واکنش نهال دو رقم پسند به مقدار و نوع شوری خاک در شرایط گلخانه

چکیده

اثر کلی شوری خاک بر شکاف‌گذاری‌های ناشی از دو عامل نشان دهنده‌ی استوانه‌ای محیط خاک و نوع یون، تشکیل دهنده‌ی نمک است. این پژوهش به منظور کسب اطلاعاتی در مورد واکنش نهال پسته به شوری و ترکیب یون‌های نمک انجام گردید. برای پایه‌گذاری، تحقیق از نمک‌های کلروورت و سولفات سدیم به سبب متفاوت، در دو رقم پسته نشنجی و پاتوده به کار رفت. عامل‌کننده‌های زون خشک برق و باتری برق در شرایط گلخانه در مرگ‌گذاران (آزمون اول) از طریق تغییرات ترکیبی و تحلیل و معنی‌داری بودن و اثر در بافت متفاوت با آزمون دوم و دانکن بررسی شد.

تأثیر عمیق‌تر ساختار و برق ارقام پسته نشنجی و بادامی از نظر آماری در سطح یک درصد دو هم‌معنی بوده و در نهال مقدار ساختار و برق و در نتیجه عمیق‌تر که به ترتیب تولید می‌کرد. افزایش سطح شوری نمک که به ترتیب و در نتیجه از درصد شوری خاک سپری سبز طولی می‌نمود، نمک‌های که عمیق‌تر برق و ساختار به طور جدایگان اندازه‌گیری شده‌اند، نشان می‌دهند که برق دارای همبستگی یکی برق می‌باشد. از آنجاییکه عمیق‌تر نسبت به شوری می‌باشد، از درصد مقدار ساختار در سطح مختلف شوری به ترتیب از ۱/۷ درصد برق نمک‌های شوری خاک به کار رفته در ذخیره‌سازی سدیم تشکیل شده بود. در این مورد نیز برق حساس‌تر از ساختار بوده و به کاهش درصد کلید در نمک مصرفی پاسخ مثبت بیشتری داده است.

واژه‌های کلیدی: مقدار شوری، نوع شوری، حساسیت ارقام پسته به شوری

مقدمه

خاک‌های شوری و سدیمی خاک‌هایی هستند که غلظت نسبتاً زیاد می‌باشد. شوری خاک یکی از مسئلات مهم در مناطق خشک و نهال خشکی جهان است (۴). در ایران مشکل شوری خاک در این منطقه در حدود ۵۰ درصد از اراضی که دارای استعداد کشاورزی آبی می‌باشد. شوری آب و خاک باعث کاهش حاصل کیفی خاک می‌شود، که تیه‌های آن تهدید حیات گیاهی، حیوانی و انسان می‌باشد. شوری خاک یکی از مسئلات مهم در مناطق خشک و نهال خشکی جهان است (۴). در ایران مشکل شوری خاک در این منطقه در حدود ۵۰ درصد از اراضی که دارای استعداد کشاورزی آبی
سیمت و زیان پیش‌تری است.

یکی از محصولات مهم

سیستم ایران است که درختان آن عموماً در اراضی شورکشت

می‌شوند. باعث ایجاد متعدد پسته در اراضی داخلی می‌شود و یا با آب رسانی‌بی‌یاری می‌گردد. گرچه در بین مورد پسته

به عنوان یک گیاه نمک‌دوست شرایط در حال و حین بروخی

معتقدانه که برای رشد بهتر بهبودی نمک به خاک اضافه

شود (مطالعات متعدد انجام شده 34, 13, 11, 10, 9, 8 و 7)

نشان می‌دهد که این گیاه نیز همچون سایر گیاهان در نتیجه

شوری محیط و دچار کاهش رشد می‌شود. با این حال، در

مورد اثر مختلف شوری (تربیت بیوتی نمک) بر رشد گیاه

پسته اطاله دست نمی‌شود.

