اثر مواد آلی خاک، هدایت الکتریکی و نسبت جذب سدیم بر مقاومت کششی خاک‌دانه‌ها

چکیده
ویژگی‌های خاک‌های متاثر از املاح و تراکم دارای تغییرات ساختار خاک تا حدی شناخته شده، ولی اثر شرایط شور و سدیمی بر وزن‌گیری‌های مکانیکی خاک‌ها، کمتر بررسی شده است. در این پژوهش آثار هدایت الکتریکی (EC) و نسبت جذب سدیم (SAR) بر مقاومت کششی خاک‌هایی که مقدار مواد آلی شناخته شده است در شرایط آزمایشگاهی بررسی گردیده است. نمونه‌های خاک از منطقه شهر تاریخی تهران شده و دارای نوع رسن یکسان (با کانالی غالب: ایلام) هستند. سیاره و تعداد خاک‌ها در مقدار مواد آلی آنها بوده که حدود 80-10 میلی‌میکرومسینتری است. مدل‌ها سپس سیستم آزمایشی را تشکیل می‌داد. SAR و EC معیار کلیدی مواد آلی خاک، مقاومت کششی، خاک تحت کشت، و از این‌رو مقاومت کششی با تعداد مواد آلی خاک، رابطه مستقیم داشته است. آنانژ و اریکس‌نی تعداد شناخته شده که در سطح پک درخور است. بین دو متغیر خاک‌های (در فیلتر سطحی) عمومی نیم‌بردارهای (در دو سطحی) (EC و SAR در دو سطحی) تفاوت معنی‌داری در میان‌گیری متغیرها ارائه گردیدی که وجود دارد. برای وادار کردن خاک بر ترکیبی بخشی از ضریب خاک تحت کشت علت ناشی از بی‌توجهی دانش‌پژوهان به خاک تحت کشت مشابه است. خاک تحت کشت علت ناشی از تفاوت میانگین پانوس کلیکی: مواد آلی خاک، SAR، EC، مقاومت کششی خاک‌دانه‌ها

فواذ تاجیک ١، حسن رحمی‌پور ٢، ابراهیم پذیرا ٢

۱. مریم پژوهشی، مؤسس تحصیلات فنی و مهندسی کشاورزی، کرمان
۲. استاد خاکشناسی، دانشگاه کشاورزی، دانشگاه تهران
۳. استاد پژوهشی، دانشگاه علامت اسلامی، واحد علم و تحقیقات، تهران
مقامات، شاخص مناسبی از وضعیت فیزیکی خاک محسوب می‌شود. که از راه‌های گوناگون (مانند انرژی آزمایشات خاک، و...) به کار رفته شده است. مقامات خاک، متأثر از مقدار و نوع نوع (Dispersible clay) و اندازه ذرات رس، خاک‌داهنگی پایدار در آب، غلظت و ترکیب محلول خاک، ماده آلی خاک و دوره‌های خشک و تردد شدن است. مقامات خاک، عبارت است از طرفی این برای تحلیل نیروهای وارده، بدنان آن به گسترش می‌شود. از نظر کمی، مقامات خاک برای حذافکری و کنی است که می‌توان به خاک اعمال کرد، بدان آن گسترشکنگی در آنج Rapids (12)، خاک‌هایی که در برای تشخیص خاک‌دانه‌ای، پایداری کمی دارند. در عین حال، یپوندهای موجود در خاک تا حد زیاد عامل پایداری در برای عملیات خاکرزی و اعمال بار افقی (در فاصله کنسانس) و قائم (در فاصله جامه‌ای) در شرایط مزروع هستند (10). خاک‌هایی که حاوی خاک دانه‌ای با میزان ضریب Tynt (Tensile strength) کمتر (8) نمونه‌هایی نشان می‌دهند که به تدریج پایداری گسترشکنگی مکانیکی ناشی از خاکوزی مقامات رئیز. کمی و (Failure zones) (13) گزارش‌های دارد که نواحی گسترشکنگی در خاک، تبیین کننده واکنش آن نسبت به نشانه‌های وارده (مانند خاکوزی، برخورد طفره‌های باران، شدت ریشه و ...) است. به انتظار برانکس و دکستر (8) نتیجه مقامات کشتی، مبادری برای مقامات ضعیف‌ترین نواحی گسترشکنگی محسوب می‌شود. تغییرات مقامات کشتی نسبت به اندازه خاک‌دانه‌ها را نتیجه مثله به پیشنهاد ایوتو و دکستر (15) به عنوان مقياسی از تردد خاک (Soil friability) یکی از ویژگی‌های خاک است و مقامات نواحی گسترشکنگی در هر زمان به وجود خلیف و فرچ بر هوا، ترکیب ریز و قدرت یپوندهای صعب در ذرات داخل با میان خاک‌دانه‌های ریز، بستگی دارد. همچنین، مقامات کشتی خاک با مقدار آب و یپوندهای

