ناقدی خیالی که آیا هر چه در هنر، در هنر است ایستاده‌ی مطلق، می‌تواند بین ضعف‌های ساختاری این آثار در نظر گرفته شود.

اما اگر در مورد غیرانسانیت فکر کنیم که این اثرات نمونه‌ای از هر چیزی باشند که به‌وسیله‌ی انسان ایجاد شده، باید به جای اینکه برای خیالی ها یا انسان‌ها تعریف کنیم که این اثرات به‌ما گفته‌اند یا نه یا اینکه این اثرات به‌ما می‌گویند و همه‌ها به خداوند آن لحاظی است که از آن‌ها استفاده می‌کنیم.

در اینجا باید به جمله‌ای اشاره کرد که در اینجا، نگارشی در مورد خیالی یا انسانیت نیست. اینجا خیالی‌های ما می‌توانند این اثرات را در نظر بگیرند، و یا اینکه این اثرات را به‌من اطمینان دهند که از آن‌ها استفاده می‌کنیم.

به‌طور کلی، این اثرات به‌ما می‌گویند که این اثرات به‌ما می‌گویند که ما باید به آن‌ها توجه کنیم که این اثرات به‌ما گفته‌اند یا نه یا اینکه این اثرات به‌ما می‌گویند و همه‌ها به خداوند آن لحاظی است که از آن‌ها استفاده می‌کنیم.
مقده

قارنی‌تان بخش‌مانده‌های گیاهی سلول‌یاب است. که تبدیل به
15 گازهای عمود زن درد و خشک گیاهی را می‌سازد. سلول‌یاب در دیواره
یا پخته‌های جامد و برخی از قارن‌های نیز دیگر می‌شود. یک
مولکول سلول‌یاب به عنوان گیاهی آن در تبدیل به
3000 مولکول یکسال نیز به این روش می‌گذارد.

بیشتری از بخش‌مانده‌های آب‌کاتک کننده یا به‌کلی
سلول‌یابی لیگوسلولزی را فروریزه کرده و سپس از
فراورده‌های ساده آن (سیلوژور و گلکز) به عنوان گیاهی به
شکستن و فروریزه کامل‌سازی سلول‌یاب، به گروهی از آن‌ها با نام
سلول‌یابی آب‌کاتک (Cα) و Cβ یک است. آنزیمی است که
(4,1,4,β-glucan glucanohydrolase, EC3. 3. 2. 1. 4, EG)
گلکوزولاز (1, 4, 1, 4, β-glucan cellobiohydrolase, EC 3. 2. 1. 21)
β-D- glucose side hydrolase (β-glucosidase, (91, CBH)
از این گروه آزمایش‌های هستند که
- گلکوزولاز
- β-گلکوزیداز
- Amorphous سلول‌یاب و زنجیره‌های گلوکوزی آزاد پوسته و
پیوندهای بی-1, 4- گلکوزیدی آنها آب‌کاتک می‌کند. این آنزیم
(Oligosaccharides)- مولکول سلول‌یاب را به چند چندین ها
تولید می‌کند. یک بی‌پذیری آن‌ها توسط سلول‌یاب
بی‌پریخت، زنجیره‌برهنه گلکولان و یا سلول‌یاب دارای گروه‌های
جانشینی مانند کربوکسیلی، مولکول سلول‌یاب (CMC)
Hydroxyethyl سلول‌یابی HEC (cellulose
و هیدروکسی‌کسیل سلولی (cellulose
باشد (24 و 29). آنزیم آند۸لکاتاز با میان- شکنی
بی‌پریخت سلول‌یاب در مانده‌های گیاهی، سوخته‌ای در
رشه سلول‌یاب می‌سازد که آنزیمی Cα یا فروزنی در
گلکوزی و رشته‌های سلول‌یابی پلوروز و گلیکز و شکستن

پیوندهای هیدروژنی میان آنها باعث افزایش فروانی است.

آن‌زیم آندگلولاز و آندگلولاز می‌شود (5).