این پژوهش به مظور کسب اطلاعاتی در مورد واکنش پسته

به تربیت بیوتی انجام شد. در این مورد بیوتی مختلف

را می‌توان در تزریق گریه، ولی از آن جا که شوری خاک در ایران

عمدتاً ناشی از آلکل‌های نیترای سیدی‌ها تلفیقی از این دو

می‌باشد، لذا نسبت‌های مختلف کلروفیل و سلولز از برای

اجتماع سطح مختلف شوری مورد مطالعه قرار گرفت. چون

ارقام مختلف پسته دارای حساسیت متفاوتی به شوری

1. Fine, mixed, mesic, Typic CalciCraepts

۹۴
کل سلسله كامل تصادفي با چهار تکرار بود. نمک لازم برای شوکردن خاکها از حلق نمونه گرفتن مناسب كرکنده سدیم و سلسله شن در نویسی به فاصله زمانی یک هفته به خاک گلدا اضافه گردد، به طوری که مجموع شوری در پنج سطح صفر، ۱۵، ۳۰ و ۶۰ میلی آی ورلدن نمک در کیلگرم خاک بوده و هر سطح شوری دائر چهار ترکیب مختلف را باشد.

الف) سفر در کل سدیم + ۱۰۰ درصد سلوله سدیم
ب) ۴۰ درصد کل سدیم + ۶۰ درصد سلوله سدیم
ب) ۶۰ درصد کل سدیم + ۴۰ درصد سلوله سدیم
ب) ۱۰۰ درصد کل سدیم + سفر در کل سدیم

c) پس از یک دوره هر روز گیاهان از محل طوفان قطع شده، ساقه و برگ از یکدیگر جدا و پس از شکلی شدن توزین گردد از خاک گلدا. این پس از شکلی شدن تنها برداری و برای آزمایش‌های خاک‌نگهداری شد. به خاک گلداها روی کلاهک آب تکان داده شد. ریشه‌ها از خاک جدا شده، پس از شست و شوی کامل و شکل‌شدن، برای آزمایش‌های شیمیایی نگهداری گردید، تئودوری گیاهی در کوره‌های الکتریکی و در دمای ۲۵ درجه سانتی‌گراد به مدت هشت ساعت ارگت. خاک‌شتر حاصل در اسید کلریدی کل شده، و پس از به حجم رساندن، برای تاندونه‌گیری عناصر چند شب به کار رفت.

روش‌های آماری تجزیه‌و-اریی‌سپرای معنی‌دار بودن تیمارها، و تشکیل مجموعه‌های گروه‌سازی برای رابطه بین تیمارها و عملکرد گیاهان به کار رفت. برای انجام محاسبات آماری از SPSS استفاده شد.

نتایج و بحث
عملکرد گیاهان (وزن خشک برگ و ساقه) به‌طور کلی در سدیم + سفر در کل سدیم، نسبت به سطوح مختلف کاهشی بود. از این نتایج کلی، می‌توان گفت که سلوله سدیم به‌طور کلی به بهبود عملکرد گیاهان کمک می‌کند. این رابطه‌ها می‌تواند به‌طور کلی برای کاهش سطح خشکی و بهبود عملکرد گیاهان در محیط‌های سرد و خشک کاربردی باشد.
جدول 1: آنالیز واریانس عملکرد ساقه پسته

