>1.69</td>
<td>2.24</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>4/6</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>4/7</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>5/4</td>
<td>1.69</td>
<td>1.69</td>
<td>2.24</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>6/5</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>7/6</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>5/8</td>
<td>1.69</td>
<td>1.69</td>
<td>2.24</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>6/9</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>7/10</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>5/4</td>
<td>1.69</td>
<td>1.69</td>
<td>2.24</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>6/5</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>7/6</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>5/8</td>
<td>1.69</td>
<td>1.69</td>
<td>2.24</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>6/9</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>7/10</td>
<td>2.12</td>
<td>2.12</td>
<td>1.64</td>
<td>2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

LSD%9= 1/87

*، **: به ترتیب غیر معنی‌دار و معنی‌دار در سطح احتمال 5 و 1 درصد

رو رومر (30) برای اولین بار از واریانس ارقام در محفظه‌های مختلف جهت تعیین پایداری استفاده کرد. بر اساس روش واریانس محوطه رومر، زنوتیبی پایدار است که دارای حداکثر واریانس محیطی باشد. فرانسیس و کانتری (7) به مظور تعیین پایداری زنوتیبی‌هایی درت از ضریب تغییرات محیطی (C.Vi) استفاده کردند تا میزان‌گی اجمالی بین میانگین عمومی و پایدار ارقات توسط رومر را حذف کنند. به اساس این میانگین زنوتیبی پایدار است که ضریب تغییرات آن کمتر باشد. در گروه‌های این اساس عمومی واریانس محیطی (C.Vi) یا ضریب تغییرات محیطی (S') (هر چه دو شوکلا است به روش کنج با عمکدرک توانا در نظر گرفته‌شده می‌شود. محفظه و همکاران (49). با استفاده از معیار کنج (50) 10 لایه و محصول و پایدار گنبد را در صورت نتیجه‌گیری سایر آماره‌های پایداری محاسبه شده مربوط به زنوتیبی‌های مورد آزمایش در جدول 4 و در خلاصه نتایج گرینش به واسطه معیارهای مختلف در جدول 5 است. براساس معیار عمکدرک بدون در نظر گرفت زنوتیبی پایداری زنوتیبی‌ها، به ترتیب 20، 18، 16، 14، 12 و 10 با میانگین عمکدرک 5/۸5 نت در هکتار انتخاب شدند.
جدول 4: آماره‌های پایداری ژنوتیپ‌های مورد پژوهش

<table>
<thead>
<tr>
<th>میانگین عملکرد</th>
<th>واریانس محیطی (S^2)</th>
<th>ضریب تغییرات (CV)</th>
<th>انحراف از رگرسیون (S_d^2)</th>
<th>ضریب رگرسیون (R^2)</th>
<th>تیپینگ</th>
<th>ژنوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.56</td>
<td>3.62</td>
<td>32/51</td>
<td>2/20**</td>
<td>0.41</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4.77</td>
<td>2/18</td>
<td>32/31</td>
<td>0.15**</td>
<td>0.59**</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4.94</td>
<td>4/43</td>
<td>24/19</td>
<td>0.24**</td>
<td>0.83</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.23</td>
<td>2/88</td>
<td>23/92</td>
<td>0.31**</td>
<td>0.95</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4.39</td>
<td>3/22</td>
<td>20/86</td>
<td>0.12**</td>
<td>0.72</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4.55</td>
<td>1/95</td>
<td>30/87</td>
<td>0.50**</td>
<td>0.75</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4.39</td>
<td>0/72</td>
<td>18/44</td>
<td>0.15**</td>
<td>0.84</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4.29</td>
<td>0/81</td>
<td>20/85</td>
<td>0.34**</td>
<td>0.88</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4.11</td>
<td>1/45</td>
<td>24/98</td>
<td>0.53**</td>
<td>0.83</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>5.02</td>
<td>1/24</td>
<td>22/57</td>
<td>0.53**</td>
<td>0.71</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5.69</td>
<td>2/93</td>
<td>29/58</td>
<td>0.17**</td>
<td>0.52</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>5.04</td>
<td>1/99</td>
<td>24/91</td>
<td>0.39**</td>
<td>0.69</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5.27</td>
<td>2/04</td>
<td>25/91</td>
<td>0.11**</td>
<td>0.93</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>2.12</td>
<td>0/22</td>
<td>13/33</td>
<td>0.21**</td>
<td>0.46</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2.88</td>
<td>1/35</td>
<td>25/95</td>
<td>0.19**</td>
<td>0.89</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>4.95</td>
<td>0/94</td>
<td>25/87</td>
<td>0.91**</td>
<td>0.64</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>5.28</td>
<td>1/97</td>
<td>26/52</td>
<td>0.22**</td>
<td>0.51</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>5.38</td>
<td>0/53</td>
<td>12/30</td>
<td>0.13**</td>
<td>0.48</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>4.75</td>
<td>1/93</td>
<td>29/21</td>
<td>0.50**</td>
<td>0.78</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>0/13</td>
<td>0/43</td>
<td>20/34</td>
<td>0.19**</td>
<td>0.99</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

* و ** به ترتیب مرتبه‌های معمولی و معنادار در سطح احتمال 5 و 1 درصد.