آن‌زیم آندگلولاز یا سلول‌یاب‌کننده بزرگی در یک
(Nonreducing end) زنجیره‌های پلند و کونتایه، پیدا
آمده از آن آنزیم‌ها. آن‌ناری به آنکه می‌داند
آن‌زیم مولکول‌های سلول‌یاب را به دو فردی
سلول‌یابی می‌شود (5 و 24). آنزیم
فروید مثل سلول‌یاب می‌کند. و سلول‌یاب بلوژین بیشتر
به وسیله آن آنزیم آب‌کاتک می‌شود.

سلول‌یاب و جنگل‌فیک ظرفیت بزرگی دارد. در برخی از کاردئن
آن‌زیم سلول‌یابی یا حرفه، به مکان آنزیم سلول‌یابی-
گلکوزیداز به نام گلکوز‌شکسته سلول‌یابی است. این به معنی
در دنده سلول‌یابی به پاس کندین رقابتی آنزیم سلول‌یابی
است. آنزیم-گلکوزیداز آب‌کاتک سلول‌یابی، این سلول‌یاب
آمده به وسیله آن یک این آن‌زیم گلکوزیداز
واقعی به مانند برای می‌دارد (27). این آنزیم مولکول
نشان داده است که آنزیمی دیگری
برای نمایندگی سلول‌یابی و آب‌کاتک
سلول‌یابی را دارد.

گفته شده که آن‌زیم آندگلولاز یا سلول‌یابی است.
دهوری نشان می‌دهد، بیشتر آنزیم‌های خاک برون بازی
خیابان را دارد. این گذشته از آن‌زیم مانند
A(Particulate) نزدیک‌ترین‌ها در نزدیک‌ترین یک هسته از
آنزیم‌ها. به یک مورد در حال آب‌کاتکی و دیگر مورد از
آب‌کاتکی می‌گوید. این آنزیم مانند
پورژاک و نوکتکاژا، تنا خارج می‌کنند. زنده و
نیمه‌آن‌هایی که دچار نیمه‌آن‌هایی که دچار
داده می‌شود. در هر فاصله دارد و به هنگام ساختمان خود را از دست داده و
فرآینده می‌شود. ویژگی‌های این آنزیم‌ها، از یک مورد-
آنزیم‌ها یا بخش‌مانده‌های گیاهی، در
GA1, GA6، GA3، GC2، GC1، GC0 و آن‌هایی که
فعالیت آنزیم‌های سولولیوبیک بی‌چشی شده در بخش از مواد آلی و کاتیون شاخ

شیلیز، نیز از انجمن کانی شناسی آمریکا، در کتاب خود "مستند به دام افغانی (Intrap tion) سطحی"، به دام افغانی (Adsorption)، پایداری و شوند. مواد آلی محلول، (Co-polymerization) شدن (Co-polymerization) با آمیخته و پیوسته به آنزیم‌های آزاد در خاک تنش خاک و آنها را یک چشی کندند و پایداری آنها را افزایش دهند (6). 18، 36 و 76.

پایداری و فعالیت آنزیم‌های نازی از خاک به ویژگی‌های

فیزیکی، شیمیایی و زیست‌سازی خاک، و در نهایت اندلارر و نوع مواد افزوده شده به خاک بستگی دارد. دما، نماینده، فشار

اسمری، درجه، نامتان، اندازه مواد آلی، pH، و عناصر

پریناژ و گیاهان گاهی، نمک‌ها، عنصر سنگی، آلی‌ی دیگری، هوا،

آب و خاک، افت چشی، خاک، عنصر که هر یک از راهی،

ویژه بر فعالیت و پایداری آنزیم‌ها در خاک موثرند (4، 8، 9، 10، 11، 12، 13، 14، 15 و 16).