<table>
<thead>
<tr>
<th>F</th>
<th>مجموع متغیرهای مربوط به</th>
<th>درجه آزادی</th>
<th>میانگین مجموع‌داشت</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/688</td>
<td>27/299</td>
<td>11</td>
<td>272/490</td>
<td>آثار اصلی</td>
</tr>
<tr>
<td>26/828</td>
<td>20/370</td>
<td>1</td>
<td>80/237</td>
<td>رقم</td>
</tr>
<tr>
<td>32/578</td>
<td>22/277</td>
<td>4</td>
<td>292/507</td>
<td>شوری</td>
</tr>
<tr>
<td>24/228</td>
<td>24/147</td>
<td>3</td>
<td>147/244</td>
<td>ترکیب</td>
</tr>
<tr>
<td>22/596</td>
<td>0/257</td>
<td>3</td>
<td>0/771</td>
<td>بلور</td>
</tr>
<tr>
<td>28/148</td>
<td>16/28</td>
<td>33</td>
<td>130/431</td>
<td>اثر متقابل دوطرفه</td>
</tr>
<tr>
<td>6/178</td>
<td>5/122</td>
<td>3</td>
<td>15/395</td>
<td>رقم X ترکیب</td>
</tr>
<tr>
<td>3/880</td>
<td>3/625</td>
<td>6</td>
<td>98/80</td>
<td>رقم X شوری</td>
</tr>
<tr>
<td>3/687</td>
<td>3/193</td>
<td>3</td>
<td>90/88</td>
<td>رقم X بلور</td>
</tr>
<tr>
<td>1/503</td>
<td>4/614</td>
<td>12</td>
<td>50/473</td>
<td>شوری X ترکیب</td>
</tr>
<tr>
<td>1/095</td>
<td>3/277</td>
<td>9</td>
<td>29/508</td>
<td>بلور X ترکیب</td>
</tr>
<tr>
<td>1/357</td>
<td>0/888</td>
<td>12</td>
<td>10/658</td>
<td>بلور X شوری</td>
</tr>
<tr>
<td>1/052</td>
<td>2/524</td>
<td>69</td>
<td>183/148</td>
<td>اثر متقابل سه طرفه</td>
</tr>
<tr>
<td>1/028</td>
<td>1/228</td>
<td>12</td>
<td>28/853</td>
<td>رقم X ترکیب X شوری</td>
</tr>
<tr>
<td>1/029</td>
<td>1/081</td>
<td>9</td>
<td>12/231</td>
<td>رقم X ترکیب X بلور</td>
</tr>
<tr>
<td>0/426</td>
<td>1/354</td>
<td>12</td>
<td>2/428</td>
<td>رقم X شوری X بلور</td>
</tr>
<tr>
<td>1/002</td>
<td>2/995</td>
<td>36</td>
<td>107/816</td>
<td>ترکیب X شوری X بلور</td>
</tr>
<tr>
<td></td>
<td>2/990</td>
<td>36</td>
<td>107/636</td>
<td>خطا (زمینه‌دار)</td>
</tr>
<tr>
<td></td>
<td>5/937</td>
<td>159</td>
<td>923/905</td>
<td>جمع کل</td>
</tr>
</tbody>
</table>

منبع: مرجع داده در سطح یک درصد
NOTE: غیر منبع داده

سال‌های عملکرد ساقه و برگ زرد کمتری داشته، به مقدار عملکرد خود در خاک غیر شور نزدیک شده است. مثالاً در بالاترین سطح شوری (25 میلی اکی و بالین نمک در کیلوگرم)، هنگامی که سالمانی نمک از منبع کارگردان سدیم آمیز شده است (سرد در سال)، میانگین عملکرد ساقه پسته معادلی در حدود 2/4 گرم در گذل‌دان بوده، و با افزایش درصد سالن‌های به تدریج زیاد شده، و هنگامی که ساقد در صورت شوری از منبع سالن‌های سدیم آمیز شده، به 8/3 گرم در گذل‌دان رسیده، که مقاله عملکرد این رقم در سطح صفر شوری است.

چنانچه شوری به کار رفته صد درصد سالن‌های سدیم باشد، عملکرد ماده خشک ساقه بیش از 1/5 برابر و عملکرد منجمد بیش از 1/7 برابر هنگامی است که شوری به کار رفته صد درصد از کارگردان سدیم تهیه شده باشد. در این مورد نیز گرسنگی تازه از سالن‌های بوده، و لذا افزایش درصد سالن‌های پاسخ می‌آید یک‌شیری داده است.

