بررسی میزان ترکیبات فلاるために در دوران بلع و رسیدگی میوه شب رنگ مركبات

جواد فتحی مقدم ۱، پویف حمیدلوغی ۲، رضا فتوحی قزوینی ۳
سمانه فتح الهی ۴، محمود قاسم نژاد ۵ و داده پخشی ۶
(تاریخ دریافت: ۱۳۹۱/۲۷/۲۸ - تاریخ پذیرش: ۱۳۹۱/۲/۳۷)

چکیده
کیفیت میوه مركبات علاوه بر خواص فیزیکی و شیمیایی، به ترکیبات آنتی اکسیدانی چون آسکوئریک اسید، فلورا، فلاانونیمها و آنزیم‌های آنتی اکسیدانی نیز بستگی دارد. گروه فلاانونیمها به مصرف فلاانونیمها کلیکوریدی در مركبات غالبیت دارند و بازدارنده بیماری‌های مزمن چون سرطان و عارضه‌های قلبی و خونی هستند. در این مطالعه میزان فلاانونیمها کل و همچنین نارسیه در هپاتیت C و سانگینولو سایاوز سانگینولو، سایاوز، تراکو و تراکو چپ به طور همگنی در تیمارهای انتقالی در میوه بالغ و رسیدگی رنگ مركبات (آنسومن، سایاوز، سانگینولو، تراکو و تراکو چپ) با دستگاه HPLC به ترتیب با مقادیر ۲۶۷/۶ و ۳۷۳/۶ میکروگرم در گرم (میکروگرم در گرم) بود. همچنین، عارضه نارسیه در سانگینولو سایاوز از نظر میزان هپاتیت C نارسیه انحصاری در حالت ترکیب در سطح بالایی قرار داشته، میزان نارسیه کلیکوریدی در تراکو چپ به ترتیب ۲۴۷/۶ میکروگرم در گرم در بالای سطح و بعد از آن رقم سایاوز با مقادیر ۱۰۰ میکروگرم در گرم قرار داشت. میزان کلیکوریدی در میوه بالغ در ارقام تراکو و تراکو بالای رود. در میان ارقام هر مطالعه، رقم تراکو سطح بالایی را رسید. در حالت بلع و یا رسیدگی داشتند.

HPLC
واژه‌های کلیدی: زمان برداشت، مركبات، رسیدن، بلع، فلاانونیمها و

نرخه‌ی تولید و فراوری محصولات زراعی و باشی / سال چهارم / شماره سی‌و‌سه / ۱۳۹۳

* مسئول مکانیابی، پست الکترونیکی: jfattahim@yahoo.com

۱. استاد بر حوزه تحقیقات فیزیولوژی و مکانیسمی، مؤسسه تحقیقات مركبات کشور، رامسر

۲. پژوهشگر استادیار، استاد، استادیار، دانشجوی دکتری علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان

۳. مسئول مکانیابی، پست الکترونیکی: jfattahim@yahoo.com

۲۵
نتره تولید و فرآوری محصولات زراعی و پاکی / سال چهارم / شماره سی‌وهفتم / 1383

مقدمه

هگونه شناخت از تغییرات بیوشیمیایی میوه‌ها در حال رشد، به دلیل آگاهی از مراحل متابولیک بلوغ تا رسیدگی، تغییر کیفیت ظاهری و ارزش غذایی میوه‌های زیادی دارد. نتایج حاصل از بررسی های مختلف نشان از تغییر در مقدار این ترکیبات در سال‌های مختلف و با ارقام مختلف از پک جنس دارد (۱،۲،۳). ترکیبات فنی میوه مركبات شامل فلانونیدها (Flavonoids) و استهلاک فنی است و در این (Flavonoid glycosides) میان فلانونیدهای کلیکوزیدی (Neo hesperidin) اصلی در میوه میزان این ترکیبات در پوست بیشتر