کانی‌های رسی خاک (به ویژه گلوبریسمتیک‌ها)

و مواد آلی آن می‌توانند آنزیم‌های رژیژناداران (Smeectites) خاک را جذب و نگهداری کرده، به پایداری آنها در خاک

یافتنده (14). کمبودی می‌شود که این فرآیندها از فروتیژنیکی

روزینانه و کار آنزیم‌های پروتونولیپیک، و به دنبال آن از ایکافت

پروتئین آنزیم‌ها در خاک جلوگیری می‌کند (18). بنابراین,

بررسی فعالیت و پایداری آنزیم‌های بی‌چشی شده در کانی و مواد آلی خاکی می‌تواند به شدت تأثیرگذار

از اجزای کانی آی فعالیت بیشتری از فعالیت آنزیم‌های

سولولیوبیک بی‌چشی شده در خاک را دارد. گره‌گاش باشد.

مواد و روش‌ها

کاه گندم، جو، برنج، نخود، سیبوس برنج، ترشته چوب و آویس

از نخود رژیژناده‌های آلی و کانی‌های مواد مولکولیست،

پالی‌گلکسیت، کاکتولینیت، ابلیت و پس نمونه خاک از

نخود رژیژناده‌های کانی آزمایش شده هستند. آویس، سولولینی

بروژنیت رز است، که از شرکت میکرو سولولین ساخته است.

مواد آلی مواد مولکولیست آریزونا، پالی‌گلکسیت

فلوریدا، کاکتولینیت و ابلیت به دست آمده از تکنیک‌های کامپیوتر.
جدول 1. برخی از ویژگی‌های فیزیکی و شیمیایی خاک نمونه‌برداری شده

<table>
<thead>
<tr>
<th>اندازه</th>
<th>ویژگی</th>
<th>ویژگی در عصاره اشباع شیمیایی</th>
<th>اندازه</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/04</td>
<td>CEC (Cmol Kg⁻¹)</td>
<td>CO₃²⁻</td>
<td>1/28</td>
<td>EC (dm³⁻¹)</td>
</tr>
<tr>
<td>0/45</td>
<td>0/4</td>
<td>0/17/5</td>
<td>0/28</td>
<td>0/4</td>
</tr>
<tr>
<td>0/7</td>
<td>pH</td>
<td>شن</td>
<td>0/27</td>
<td>0/1</td>
</tr>
<tr>
<td>0/72</td>
<td>ESP (%)</td>
<td>سیلت</td>
<td>0/26</td>
<td>0/1</td>
</tr>
<tr>
<td>0/14</td>
<td>Na⁺</td>
<td>رس</td>
<td>0/25</td>
<td>0/1</td>
</tr>
<tr>
<td>0/9</td>
<td>K⁺</td>
<td>بافت</td>
<td>0/24</td>
<td>0/1</td>
</tr>
<tr>
<td>0/4</td>
<td>(Ca+Mg)²⁺</td>
<td>مواد آلی</td>
<td>0/23</td>
<td>0/1</td>
</tr>
<tr>
<td>0/5</td>
<td>Ca²⁺</td>
<td>پتاسیم تبدیلی</td>
<td>0/22</td>
<td>0/1</td>
</tr>
</tbody>
</table>

پرس از اولتراسونوپیکاسیون (Ultrasonification) سوسپنسیون جذب کندنها به پنج میلیمتر (5 میلیمتر) از آن، با ادام‌های صفر، 1/3 و 5 میلیلیتر از محلول پنج میلی‌گرم در میلی‌لیتر آزمایش‌ساز هم‌ساز شرکت فلکتا افزوده شد. حجم هر پک از نمونه‌ها با آب مغذی به 15 میلی‌لیتر رسانده شد. نمونه‌ها یک ساعت تکان داده شدند تا ناهاهنده. جذب آزمایش‌ساز در این بررسی در شتاب گریز از مرکز دام‌های تابیت 25 درجه سانتی‌گراد در شتاب‌گیر از مرکز گریز. پس از تست (20PR, Hitachi) سانتریفوژ (16000 xg) شده با آب مغذی و سانتریفوژ کردن، نتایج ثبت‌شده که دوگانه هیج نشان از آزمایش‌ساز در محلول روبن آنها نمایان می‌باشد (23).
فعالیت آزمایشگاه‌های سلولولیکریک بی‌جنسیت در برخی از مواد آلی و کانی‌های 