شکل 1- اثر ترکیب نمک یا پرشن برگ و سالن هزینه و رقم پسته، در سطوح مختلف شوری به تجربه نشان می‌داد. این چنان که در این شکل دیده می‌شود، در کلیه سطوح شوری با ازدیاد نسبت...
جدول ۲. آنالیز واریانس عملکرد برگ پسته

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مجزورات</th>
<th>مجموع مجزورات</th>
<th>درجه آزادی</th>
<th>میانگین</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۱۳۹*</td>
<td>۱۸/۹۹۷</td>
<td>۲۰/۸/۹۶۳</td>
<td>۱۱</td>
<td>آثار اصلی</td>
<td></td>
</tr>
<tr>
<td>۱۵/۸۳۴*</td>
<td>۲۴/۷۶۲</td>
<td>۲۴/۷۶۲</td>
<td>۱</td>
<td>رقم</td>
<td></td>
</tr>
<tr>
<td>۱۵/۳۸۹*</td>
<td>۶/۹۶۶</td>
<td>۹۶/۲۶۶۶</td>
<td>۴</td>
<td>شوری</td>
<td></td>
</tr>
<tr>
<td>۱۸/۲۱۶*</td>
<td>۸/۵۶۵</td>
<td>۸/۵۶۵۶</td>
<td>۳</td>
<td>ترکیب</td>
<td></td>
</tr>
<tr>
<td>۰/۳۱۹ns</td>
<td>۱/۴۷۹</td>
<td>۱/۴۷۹۶</td>
<td>۳</td>
<td>بلوک</td>
<td></td>
</tr>
<tr>
<td>۰/۱۵۰ns</td>
<td>۴/۶۱۰</td>
<td>۴/۶۱۰۶</td>
<td>۴۳</td>
<td>اثر مقابل دوطرفه</td>
<td></td>
</tr>
<tr>
<td>۰/۴۲۳ns</td>
<td>۹/۹۱</td>
<td>۹/۹۱۰۶</td>
<td>۳</td>
<td>رقم × ترکیب</td>
<td></td>
</tr>
<tr>
<td>۰/۸۰۹*</td>
<td>۱۷/۵۸۶</td>
<td>۱۷/۵۸۶۶</td>
<td>۴</td>
<td>رقم × شوری</td>
<td></td>
</tr>
<tr>
<td>۰/۸۶۰ns</td>
<td>۹/۳۳۹</td>
<td>۹/۳۳۹۶</td>
<td>۳</td>
<td>رقم × بلوک</td>
<td></td>
</tr>
<tr>
<td>۰/۲۰۸ns</td>
<td>۳۷/۸۰۵</td>
<td>۳۷/۸۰۵۶</td>
<td>۱۲</td>
<td>شوری × ترکیب</td>
<td></td>
</tr>
<tr>
<td>۰/۴۰۴ns</td>
<td>۹/۸۵۶</td>
<td>۹/۸۵۶۶</td>
<td>۹</td>
<td>بلوک × ترکیب</td>
<td></td>
</tr>
<tr>
<td>۰/۵۰۸ns</td>
<td>۹/۵۳۸</td>
<td>۹/۵۳۸۶</td>
<td>۱۲</td>
<td>بلوک × شوری</td>
<td></td>
</tr>
<tr>
<td>۰/۴۱۴ns</td>
<td>۷۶/۹۹۰</td>
<td>۷۶/۹۹۰۶</td>
<td>۶۹</td>
<td>اثر مقابل سطح طرفه</td>
<td></td>
</tr>
<tr>
<td>۰/۴۹ns</td>
<td>۲/۰۷۳</td>
<td>۲/۰۷۳۶</td>
<td>۱۲</td>
<td>رقم × شوری</td>
<td></td>
</tr>
<tr>
<td>۰/۳۲۲ns</td>
<td>۴/۵۳۰</td>
<td>۴/۵۳۰۶</td>
<td>۹</td>
<td>رقم × بلوک × شوری</td>
<td></td>
</tr>
<tr>
<td>۰/۹۸۸ns</td>
<td>۱۸/۵۶۱</td>
<td>۱۸/۵۶۱۶</td>
<td>۱۲</td>
<td>رقم × بلوک × بلوک</td>
<td></td>
</tr>
<tr>
<td>۰/۶۰۰ns</td>
<td>۳۳/۸۱۵</td>
<td>۳۳/۸۱۵۶</td>
<td>۳۳</td>
<td>ترکیب × شوری × بلوک</td>
<td></td>
</tr>
<tr>
<td>۰/۱۰۵</td>
<td>۵۶/۳۳۶</td>
<td>۵۶/۳۳۶۶</td>
<td>۳۶</td>
<td>خطای (باقی مانده)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲/۸۸۰</td>
<td>۲/۸۸۰۶</td>
<td>۱۵۹</td>
<td>جمع کل</td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌ها: *
منیادار در سطح پنج درصد
منیادار در سطح یک درصد
*: منیادار
ns: غیر منیادار