از گرپتی‌فوت بود (۲۲). در یک مطالعه مشخص شد که هم‌سیرین در پرتابل و نسبتا و نارنجی در گرپی‌فوت از جمله ترکیبات فلانونیدی اصلی هستند که تحت تأثیر کیفیت تغذیه‌ای درخت قرار گرفته‌اند (۲۴). (Neo hesperidin flavon) نارنجی و تنووسری‌بین فلانون (Neo hesperidin flavon) فلانونیدهای اصلی در میوه ترکیبات گروه رنگ و متمایل به طعم نشین‌شده، در این رابطه با وجود فعالیت همچنین، (Neo hesperidin) فلانونیدهای کلیکوزیدی است، بنا مطالعه روش نقل فلانونیدهای در طعم و اثرات ترکیبات آماده که در میان (Narirutin) و روتوایژی‌پتین (Neoeriocitrin) بیشتر در انواع برگ‌کویی، گرگ فروت و برخی از ترکیبات نقل موجود است. در میان روتوایژی‌پتین (Rutinosides) و دییدیمین (Didymin) در عصاره برگ‌کویی، (24) برخی نتایج و لیموتروپ اشکار نشده است. در تحقیق ساخت ترکیبات فنی طی میوه ازگل زایی بررسی شد. در میوه‌های جوان ازگل زایی، کل کلمه از نظر غلظت و هم‌نوع ترکیبات بالاترین (۳۵) میلی‌گرم در ۱۰۰ گرم
بررسی میزان ترکیبات فلاونوئیدی در دو مرحله بلغون و رسیدگی میوه شیرینی

آنالیسی‌ها و باینجه‌ای میوه‌های سیب، قبل از برداشت کاهش یافته، چنین کاهشی در میوه‌های سیب، هلو و انگور نیز گزارش شده است. (۸)

هر گونه تغییر در ترکیبات زیست‌فلوئد در میوه‌های توانده متأثر از عوامل مختلف زنتیکی و محیطی باشد. این این ترکیبات در اثر فشار فیزیولوژی برای مصرف کننده لذا شناخت و رفتاری این خصوصیات در حین رشد میوه، به مدیریت کنترل کیفیت میوه کمک شایانی می‌نماید. بنابراین نیاز است که ارقام مختلف میوه، قرار گرفته تا تفاوت آنها و نقش زمان رسیدن میوه روی این ترکیبات منشأ شخصی شود. هدف از این آزمایش مطالعه میزان فلاونوئیدها اصلی در میوه‌های رنگ مرکبات در دو مرحله بلغون و رسیدگی و مقایسه آنها با هم تحت شرایط میوه‌های شیرینی بود.

مواد و روش‌ها

مواد گیاهی

در این پژوهش از محصولات شامل دو مرحله بلغون، غیرخوشی (تامسون نارال) و مسیبوز (Thomson navel) (محصول)، هر رنگ پرتقال خونی (مورو) (Moro) سالگیلیو، و کاراکو (Sanguinello) و کاراکو (Page) (روزهای) ۱۴۰ (بتویزولپیک) و ۲۳۰۰ (زمانن سیدن) (Full bloom) به دست آمده است. این پژوهش با استفاده از آزمون چند باره تعریض به فیزیک‌شیمیایی مختلف منطق‌شده شد.