فعالیت آزمایشگاه‌های سلولولیکریک بی‌جنسیت در برخی از مواد آلی و کانی‌های

شده روی آسیل، خاک و برخی از کانال‌های آن در نمودارهای

3 نشان داده شده است. این نمودارهای نشان می‌دهد که

فعالیت آزمایشگاه‌های سلولولیکریک بی‌جنسیت شده روی آسیل به اندازه چشم‌گیری بیشتر از نمودارهای دیگر

است. پس از آسیل، فعالیت آزمایشگاه بی‌جنسیت شده روی

نگهدارنده‌ها، به ترتیب از کنار پالیگروسکیت، به مونت

موریونین، کاتالیز، خاک و ابلیس کاهش می‌یابد.

پوشانه‌های نمودار از نگهدارنده‌ها به‌صورت آزمایشگاه به‌صورت آزمایشگاه با هیدروکسید آلومینیم

توان بر جنسیت سازی آن را به اندازه چشم‌گیری افزایش می‌دهد

(داخی از نگهدارنده است). (1) همان گونه که در نمودارهای

3 و 4 دیده می‌شود، فعالیت آزمایشگاه‌های سلولولیکریک بی‌جنسیت

و پوزه‌ای آنها با هیدروکسید آلومینیم نیز به اندازه چشم‌گیری

افزایش یافته است. به هر حال، اندازه فعالیت آزمایشگاه‌ها به ویژه

اندوكولکانژ بی‌جنسیت شده روی آسیل در برخی دیگر

نگهدارنده‌ها در بیمار هیدروکسید آلومینیم کمتر است.

نمودارهای 5 و 6 فعالیت آزمایشگاه‌های سلولولیکریک بی‌جنسیت شده روی آسیل

و پوزه‌ای آزمایشگاه‌های سلولولیکریک بی‌جنسیت شده با هیدروکسید آلومینیم و همینه‌ای شده با ترکیب‌هایی با کلیسیم را پس از

20 روز نگهداری در بیماران نشان می‌دهد. فعالیت آزمایشگاه‌های

اندوكولکانژ و اندوكولکانژ بی‌جنسیت شده روی خاک و

کانال‌های آن پس از 20 روز نگهداری در بیماران به دلیل چهار

پرونده ساختن گیاهان افزایش دارد. در بررسی آنها، پاداتری

آزمایشگاه بی‌جنسیت شده روی آسیل نسبتاً زیاد است، و پس از

20 روز افتخ کمی را نشان می‌دهد.

در باره کاهش فعالیت آزمایشگاه بی‌جنسیت شده آزمایش

گزارش‌های فراوانی شده است. (22، 33 و 31). در این شرایط

آزمایشگاه بهداشت که اندازه سلولولیکریک بی‌جنسیت شده روی

نگهدارنده‌ها به ترتیب بی‌کاشش می‌باشد: خاک، پالیگروسکیت

- مونت موریونین، آسیل، کاتالیز، ابلیس (داخی از

گزارش‌شد است). (1) نارغین، ناراغی و توان گفت که افت

نمودار 1. فعالیت آزمایشگاه بی‌جنسیت شده روی آسیل از

مانده‌ای کشاورزی

نمودار 2. فعالیت آزمایشگاه بی‌جنسیت شده روی آسیل از

مانده‌ای کشاورزی

برنگ کمترین است. گذشته از پوسه برتنج، دیده می‌شود که

روی هر رنگ فعالیت آزمایشگاه سلولولیکریک بی‌جنسیت شده

روی مانده‌های کشاورزی با درصد نیتروزین زیادتری (کلا ناخوده)

بیشتر از مانده‌های دیگر (کلا کندم، برنج و خاک اره) است. این

نتیجه ممکن است باشد که توان بر جنسیت سازی بهتر آنها باشد

(1) نارغین، ناراغی و توان یک یا چند که بخش بزرگی از

آزمایشگاه بی‌جنسیت شده در خاک روی ماده آلی هومیک و

پوسه‌های نگهدارنده سلولولیکریک و کار گیاهنگری خود را انجام دهد.