جدول ۳. عملکرد ساقه و برگ نهال پسته بادامی و فندقی (مر عی سن میانگین ۸۰ مشاهده است)

<table>
<thead>
<tr>
<th>عملکرد (گرم در گلدان)</th>
<th>رقم</th>
<th>ساقه</th>
<th>برگ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>کل</td>
<td>پذیر</td>
<td>پذیر</td>
</tr>
<tr>
<td>۱۱/۰۹۴a</td>
<td>۳/۲۰۴a</td>
<td>۶/۹۴۳a</td>
<td>۵/۲۴۰b</td>
</tr>
<tr>
<td>۸/۹۸۷b</td>
<td>۳/۲۱۷b</td>
<td>۶/۹۴۳b</td>
<td>۵/۲۴۰b</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های بدون حرف مشترک از نظر آماری در سطح پنج درصد متفاوتند.
جدول 4. اثر شوری بر عملکرد ساقه و برگ نهال پسته (۹۶ عضو میانگین ۲۲ مشاهده است)

<table>
<thead>
<tr>
<th>عملکرد (گرم در گلدان)</th>
<th>سطح شوری</th>
<th>برگ</th>
<th>ساقه</th>
<th>(میلی‌کیلوگرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>1/2985a</td>
<td>4/299a</td>
<td>8/99a</td>
<td>0</td>
</tr>
<tr>
<td>1/434a</td>
<td>4/254b</td>
<td>8/28a</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>9/776b</td>
<td>3/38b</td>
<td>6/06b</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>8/505bc</td>
<td>2/95c</td>
<td>5/110bc</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>7/05c</td>
<td>2/79d</td>
<td>3/37c</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

در هر سرو، میانگین‌های بدون حرف مشترک از نظر آماری در سطح ۵٪ چندرسان متفاوتند.

جدول 5. عملکرد ساقه و برگ نهال پسته در ارتباط با ترکیب نمک (۹۶ عضو میانگین ۴۰ مشاهده است)

<table>
<thead>
<tr>
<th>ترکیب نمک (درصد)</th>
<th>عملکرد (گرم در گلدان)</th>
<th>ساقه</th>
<th>برگ</th>
<th>سولفات سدیم</th>
<th>کلرید سدیم</th>
<th>سولفات کلرید</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۶۴۴c</td>
<td>۲/۲۴c</td>
<td>۲/۹۰۰c</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۰</td>
<td></td>
</tr>
<tr>
<td>۹/۵۲۵b</td>
<td>۳/۲۹b</td>
<td>۵/۹۰b</td>
<td>۴۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td></td>
</tr>
<tr>
<td>۱/۵۰۹b</td>
<td>۳/۸۴۴b</td>
<td>۶/۳۵۳b</td>
<td>۴۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td></td>
</tr>
<tr>
<td>۱/۴۸۴d</td>
<td>۳/۴۹a</td>
<td>۷/۵۳a</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۰</td>
<td></td>
</tr>
</tbody>
</table>

در هر سرو، میانگین‌های بدون حرف مشترک از نظر آماری در سطح ۵٪ چندرسان متفاوتند.