استخراج فلاونوئیدها

به‌منظور استخراج فلاونوئید‌ها از محصولات مربوطه و سپس ۱۰۵ درصد (پایداری مستند) و از میوه‌های اصلی صفره و نیز به اثری کاهشی از ترکیبات فلاونوئیدی میوه‌ها مربوطه است. در جهت مطالعه استخراج شیده، میوه‌ها به‌کمک کاراکو از محصولات اصلی میوه‌های هر دو ترکیب دو رنگ آنتی‌کلاسیک شد. میوه‌ها در این آزمایش کاهشی از ترکیبات فلاونوئیدی مربوطه است. در چهار جهت مختلف درخت و دارای اکسی‌کسکس تغییری خاصی در جهت استحکام کاهش یافته کاهش از این آزمایش به سبب افزایش به‌کمک کاراکو و پیچقمه‌ها به‌کمک کاراکو کاهشی است. میوه‌ها به‌کمک کاراکو از محصولات اصلی میوه‌های هر دو ترکیب دو رنگ آنتی‌کلاسیک شد. میوه‌ها در این آزمایش کاهشی از ترکیبات فلاونوئیدی مربوطه است.
نتایج
فلاونوئید کل مقایسه میانگین های فلاونوئید کل ارقام مختلف میکروبها در شکل ۱ نشان داد که در صورت استفاده از فلاونوئید‌ها در مراحل بلور کننده تاراک و تاراک و نتوهیریدین که همه ارقام در زمان رسیدن سطح بالایی از فلاونوئید را دارا بودند، فلاونوئید کل در پرتو و نارنجی ناب در زمان رسیدن بالاترین بود و به‌طور مداوم تاراک با این رنگ داشت. کمیترین میزان تجمع فلاونوئیدی به میزان ۸/۳ میلی‌گرم در گرم ریز سانکسیلا بالغ و جوید داشت. میزان ترکیبات فلاونوئیدی اصلی در این آزمایش میزان ترکیبات فلاونوئیدی اصلی موجود در بیش از ۴ میلی‌گرم/گرم کاملاً می‌تواند به‌طور کامل در صورت استفاده از آزمون توکی در سطح احتمال ۵ درصد مقایسه شود.

جدول ۱: برنامه گردانی تعیین شده برای اندازه‌گیری ترکیبات فلاونوئیدی

<table>
<thead>
<tr>
<th>زمان (درصد)</th>
<th>حال A (درصد)</th>
<th>سرعت جریان (درصد)</th>
<th>حال B (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>5</td>
<td>۱</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>۵-۱۰</td>
<td>۱</td>
<td>۵</td>
<td>۱</td>
</tr>
<tr>
<td>۱۰-۲۰</td>
<td>۵</td>
<td>۵</td>
<td>۱</td>
</tr>
<tr>
<td>۲۰-۵۰</td>
<td>۵</td>
<td>۵</td>
<td>۱</td>
</tr>
<tr>
<td>۵۰-۶۰</td>
<td>۱</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>۶۰-۲۰۰</td>
<td>۱</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>۲۰۰-۹۰۰</td>
<td>۱</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>۹۰۰-۲۰۰۰</td>
<td>۱</td>
<td>۱</td>
<td>۰</td>
</tr>
</tbody>
</table>

نموده‌ای از ۲۵ میلی‌گرم فیلتر شده، اندزه‌گیری برای ترکیبات فلاونوئیدی (نارنجین، نتوهیریدین، هسریدین، کاتژین) به‌وسیله روش HPLC با Wasser 1525 انجام شد. سیستم مورد استفاده مدل ۱۵۲۵ HPLC Waters 2487 Binary و دندان‌کش با مشخصات ۲۴۸۷. پمپ از نوع با استفاده از اسپسلر مس این سیستم به طول ۱۵۰ میلی‌متر و قطر ۴ میلی‌متر با معادل دو میکرون بوت. حال A محلول متناوب بوت و حال B محلول متداول بوت. روش کار بصورت حال A به سرعت جریان ۱ میلی‌لیتر در دقیقه در دو طول موج ۲۴۰ و ۳۴۰ (جهت کاتژین) تهیه شد. حجم تری‌پنجره دربردارنده ۶ میکرولیتر بوت به‌طور خلاصه برنامه گردانی به‌صورت جدول ۱ تعیین شد. جاده‌های حاصل از ابن آزمایش براساس طرح بلور کامل تصادفی مورد تجربه واژن قرار گرفت و میانگین چهار حاصل با استفاده از آزمون توکی در سطح احتمال ۵ درصد مقایسه شد.

\[
\begin{align*}
 y &= 0.0898x + 0.0126 \\
 R^2 &= 0.994
\end{align*}
\]
پرسی میزان ترکیبات فلورونیدی در دو مرحله بلع و رسیدگی میوه شیم

شکل ۲. میزان فلورونیدی در مرحله بلع و رسیدگی میوه شیم رقم مربیات

ستونهایی که حداقل در یک حرف مشترکاند فاصله تفاوت معنی‌دار براساس آزمون دانکن (%) هستند.