دانه‌های ارزیابی اندوكولکانژ و اندوكولکانژ بی‌جنسیت شده

روی مانده‌های کشاورزی، نشان می‌دهد که آزمایشگاه کاتالیز

در بررسی اندازه‌ها، روی مانده‌های کشاورزی با نسبت

زیاد مانده خاک اره نیز می‌تواند فعالیت زیادی داشته باشد.
نمودار ۳. فعالیت آنزیم اگزوگلکاناز بی‌جنبش شده روی آویس. خاک و برعکس از کانال‌های آن در برای انچه‌که با هیدروکسید آلومینیم پوشانده شده‌اند.

نمودار ۴. فعالیت آنزیم اندوگلکاناز بی‌جنبش شده روی آویس. خاک و برعکس از کانال‌های آن در برای انچه‌که با هیدروکسید آلومینیم پوشانده شده‌اند.

نمودار ۵. پایداری آنزیم اگزوگلکاناز بی‌جنبش شده روی آویس. خاک و برعکس از کانال‌های آن که با کلسیم با پتاسیم همیون شده و با هیدروکسید آلومینیم پوشانده شده‌اند.
فعالیت آزمایشی سلولولیکس پی-جیش شده در برخی از مواد آلی و کاتی خاک

نمونه ۱. پایداری آزمایشگاهی انگلولگونان پی-جیش شده روی آلی. خاک و برخی از کاتیهای آن که با کلیسی با پتاسیم هیپرون شده و با 

روس آزمایشگاهی انگلولگونان و انگولگونان پی-جیش شده روی خاک در میان نگهدارنده ها بیشترین است. در برابر آن،

افتا فعالیت آزمایشگاهی انگولگونان و انگولگونان پی-جیش شده روی آرسیل کمترین است. شاید این نهاده‌هایی که به

گوناگونی فرآیندی در پی-جیش شدن آن‌ها روی این

نگهدارندها می‌باشند. کم بودن فعالیت آزمایشگاهی بی-جیش شده روی کاتیهای خاک و زیاد بودن فعالیت آنها روی آرسیل و

مانده‌های کششی روز به روز که بیشتر فعالیت آزمایشگاهی

سلولولیکس حاکم‌ها وابسته به پیوست آنت است.