شکل ۱. اثر ترکیب نمک بر رشد برگ و ساقه در رنگ پسته در سطوح مختلف شوری
نیتیجه‌گیری
نتیجه‌گیری کلی از این مطالعه را می‌توان چنین خلاصه نمود که یک بار دیگر اثر سوزش طیرونقی بسیار نهایی و در قبلاً فندقی و باش دریگی تبدیل به فریب دیگر تبدیل به سوزش قابلیت به‌دست می‌دهد. اما نتیجه مهم این مطالعه، که پیرو اولین بار گزارش می‌شود، این است که از این نسبت سولفات می‌تواند از زیان بخش طبیعی را در صورت نهایی پسته تخفیف دهد. این موضوع اهمیت عملی فیزیولوژی داشته و شایسته است پژوهش‌های بیشتری در این مورد صورت گیرد.

سپاسگزاری
هنوز اجرای این طرح از اعتبارات حوزه‌های مساحت محترم پژوهش دانشگاه شیراز تأیید نموده و برای این موضوع می‌پذیرد.

شکر و نقدانی می‌شود.

عمل‌کرد برگ نیز همانند روند را نشان داده و ارقام مشابه آن یه ترتیب 6/0 و 6/0 گرم در گلدن بوده است. نهایتهای رقم فندقی نیز پاسخ مشابه نشان داده‌اند، با این تفاوت که در هر مورد مقدار عملکرد کمتر از پیمای بوده است.

گرچه اثر تربیک نمک بر پیش و به خصوص تأثیر مثبت سولفات بر کاهش اثر سوزشی تربیک در مورد گیاهان مختلف قبل، گزارش شده (12، 18 و 19) و لیل در این زمینه گزارش در مورد پسته در نیست.

نتایج حاسی از پرسه‌های انجام شده در این تحقیق نشان داد که در هر سطحی از کلرید سدیم، در مقایسه با سولفات، همانکننده در نقش دو کمک است که کاهش بیشتری داشته است. این کاهش ممکن است به لاییل مختلف باشد. در مقایسه با سولفات، نمک‌های کلریدی فشار اسوزی بیشتری را در خاک سبب می‌شود، که برای جذب آب به وسیله گیاه بیشتری می‌باشد و اینکه کاهش رشد است (7، 8، 9). جذب نسبتاً زیاد کلرید و تجمیع آن در پی دچار و نهایتاً سوختگی به‌وجود آید باعث کاهش رشد و یا حتی مرگ گیاه می‌گردد (10 و 11). در برنمی‌های انجام شده توسط تعدادی از یورو‌های مدل معلوم شده است که در برخی از گیاهان از چربی آورکود، مركبات اکسید، ترکتیروت و میوه‌ها مصرف می‌شود. به علت حساسیت زیاد به تجمیع کلرید در نسخه آنها در حد احتمالی این است (5، 6 و 10).

منابع مورد استفاده

1. آیت‌الله ع. 1372. حذ نحول گیاهان به شوری. نشریه فنی شماره 16 دانشکده کشاورزی دانشگاه شیراز.

2. پارسا، ع. و ن. کریمیان. 1353. اثر کلرید سدیم در رشد نهال دوباره اصلی سهیما بیرانی. (Pistachia vera L.) کشاورزی دانشگاه شیراز. 19.

3. پارسا، ع. و ن. کریمیان. 1353. اثر نمک طعام در رشد نهال پسته (Pistachia vera L.) کشاورزی دانشگاه شیراز.

4. سپاسخوانی، ع. م. و ن. کریمیان. 1361. حد شوری و خشکسالی برای نهال و درختان پسته. دانشکده کشاورزی دانشگاه شیراز.