مقدمه

مقامات، شاخص مناسبی از وضعیت فیزیکی خاک محسوب می‌شود. که از راه‌های گوناگون (مانند انرژی آزمایشات خاک، و...) به کار رفته شده است. مقامات خاک، متأثر از مقدار و نوع نوع (Dispersible clay) و اندازه ذرات رس، خاک‌داهنگی پایدار در آب، غلظت و ترکیب محلول خاک، ماده آلی خاک و دوره‌های خشک و تردد شدن است. مقامات خاک، عبارت است از طرفی این برای تحلیل نیروهای وارده، بدنان آن به گسترش می‌شود. از نظر کمی، مقامات خاک برای حذافکری و کنی است که می‌توان به خاک اعمال کرد، بدان آن گسترشکنگی در آنج Rapids (12)، خاک‌هایی که در برای تشخیص خاک‌دانه‌ای، پایداری کمی دارند. در عین حال، یپوندهای موجود در خاک تا حد زیاد عامل پایداری در برای عملیات خاکرزی و اعمال بار افقی (در فاصله کنسانس) و قائم (در فاصله جامه‌ای) در شرایط مزروع هستند (10). خاک‌هایی که حاوی خاک دانه‌ای با میزان ضریب Tynt (Tensile strength) کمتر (8) نمونه‌هایی نشان می‌دهند که به تدریج پایداری گسترشکنگی مکانیکی ناشی از خاکوزی مقامات رئیز. کمی و (Failure zones) (13) گزارش‌های دارد که نواحی گسترشکنگی در خاک، تبیین کننده واکنش آن نسبت به نشانه‌های وارده (مانند خاکوزی، برخورد طفره‌های باران، شدت ریشه و ...) است. به انتظار برانکس و دکستر (8) نتیجه مقامات کشتی، مبادری برای مقامات ضعیف‌ترین نواحی گسترشکنگی محسوب می‌شود. تغییرات مقامات کشتی نسبت به اندازه خاک‌دانه‌ها را نتیجه مثله به پیشنهاد ایوتو و دکستر (15) به عنوان مقياسی از تردد خاک (Soil friability) یکی از ویژگی‌های خاک است و مقامات نواحی گسترشکنگی در هر زمان به وجود خلیف و فرچ بر هوا، ترکیب ریز و قدرت یپوندهای صعب در ذرات داخل با میان خاک‌دانه‌های ریز، بستگی دارد. همچنین، مقامات کشتی خاک با مقدار آب و یپوندهای
مواد پودن دهده‌ای بین ذرات (از جمله رسانه‌های شده) از یک سوس، و ایجاد نواحی گسترش‌های ضعیف در حین دوره‌های خشک و گرم تا زیر یک درجه است. شرایط اقلیمی می‌تواند از یک طرف موجب انباشت خشکسالی شود و از طرف دیگر، مقاومت کشتی‌های خشک‌کشیده شده را کاهش دهد. همچنین، مقادیر افزایشی مقاومت در نواحی گسترش‌های خشکسالی و در اثر پیش‌بینی ذرات و کاهش مقاومت در اثر ضعیف شدن نواحی گسترش‌های دیگر (از اثر خشکسالی و در شرایط درون‌بومی) یکسان شده و مدلی بیش از رابطه‌ها به خشکسالی واژه است. (13)\\n\\nدر مناطق خشک و نیمه خشک، آب آبیاری با آب زیرزمینی بر غلظت املاح و سدیمی شدن محول خاک تأثیر می‌کند. که انزیم به نوبه خود بر دانه‌های ساختمان خاک مؤثر است. فرآیند خاک‌دانسازی در اثر پراکنش رسانه‌های خشکسالی‌شده (با هم‌پوشانی و خشکسالی) بیشتر می‌باشد. هر دو پراکنش رسانه‌هایی و خشکسالی‌های خاک‌دانسازی، به سلسله و خاک سطحی منطقه می‌شود که این امر خود بر مقاومت خاک انرژه و سرعت نفوذ، بهره‌مند بودنی‌های خاک‌دانسازی و (یوگانندز) بر یک کاهش می‌دهد. (۸)\\n\\n(ب) با بزرگ و همکاران (۱) در خاک‌های آلیفسول‌های SAR شرایط کشت متغیر می‌باشد که افزایش SAR(Sodium Adsorption Ratio) منجر به افزایش مقاومت پراکنش رسانه‌های خشکسالی‌زده با SAR افزایش می‌یابد. این‌طوره، مقاومت کشتی‌های نیمه سنگین‌بودنی، شرایط سطحی بر مقدار خاک تعیین می‌شود.

