بررسی تأثیر باکتری‌ها و قارچ‌های محیط روی رشد گیاه از افق‌زایان عمکرد و برخی از پارامترهای (Solanum tuberosum)

رشد سیب‌زمینی

امین حسن نعمت و محمود اطرش

(تاریخ دریافت: 1391/5/6؛ تاریخ پذیرش: 1391/7/27)

چکیده

مطالعه ریزوموجودات خاکی و برهمکنش روابط همزیستی میفید بین اجزاء مختلف زنبوری غذازی از جمله میانحث نرین در شاخص پایدار می‌باشد. بنابراین بررسی تأثیر تلفیق محیط روی رشد گیاه از افق‌زایان عمکرد و برخی از پارامترهای (Solanum tuberosum) با باکتری‌های (Azotobacter chroococcum)، پسودوموناس (Pseudomonas putida)، باکتری‌های گلوموس (Glomus intraradices) و باکتری‌های خوراکی (Bacillus polymixa) بر روی سیب‌زمینی (Solanum tuberosum) انجام شد. نتایج نشان داد که تأثیر بیولوژیکی صرب و نمونه‌های مختلف نسبت به ضعف اندازه نسیم برای میانحث نرین سبب شد. اما تفاوت معنی‌داری از لحاظ طول و وزن میان تیمار نیاز به تفاوت اثر متفاوت رقم و تیمارهای بیولوژیکی به حداقل نیز می‌تواند در گیاهان بهبودی نسبت به سایر بیولوژیکی‌ها باشد. در نتیجه، نتایج این آزمایش حاکی از آن است که کاربرد تلفیق باکتری‌های مورد بر این سیب‌زمینی می‌تواند بهبودی نسبت به سایر بیولوژیکی‌ها باشد.

واژه‌های کلیدی: ازوتوباتکر، پسودوموناس، سیب‌زمینی، میتی تیوبر

1. دانشجوی دکتری زراعت، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد خوراسانگان
2. استادیار پژوهشگاه بیوتکنولوژی منطقه مرکزی کشور، اصفهان
* مسئول مکاتبات: amin5000000@yahoo.com
مقدمه

سیب زمینی (Solanum tuberosum) یکی از مهم‌ترین گیاهان زراعی شناخته شده است و از نظر میزان پروتئین، نشانه‌هایی کربوهیدرات، اسیدهای آمینه ضروری، و یونی‌های و موارد معدنی در تغذیه انسان از اهمیت خاص برخوردار است. سیب زمینی با سطح زمین کشت بیش از ۸ میلیون هکتار و پتانسیل تولید حدود ۲۳۰ میلیون تن در سال چاپگاه بسیار مهمی را در کشاورزی جهان به خود اختصاص داده است (۱). در ایران سیب زمینی محصولی مهم و استراتژیکی می‌باشد که از نظر تولید، دوست و اندازه اهمیت آن کالای سوییمی را در بین سایر محصولات در اکثری استاد (۱۵) می‌باشد. سیب زمینی در ایران بیش از ۲۵ کیلوگرم در سال است که این میزان روز به روز در حال افزایش می‌باشد و با توجه به روند افزایش جمعیت جهان به تولید بیشتر این محصول انتخب‌ناباید.

است (۱).

روش‌های معکوس و مداخلات کشاورزی در جهان موافقت قابل توجهی را در جهت مدیریت منابع داشته‌اند و با تکنیک‌های جدید هدایت سه‌گانه و منابعی از قبل سیمو و کودهای شیمیایی به‌طور مصرفی و در دوری محصولات کشاورزی کاهش باوری خاک و همچنین ایجاد اکوسیستم‌های لاپید داشته‌اند (۲۰) و (۲۲). از اینرو به منظور برخورداری از یک سیستم کشاورزی پایدار، استفاده از نهادهای که علاوه بر افزایش تولید، موجب بهبود چیست که محصولات اکوسیستم‌های ناباید تولید. ابزاری که تاکید به اهمیت فعالیت‌های آگهی‌سازی، سوییمی و درحقیقت بهبود جهانی، با جهت محدود و محدود شدن حرکت به محصولات و همچنین کاهش آلودگی منابع آب می‌شود.

همچنین گزارش شده است که کشورهای مختلف جنگ سودوموناس در کنار قارچ‌های بیماری‌زا مالنتون و از طریق مکانیسم‌های مختلفی از جمله تولید سیدروفور، سنت آنتی بیوتیک‌ها، تولید تست‌های کمی، افزایش جذاب فسفور، تولید نیتروژن و سنت آنزیم‌های نظارت کننده غلظت اینک در چاپ سبب تحریک رشد گیاه می‌شود (۷). بررسی و سنا (۵) گزارش کرده‌اند که افزودن کودهای بیولوژیک به

۳۸
بررسی تأثیر باکتری‌ها و قارچ‌های محیطی بر کیفیت گیاه...
نتایج و بحث

نتایج حاصل از تجربه واریانس حاکی از آن بود که تأثیر تیمارهای آزمایشی بر طول ساقه، تعداد ساقه، تعداد هواپیمایی و صفات مربوط به همزدیادی تیمارهای مختلف و وزن تنش خشک کل می‌تواند در سطح احتمال 6% معنی‌دار باشد. اما وزن و طول می‌تواند تحت تأثیر تیمارهای آزمایشی قرار گرفته باشد.