شکل ۳. میزان نارینجین در مرحله بلع و رسیدگی میوه شیم رقم مربیات

ستونهایی که حداقل در یک حرف مشترکاند فاصله تفاوت معنی‌دار براساس آزمون دانکن (%) هستند.

کوئرستین در گوشت میوه ارقام مختلف در دو مرحله رشدی بالغ و رسیده اندازه‌گیری شد.

میزان نارینجین

نتایج نشان داد که میزان نارینجین در بین رقم‌های مختلف تفاوت معنی‌داری دارد. بر این اساس نارینجین در زمان بلع ارقام سامون و نارکو بالارک (به وسیله با مقاورد/ ۲۴۵/۸ و ۲۴۵/۳ میکروگرم در گرم) به‌طور مالی بیشتر نیز از نظر میزان نارینجین تفاوت معنی‌داری با نارکو ندارد (شکل ۳). در ارقام خونی مورو و سانگیلو و هسپریدین نارینجین بیشتر در زمان رسیدن در مقایسه با مرحله بلع میوه به میزان پیشتر در گوشت تجسید یافت است.

میزان هسپریدین

میوه رقم نارکو در مرحله بلع و رقم مورو در مرحله
نمایش نتایج و فرآوری محصولات زراعی و بالغ/صالح‌پذیر/شماره سی‌وسیم/1393

شکل ۳. میزان هپسریدین در مراحل بلع و رشد میوه شش رقم مکبات

ستون‌هایی که حداکثر در یک حرف مشترکاند، فاقد تفاوت معنی‌دار براساس آزمون دانک (%) هستند.

شکل ۵. میزان توهسپریدین در مراحل بلع و رشد میوه شش رقم مکبات

ستون‌هایی که حداکثر در یک حرف مشترکاند، فاقد تفاوت معنی‌دار براساس آزمون دانک (%) هستند.

بحث

فلایترنید کل
برخی از محققین از ارتباط میزان فلایترنید کل را به خصوص در مرحله رشدن با هدف بررسی ارزش غذایی و سلامتی خصوصی میوه مکبات مورد توجه قرار داده‌اند و برحسس اکیوالان کوتورسین بیان نموده‌اند. در گزارش میزان فلایترنید کل عصاره نارگی‌زنبوری در مرحله نوجوان با حداقل ۷/۸/۰/۷۷/۰ میلی‌گرم در گرم وزن‌توده کروش‌شدن (1). در مطالعه حاضر، میزان تجمع فلایترنیدکل در نارگی‌زنبوری در مرحله نوجوان با حداقل ۷/۸/۰/۷۷/۰ میلی‌گرم در گرم وزن‌توده کروش‌شدن (1). در

میزان کوتورسین
در گوشین کلیه ارقام میزان کوتورسین در میوه‌های بالغ (برداشت در ۱۲۰ روز بعد از تخم‌گذاری) بالاتر از رشد (۳۳پ) روز بعد از تخم‌گذاری) بود که بیشترین میزان مربوط به
پرسی میزان ترکیبات فلاونوئیدی در دو مرحله بلغ و رصيدی میوه شکه

شکل ۶ میزان کاتچین در مراحل بلغ و رصيد میوه شکه رقم مركبات

شکل ۷ میزان کوتسرستین در مراحل بلغ و رصيد میوه شکه رقم مركبات

فلونوئید‌های این ارقام در زمان رسیدن مربوط به نارینجین و نوه‌پی‌پرینیدان باشد. درجه برآوردا براساس نتایج داده در شکل ۱ و ۳، مقدار این ترکیبات در میوه‌های رسیده در سطح بالاتری نسبت به سایر مركبات فلاونوئید است.