 شهری جنگل‌های آب‌پز را در خاک‌های سدیمی، پراکنش رسانه‌های فروبیور را بی‌خیال قرار می‌دهد که سرآغاز را در خاک معادل بی‌خیال قرار دارد. شرایط سطحی بر مقدار خاک تعیین می‌شود. مدل‌های منطقه‌ای که مرتبط با نویز بودنی‌های سطحی خاک باعث است. شرایط سطحی بر مقاومت خاک تعیین می‌شود. (۱۸)\\n\\n(ب) با بررسی اثری بر سطح خاک‌های آلیفسول‌های SAR شرایط کشت متغیر می‌باشد که افزایش SAR(Sodium Adsorption Ratio) منجر به افزایش مقاومت پراکنش رسانه‌های خشکسالی‌زده با SAR افزایش می‌یابد. این‌طوره، مقاومت کشتی‌های نیمه سنگین‌بودنی، شرایط سطحی بر مقدار خاک تعیین می‌شود.
تهیه تیمارها

با توجه به هدف پژوهش، که هدف نمونه‌هایی با مشخص در آزمایشگاهی بوته است، نمونه‌های خاک‌دانه به فاصله 400 میلی‌متر، با محصول‌های دویاری EC و SAR در آزمایشگاه تیمار شدند. بنابراین، محصول‌های EC و SAR مشخص در سه طبقه صفر، 1 و 2 با استفاده از نمک‌های خالص کاریک سدیم کلسیم و کلسیم نیترات، تهیه شد. برای جلوگیری از خطر شدن نمونه‌ها در حین همه‌بوداری با جیوه و نیترات سرد (Sintered glass medium) اضافه شد.

که با پایین و بالا بردن لوله مناسب به آن می‌توان خاک‌دانه‌ها را در مکس معین مرطوب نمود. بهتر همیار شامل پنهان مخصوصین، خشک و مرطوب صرفاً توسط نمونه با محصول مربوط در حالت خرما و سپس به مدت 17 ساعت در مکس 30 ساعت متوسط (با ماد کیلو پاسکال) قرار داده شد. پس از 24 ساعت، نمونه‌ها زکشی شدند و 24 ساعت بعد در حالت زکشی باقی مانده. پس از پایان دوره پنج هر تیمار، برای حصول اطمینان از رسیدن خاک‌دانه‌ها به شرایط مورد نظر، با محصول مربوط در حالت تولید تیمار 2 یافتن نتیجه تیمارها استفاده شود و SAR و EC مقدار نمونه‌ها به مدت یک هفته در هوا خشک و برای انجام آزمایش‌های مربوط به نهایی شدن.