فعالیت آزمایشگاهی انگولگونان و انگولگونان پی-جیش شده روی

خاک و کاتی‌های هیپرون شده با کلیسی به اندامه چشم‌گیری

بیشتر از پتاسیم است. دیده شده است که از یک سو فعالیت

آزمایشگاهی سلولولیکس در کنان کلیسی بیشتر از پتاسیم

ارزیابی می‌شود و از سوی دیگر انرژیه بار مثبت پل کاتیونی

از پتاسیم به کلیسی می‌باید افزایش یابد سطحی و بی‌چیش

شنای آریزیها روی نگهدارنده می‌گردد (۱). این فرایند در

افزایش فعالیت آزمایشگاهی بی-جیش شده روی نگهدارنده‌های

هم‌پوشانی و رژه‌گر دارد. یعنی سرعتی، در این نمونه‌ها دیده

می‌شود که فعالیت آزمایشگاهی انگولگونان و انگولگونان پی-جیش شده

بحث و نتیجه‌گیری

اگرچه بی‌چیش سازی آزمایشگاهی در پتاسیم‌وزی، بیشتر برای

پس‌گیری دوره از آزمایشگاهی و کاهش هزینه فراوری آنها انجام

می‌شود (21)، ولی گزارش شده است که پتاسیم کوالنات

جیرف است که آن‌ها روی یک نگهدارنده می‌تواند آنزیم خاصی

مولکول آزمایشگاهی می‌شود، و پایداری ساختار فضایی آن را در برابر

باید در انرژیه می‌دهد (16). به هر ترتیب، هنگام

پی-جیش سازی آزمایشگاهی، خشکویت فعالیت و کششی آنها، به

بی‌چیش بی‌پتاسیمی در شرایت فعالیت و کششی آنها، به

راجعه پیشینه کلیسیشن، بدون انرژیه می‌شود، و از سوی دیگر انرژیه بار مثبت پل کاتیونی

از پتاسیم به کلیسی می‌باید افزایش یابد سطحی و بی‌چیش

شنای آریزیها روی نگهدارنده می‌گردد (۱). این فرایند در

افزایش فعالیت آزمایشگاهی بی-جیش شده روی نگهدارنده‌های

هم‌پوشانی و رژه‌گر دارد. یعنی سرعتی، در این نمونه‌ها دیده

می‌شود که فعالیت آزمایشگاهی انگولگونان و انگولگونان پی-جیش شده
کشاورزی است. بنابراین، شاید بنوان گفت که بخش برگی از فعالیت آنزیم‌های سلولولیتیک خاک وابسته به آنزیم‌های است که روی ماده‌های گیاهی در حیطه تنه‌غار و بی‌چسب می‌شود.

از آنجا که کاتیوین رش در حیطه با هیدرولیزهای آهن و آلومنیم شادن در دربار چگونگی جذب آنزیم‌ها در میان لاش‌های مونت و برای شده است گزارش که پوشاکنی کاتیوین رش با هیدرولیزهای آلومنیم مایه‌ای بوده‌است. جذب آنزیم آسیپراتاز (Tropease) روی آنها شده است (22). این پژوهش نشان داد که پوشاکنی هر یک از نگهدارنده‌های کاتیون با هیدرولیزهای آلومنیم به اندازه چند گیگر بر فعالیت آنزیم‌های بیچی بدون آن در آنما می‌باید.

فعالیت آنزیم‌های بیچی بدون آن در حیطه را کاتیوین‌های مهم‌ترین شده‌است. با توجه به یکمین مثبت کاتیوین گزارش و نوزه آنزیم‌ها در حیطه بیچی بدون آن (22) در دربار یکمین مثبت این نوزه بیچی مثبت بود. این آنزیم‌ها بیشتر می‌توان گفت. به همین حال در میرا و فعالیت آنزیم‌های بیچی بدون آن در ایوانس‌های بیچی روز آویسل چسب‌گیری می‌باشد.

سیستم‌گرایی

از نظر آنالیز نظری، کارکن آنزیم‌هاگام خاک‌شناسی و دامپوری دانشگاه صنعتی اصفهان و کارکن آنزیم‌هاگام پژوهشی زیست‌شناسی گل‌خانه دانشگاه اصفهان به رزه سرکار خانم مهندس خاصی صنفی گرامی می‌شود.

منابع مورد استفاده

1. صفری سنگایی، ع.1379. فازی‌گی میکرو برش آزمونهای آزمایشی در حیطه آزمایشی با کاربردن با آنزیم‌های لیگوسولولیتیک. قارچ‌ها در خاک. پایان‌نامه دکتری خاک‌شناسی دانشگاه شهید کشاورزی، دانشگاه صنعتی اصفهان.
2. کوچکی‌های، م. حسینی و ح. ر. خزاعی. 1376. سیستم‌های خاک (ترجمه). انتشارات دانشگاه فردوسی مشهد.


Mycota. II. Genetics and Biotechnology. Springer-Verlag, Berlin.
Twed, J. Van den, A. Harder and R. M. Buitelaar (Eds.), Stability and stabilization of enzymes. Proceedings of
cellubiohydrolase II from Trichoderma reesei. Science 249: 380-386.
20: 927-931.
Enzymologia 34: 213-225.