جدول 5: خلاصه نتایج گزینش با روش‌های مختلف

<table>
<thead>
<tr>
<th>میانگین عملکرد ژنوتیپ‌های انتخابی (هکتاران)</th>
<th>معیار گزینش</th>
<th>روش</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکرد (هکتاران)</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ضریب تغییرات محیطی با واریانس محیطی + عملکرد (Yield + S^2 or CV)</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ضریب تیپینگ با میانگین مربعات انحراف + ضریب رگرسیون + عملکرد (Yield + S_d^2 or R^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>آماره عملکرد - پایداری (Yield- Stability statistic(YS))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

255
نتایج حاصل از موارد مختلف نکردن.

نتایج حاصل از این بررسی نمایانگر این است که در چهار موارد مختلف انتخاب شده در این بزرگ‌زار، لاین‌های شماره 18 و 20 + لاین‌های پرمحصول و پایدار شاخص‌های شرایط و مورد انتخاب
قرار گرفتند. یا توجه به مقدار (5%) محاسبه شده $SD(%5)$ به
بردارنر از تفاوت بزرگ‌ترین و کوچک‌ترین میانگین
عملکرد $SD(5/0-1-5/0)$ بوده، تفاوتی بین موارد مختلف
گزارش و جود نداشته، هرچند که ترتیب وقوع لاین‌های انتخابی
در برخی از چهار روش متفاوت بود.

باصفه و همکاران (2)، از موارد مختلف جهت انتخاب
هیبریدی یا همبستگی برت و پایدار ذرت دانه انتخاب کردن و
با توجه به $5%$ محاسبه نمونه، تفاوتی بین موارد
 مختلف گزارش نکرده.

نتیجه گیری

نبایان آخر نتایج نشان می‌دهد می‌توان اظهار نمود که تأکید
بیشتر بر روی جزء پایداری در محاسبه Y_{S} و هیچ رگرسیون تأثیر
منفی بر روی میزان عملکرد لاین‌های انتخابی نگذاشته است.
در تجربه انتخاب از آماده عملکرد - پایداری Y_{S} به دلایل تغییر
می‌تواند میزان پوده و گریزش ارقام پایدار با عملکرد بالا
مطمنتر صورت پذیرد:
1. تأکید بیشتر بر جزء پایداری (به واسطه دان و نژادهای سکونت‌گر).
2. گریزش هم‌بازان برای عملکرد و پایداری (اثر متقابل
در GE) گریزش مشخص (ادغام هر خصوصیت و به‌دست آوردن
یک عده).
3. این آورده ریسک اشتباه نوع دوم (یعنی ژنتیپی پایدار
نوده، وی انتخاب گردد) که بسیار زیان آورتر از اشتباه نوع
اول (یعنی ژنتیپی پایدار باشد و گریزش نگردد) است.

آماره‌ها کوکچکر باشند، ژنوتیپ پایدار است، ژنوتیپ‌های 18 و
20 دارای عملکرد بالا و ضریب تغییرات و واریانس محیطی پایین
بودند و از نظر صفت پایدار عملکرد دانه به عنوان ژنوتیپ‌های
مطوب شناخته شدند (میانگین عملکرد دوز ژنوتیپ 0/0 بود).

در کل بررسی عملکرد با علائم ضریب رگرسیون $b(p)$
و میانگین مربوطات انحراف از خط رگرسیون $S_{d}(y)$ با ضریب
R^{2}% تن در هکتاگ ژنوتیپ شده. یا توجه به عدم تفاوت معنی‌دار
شیب خط رگرسیون ژنوتیپ‌ها، می‌توان توجه گرفت که همه
ژنوتیپ‌ها دارای سازگاری عملکرد هستند. از بین ژنوتیپ‌های
که شیب تندی به یک داشته، ژنوتیپ‌های شماره 1, 2, 12, 13, 17, 18 و 20 با واریانس انحراف از خط رگرسیون بالا بوده است.
از طرفی با توجه به این که
انحراف از خط رگرسیون ژنوتیپ‌های 20 کمتر از
18 و 13 کمتر از
نبه و ضریب تیپ آنها نیز بالا بود می‌توان آنها را به عنوان
لاین‌های پایدار با عملکرد مطلوب تلقی نمود. ضریب تیپ در
واقع بعضی از تغییرات موجود در عملکرد یک ژنوتیپ را که
علت برافزش مدل است نشان می‌دهد و چنانچه ضریب تیپ
یکین با واریانس انحراف از خط رگرسیون بالا باشد مدل قادر
به توصیف خوب داده‌ها نموده و لذا نمی‌توان مقیاس خوبی برای
تشخیص پایداری و باعث می‌شود ژنوتیپ‌های محسوب شود.

بهرامی و همکاران (1) را به لحاظ جو لخت را با
ناهید عملکرد بالا، ضریب رگرسیون میزان یک و میانگین
میزان انحراف از خط رگرسیون غیر معنی‌دار و کوچک
گریزش کرد.

فرومنی و یوسفی (8) و نیکخواه و همکاران (18) از
میزان مورد استفاده