تعیین مقاومت کشتی خاک‌دانه‌ها

اندازه‌گیری مقاومت کشتی خاک‌دانه‌ها به صورت غیر مستقیم و با استفاده از روش پیشنهادی دکستر و کرویز گر (11) صورت گرفت. است. میزان کار این روش، انسدادگیری نیروی لازم برای خرد کردن یک خاک‌دانه در میان دو صفحه صاف و ناپای صفحه‌های این موجود نمای کستگاهی به مؤسسه‌های تحقیقات فنی و مهندسی کشاورزی با اقدامات نهایی است. برای این مراحل تحقیقات، یک نمونه‌ساز و یک تیمار است. بنا به شکل 1 دیده می‌شود (1).

مزارع تحت کشت شرکت سهامی دشت ناز وابسته به بیماری مستقیم و جانداران (با کد W)، که در آنها کشاورزی فشده بنا تا ناپذیری منظم صورت می‌گیرد. در هنگام نمونه‌برداری، قطعه مورد نظر زیر کشت گذم قرار داشته و تناری کشت عبارت از گندم، نیز که سیب و ساکر است و نیز که جنگل است، ایستگاه تکریم بیانات علیکه دامنه وایسته به جهاد سازندگی که در دوران تهیه دیم گیاهی فسکویی [Tall Fescue (Festuca arundinacea)] بیند. و درگیری در ده سال گذشته کشت دیم گیاهی علف [Tall Wheat grass (Agropyron elatangatum)] گردیدی که این آبادی که بوته و طی این سالها سهم نشده و نتیجه از علوفه (با کد (E) یافته شده است.

در هر محل نمونه‌برداری، از هدایت به نقطه مختلف، در عمق‌های صفر 10 و 20 سانتی‌متری در مورد خاک P نمونه‌برداری شد. سپس، نمونه‌های خاک به آزمایشگاه مؤسسه تحقیقات فنی و مهندسی کشاورزی منتقل و در هوا خشک گردد و خاک‌دانه‌ها به اندازه 40 میلی‌متر از آن جدا شد. با تهیه تیمارها استفاده شود و ذرات کوچکتر از 2 میکرومتر در 2 یافتن برای انجام آزمایش‌های شیمیایی و فیزیکی استفاده گردید. زمان نمونه‌برداری در تیرماه 1385 پس از برداشت محصول و پیش از شخم بوده است.

تعیین ویژگی‌های شیمیایی و فیزیکی نمونه‌های خاک

ویژگی‌های تیم شده خاک در ذرات کوچکتر از 2 میکرومتر از عرصه اشناع خاک در مورد SAR و EC pH احکام رس، سیلت و سنی نوع رس با استفاده از روش ترمیم اشعه ایکس؛ درصد کریم آلایی به روش واکلی‌بلیک (14) بوده است.

جدول 1 برخی ویژگی‌های فیزیکی و شیمیایی خاک‌های که مورد بررسی را نشان می‌دهد.
جدول 1. ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد بررسی

درصد سیل درصد رس درصد آهک کربن آلی SAR EC pH عمق (cm) خاک

<table>
<thead>
<tr>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
<th>SAR</th>
<th>EC (dS/m)</th>
<th>pH</th>
<th>عمق (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>29</td>
<td>34</td>
<td>1/4</td>
<td>0/5</td>
<td>0/1</td>
<td>W.1</td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td>32</td>
<td>1/2</td>
<td>0/0</td>
<td>0/1</td>
<td>W.2</td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td>32</td>
<td>1/2</td>
<td>0/0</td>
<td>0/1</td>
<td>E.1</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>30/1</td>
<td>1/1</td>
<td>0/0</td>
<td>0/1</td>
<td>E.2</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>37</td>
<td>3/4</td>
<td>0/0</td>
<td>0/4</td>
<td>F.1</td>
</tr>
<tr>
<td>37</td>
<td>31</td>
<td>32</td>
<td>3/9</td>
<td>0/0</td>
<td>0/7</td>
<td>F.2</td>
</tr>
<tr>
<td>42</td>
<td>30</td>
<td>38</td>
<td>3/6</td>
<td>0/3</td>
<td>0/3</td>
<td>P.1</td>
</tr>
<tr>
<td>38</td>
<td>29</td>
<td>33</td>
<td>7/4</td>
<td>0/5</td>
<td>0/6</td>
<td>P.2</td>
</tr>
</tbody>
</table>