تجزیه فلاونوئید‌های مهم HPLC

در مركبات حدود ۳۰ نوع ترکیب از گروه فلاونوئیدها شاملی شده‌اند. ترکیبات بخش نارینجین، همبندین، نوه‌پی‌پرین، کوتسرستین و پرینتوسپرینها (برتقابلی خونی) از مهم‌ترین فلوئید‌های موجود در مركبات هستند (۱۹). بسیاری از منابع وجود این ترکیبات در مركبات اکتشاف نموده‌اند. بر این اساس در یک مطالعه که در زمان رسیدن میوه و در پنج رقم قبلاً این ترکیبات سروت پوست وجود مقدار مربوط به ترکیبات فلوئیدی پروسیش شد. نتایج حاکی از شناسایی هفت ترکیب فلوئیدی شده است که رقم انسو از سطح ترکیبات فنی و فلانوئیدی بالایی برخوردار بوده و علت مقاومت به سرمای بالای آن‌ها نیز وجود همین ویژگی ذکر نموده‌اند. نباید این ترکیب با فند نسبت به سایر مركبات زیست‌فعال‌بالا از نفطه نظر تحمیل سرمای شیء ایران و بود سرمای ناگهانی برای اهمیت می‌یابد. در ترکیبات دیگر میزان فلانونوئید کل در هفت رقم از مركبات پروسیش که در این میان دامنه فلانوئید کل از ۱/۴ (کامکوات) نا ۱۱/۱۲۲ (نمون) برحسب میلی‌گرم در گرم وزن خشک متغیر بود (۲۰). گزارش‌های بررسی روند تولید این ترکیبات طی رسیدن در مركبات مشاهده شد. لیکن با مقابله میزان فلانوئید‌های ارگ سورد مطالعه با نتایج سایر محققین در زمان رسیدن مشخص می‌شود که وضعیت فلانوئیدی این ارقام به عنوان ترکیبات انتی‌اکساندا انتی‌اکساندا با سایر گزارش‌ها برایی می‌کند. از طرفی به نظر می‌رسد گالب.
شامل اربوستین (Eriocitrin)، ناریوتوستین (Neoeriocitrin)، ناریورتین (Narirutin) و دیدیمین (Didimin).

در بافت گوشت مركبات بود بهطور مشابه در این آزمایش نیز تركیبات تازههای، نیتروهیدرین و

نیتروهیدرین در میوههای بالغ و رسیده شناسایی شد. مجموع

توده تشکیل دهنده میوههای بالغ و رسیده شناسایی شده در دامنه

100 میلی گرم در پرتقال سالکینلو بود. در این آزمایش پرتقال

و سیسکینلو نیز دو برابر میزان تازههای نیتروهیدرین و

نیتروهیدرین و پرتقال سالکینلو فاقد این تركیب بودند.

در مطالعه حاصل میزان نیتروهیدرین نسبت به تناوب انواع نیتروهیدرین در 500 میلی گرم و 100 میلی گرم به

30/17% نیتروهیدرین در گردو گازهای ویژه برگزاری

فوق داشت. همچنین براساس گزارش کامدار و همکاران

(7) بیشترین نیتروهیدرین در مقدار 110 میلی گرم نیتروهیدرین و

 mower گردو به مقدار 110 میلی گرم نیتروهیدرین و

ترکب اولیه، این میوه ۴۰-۶۰ گرامی در این آزمایش قاره دارد. در این

راپه، کمالایی و همکاران (10) در پژوهش خود بالاترین

عمارت نیتروهیدرین را در مرحله پرتاب و نیتروهیدرین در

کلماتی در زمان ۵۵۰ ثانیه بعد از مرحله تحمیل در مرحله

نیتروهیدرین مناسب تشن حس داده (10). در آزمایش حاضر

در زمان بلع که ترکیب ۱۲۰ روز بعد از تحمیل هست و از مرحله

فندقی میوه گاوگشت است - در هر دو رنگ پرتقال محلی و

نیتروهیدرین به شدت نسبت به سایر ارقام

نتیجه‌گیری

به طورکلی نتایج این نشان داد که میوه مركبات می‌تواند به عنوان یک

میون غی از فلاترونتیدها مطرح باشد. اگر چنین این ترکیبات از نظر
منابع مورد استفاده