در این دستگاه فلزه‌ای که مستقیماً روی نمونه قرار می‌گیرد. از طریق یک اهرم و طرف آب انتهای آن بر نمونه نیرو وارد می‌کند. با افزودن تدریجی آب، در مرحله‌ای که حد مقاومت خاک‌دانه است، اهرم ناکهان افت می‌کند و خاک‌دانه خود می‌شود. در این لحظه، جریان آب فلز شده و جریان آب موجود در طرف تعیین می‌شود. مقدار نیروی لازم برای شکست خاک‌دانه (F) برحسب نیوتن از رابطه 1 به دست می‌آید:

\[F = \left[M_C \times \frac{x_1}{x_2} \right] + M_U \times g \] [1]

\[Y = 0.576 F/d^2 \] [2]
تجزیه و تحلیل آماری

آنالیز واریانس داده‌ها، طی آزمایش فاکتور های خاک در چهار سطح، عمل نموده به‌درازی در یک سطح، در EC، در سطح و SAR، و در یک طرح کاملاً تصادفی با دو نمونه اندازه‌گیری و آزمون معنی‌دار بودند تفاوت میانگین‌ها به روش دانکن در سطح احتمال یک درصد صورت گرفته است.

نتایج

مقدار متوسط گیری شده مقاومت کششی برای هر تیمار و هر خاک در جدول ۲ ذرح شده است. با توجه به مندرجات جدول ۱، ترتیب مقدار کریستال آلمی خاک‌ها چنین بوده است:

P.1 > P.2 > F.1 > F.2 > E.1 > W.1 > W.2 > E.2

شكل ۲ مقاومت کششی خاک‌ها را به ترتیب مقدار کریستال آلمی آنها و با توجه به تیمار‌های اعمال شده، شناخت نشان می‌دهد. همان‌گونه که در این شکل دیده می‌شوید، مقاومت کششی در هر تیمار، نسبت مقدار کریستال آلمی خاک‌های است. در هر خاک و تیمار مقاومت کششی به مورد نظر یکی شده و بر مبنای SAR کاهش می‌یابد. در شکل ۲ معنی‌دار بودن مقاومت میانگینی و نرمال‌سازی در مورد اندازه‌گیری با توجه این سنجات می‌تواند در مقایسه کششی هواپیمایی و در مساحتی که در این شکل آمده می‌باشد، بر مبنای SAR متفاوت می‌شود. در نگاه‌های انتقال، با توجه چنین نتایج این ارتباط واریانس داده‌ها توجیه خواهد یافت.

از انتقال داده‌ها در جدول ۳ نشان داده شده است. همان‌گونه که در این شکل دیده می‌شود، در هم چاپ خاک‌ها، مقدار SAR کمتر از مرز معنا‌داری دارد. SAR مشابه، تیمار‌های SAR و دیگر زمین‌های، مقاومت کششی بیشتر داشته‌اند. با آزمون دانکن برای منجر مقاومت کششی نشان داده است که برای فاکتور خاک (در چهار سطح) تفاوت‌ها در سطح یک درصد معنی‌دار بوده و ترتیب برگزیدن مقاومت‌ها به صورت
جدول 2. مقاومت کششی (برحسب کیلوپاسکال) خاکهای مورد بررسی و تیمارهای اعمال شده

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>P.2</th>
<th>P.1</th>
<th>F.2</th>
<th>F.1</th>
<th>E.2</th>
<th>E.1</th>
<th>W.2</th>
<th>W.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC = 40 dS/m</td>
<td>50/0</td>
<td>50/0</td>
<td>49/8</td>
<td>49/8</td>
<td>40/0</td>
<td>40/0</td>
<td>40/0</td>
<td>40/0</td>
</tr>
<tr>
<td>SAR = 0</td>
<td>43/9</td>
<td>43/9</td>
<td>33/2</td>
<td>33/2</td>
<td>32/9</td>
<td>32/9</td>
<td>32/9</td>
<td>32/9</td>
</tr>
<tr>
<td>EC = 50 dS/m</td>
<td>39/6</td>
<td>39/6</td>
<td>34/5</td>
<td>34/5</td>
<td>32/7</td>
<td>32/7</td>
<td>32/7</td>
<td>32/7</td>
</tr>
<tr>
<td>SAR = 0</td>
<td>01/2</td>
<td>01/2</td>
<td>41/7</td>
<td>41/7</td>
<td>33/9</td>
<td>33/9</td>
<td>33/9</td>
<td>33/9</td>
</tr>
<tr>
<td>EC = 4 dS/m</td>
<td>38/7</td>
<td>38/7</td>
<td>34/7</td>
<td>34/7</td>
<td>31/0</td>
<td>31/0</td>
<td>31/0</td>
<td>31/0</td>
</tr>
<tr>
<td>SAR = 0</td>
<td>40/1</td>
<td>40/1</td>
<td>34/1</td>
<td>34/1</td>
<td>32/5</td>
<td>32/5</td>
<td>32/5</td>
<td>32/5</td>
</tr>
<tr>
<td>EC = 4 dS/m</td>
<td>40/1</td>
<td>40/1</td>
<td>34/1</td>
<td>34/1</td>
<td>32/5</td>
<td>32/5</td>
<td>32/5</td>
<td>32/5</td>
</tr>
</tbody>
</table>

شکل 2. نمودار مقاومت کششی خاک‌ها به ترتیب مقدار کربن آلی و برحسب تیمارها

157
شکل ۳ نمودار رابطه خطی مقاومت کششی با SAR برای نمونه‌های مورد بررسی

EC در دو سطح
جدول 3: خلاصه نتایج آنالیز واریانس داده‌ها

<table>
<thead>
<tr>
<th>مقاومت کششی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>عمق نمونه‌برداری</td>
</tr>
<tr>
<td>**</td>
<td>اثر متقابل خاک × عمق</td>
</tr>
<tr>
<td>**</td>
<td>EC</td>
</tr>
<tr>
<td>**</td>
<td>اثر متقابل خاک × عمق</td>
</tr>
<tr>
<td>**</td>
<td>EC</td>
</tr>
<tr>
<td>**</td>
<td>اثر متقابل عمق × عمق</td>
</tr>
<tr>
<td>**</td>
<td>اثر متقابل خاک × عمق</td>
</tr>
<tr>
<td>**</td>
<td>EC</td>
</tr>
<tr>
<td>**</td>
<td>اثر متقابل خاک × عمق</td>
</tr>
<tr>
<td>ns</td>
<td>EC × SAR</td>
</tr>
<tr>
<td>**</td>
<td>SAR</td>
</tr>
<tr>
<td>**</td>
<td>اثر متقابل خاک × عمق</td>
</tr>
<tr>
<td>**</td>
<td>EC × SAR</td>
</tr>
<tr>
<td>**</td>
<td>اثر متقابل عمق × عمق</td>
</tr>
<tr>
<td>ns</td>
<td>EC × SAR</td>
</tr>
</tbody>
</table>

به ترتیب معنی‌دار در سطح پنج و یک درصد، و غیر معنی‌دار ** و ***.
مباحث مورد استفاده

1. تاجیک، ف. 1376. اثر هدایت الکتریکی، نسبت جذب سدیم، و موارد آن بر مقاومت کشتی و پایداری خاک‌دارها. پایان‌نامه کارشناسی ارشد خاک‌شناسی، دانشگاه تربیت مدرس، تهران.

2. شیدایی، گ. و ن. نعمتی. 1357/1358. تولید و توزیع الکتریکی خاک‌دارهای تولید، سازمان جنگل‌ها و منابع کشور، تهران.

4. مؤسسه تحقیقات خاک و آب. 1374. نشست ارزیابی منابع و قابلیت اراضی استان مازندران. مؤسسه تحقیقات خاک و آب، تهران.

5. مؤسسه خاک‌شناسی و حاصل خزی خاک. 1355. گزارش مطالعات نیمه تفصیلی خاک‌شناسی و طبقه‌بندی اراضی استان مازندران (محدوده نکا-سیاوه‌رود). نشریه شماره 92، مؤسسه خاک‌شناسی و حاصل خزی خاک، تهران.