طول بلندترین ساقه

نتایج بدست آمده از این تحقیق نشان داد که تأثیر تلقیح با فارگر و باکتری‌های محکر رشد بر طول ساقه گیاهی‌های سیب‌زمینی در سطح احتمال 6% معنی‌دار نبود (جدول 1). پیش‌ترین طول ساقه در گیاه‌های تلقیح شده با ازتبکارک+گل‌موم مهابتی که به تنها افزایش 9 درصدی نسبت به تیمار شاهد شد (جدول 2). این در حالی بود که طول بلندترین ساقه در سطح احتمال 6% معنی‌دار نبود (جدول 1). به‌طوری که رقم آرینا در مقایسه با رقم اکیرا و مارلون با ساقه بلندتری داشت (جدول 2).
در هر سنو و برای هر حامل آزمایش میانگین‌هایی که حداقلی دارای یک حرف مشترک هستند، براساس آزمون حداقل تفاوت معنی‌دار در سطح
% اختلاف معنی‌دار ندارند.
شن (جدول 1). رقم آگرا با میانگین 1/2 بیشترین تعداد ساقه فرعی را نسبت به هم گزارش کرد. همچنین در سطح اکسترم منظور شده در (جدول 1) شالان (20) افزایش خصوصیات رشدی گیاه از جمله ارتفاع گیاه سیاهدانه (Nigella sativa) با افزایش و سودوموناس دارای شانه و علت آن را افزایش یافته و این سنجش با آگرا و پورلیگهوم (2) نیز افزایش ارتفاع گندم و جو را در تیمارها تلقیح شده با ازتوکت افزایش کردن و بیان نمود که تلقیح‌های باعث بهبود خصوصیات حاکم ماهیت داشته و نیز افزایش محیطی تیترن قابل استرس که می‌شود و از این طریق رشد طولی گیاه را تحت تأثیر قرار می‌دهد.

تعداد ساقه فرعی

تأثیر تیمارهای بیولوژیک بر تعداد ساقه فرعی در سطح اکسترم % معنی‌دار شد (جدول 1). تعداد ساقه فرعی در نتایج گزارش شده در افزایش افزایش ساقه فرعی نسبت به تیمار شاهد شدند (جدول 2). با اجرای برنامه برای تیمارها در کنار همگی و سودوموناس به سطح افزایش شده با افزایش تعداد ساقه فرعی در این گیاه‌های به‌طوری که تعداد ساقه فرعی در افزایش یافته اثر رقم بر تعداد ساقه فرعی در سطح 8% معنی‌دار.

وزن خشک اندام هوایی

نتایج جدول 1 حاکی از آن است که تأثیر تیمارهای بیولوژیک بر وزن خشک اندام هوایی گیاه‌های سیبزمنی در سطح اکسترم % معنی‌دار شد. تیمارهای ازتوکت و سودوموناس به‌طور مشابه و ازتوکت و سودوموناس به‌طور مشابه و 50 و 47 درصد.
جدول ۳- فراکس همبستگی پیرسون برای صفات مورد آزمایش در آمیاچ

<table>
<thead>
<tr>
<th>صفات آزمایشی</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول بلندترین ساقه</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>تعداد ساقه فرعي</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>وزن خشک اندام هواپی</td>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
</tr>
<tr>
<td>وزن میانی تیوبر</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
</tr>
<tr>
<td>عملکرد میانی تیوبر</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
<td>۰/۶۲</td>
</tr>
<tr>
<td>وزن خشک کل میانی تیوبر</td>
<td>۰/۶۴</td>
<td>۰/۶۴</td>
<td>۰/۶۴</td>
<td>۰/۶۴</td>
<td>۰/۶۴</td>
<td>۰/۶۴</td>
<td>۰/۶۴</td>
<td>۰/۶۴</td>
</tr>
<tr>
<td>وزن خشک اندام هواپی</td>
<td>۰/۹۸۴</td>
<td>۰/۹۸۴</td>
<td>۰/۹۸۴</td>
<td>۰/۹۸۴</td>
<td>۰/۹۸۴</td>
<td>۰/۹۸۴</td>
<td>۰/۹۸۴</td>
<td>۰/۹۸۴</td>
</tr>
<tr>
<td>وزن خشک کل اندام هواپی</td>
<td>۰/۹۸۵</td>
<td>۰/۹۸۵</td>
<td>۰/۹۸۵</td>
<td>۰/۹۸۵</td>
<td>۰/۹۸۵</td>
<td>۰/۹۸۵</td>
<td>۰/۹۸۵</td>
<td>۰/۹۸۵</td>
</tr>
</tbody>
</table>

به طوری که رقم آگری با موانع ۲/۷ گرم بیشترین و رقم آریبا با موانع ۲/۵ گرم کمترین وزن خشک اندام هواپی را دارا بودند (جدول ۳). اثر متغیر رقم و تیوبرهای پیلوفیلک نیز برای وزن خشک اندام هواپی گیاه‌های سپیدزمنی متعادل می‌باشد (۱/۰). به‌طوری که بیشترین وزن خشک اندام هواپی (۲/۵ گرم) در گیاه‌های رقم آگری تلقیش شده با ازونابکتر به‌دست آمد (شکل ۳). ازونابکتر نه تنها به واسطه تثبیت نیتروژن
تعداد میت تیوبر

همگانگر یکی از تنوع جدول ۱ مشخص است، نظیر گیاه‌های سیبزمینی با بکریهای و قارچ‌های محکم رشد تأثیر معنی‌داری بر تعداد میت تیوبر‌های سیبزمینی داشت. به‌طوری که تمامی تیوبرهای بیولوزیک موجب افزایش تعداد میت تیوبر نسبت به تیمار شاهد شدند. در بین تیمارهای آزمایشی بیشترین تعداد میت تیوبر مربوط به تیمار ازتوباکتر سودوموناس افزایش موجب ۳۷٪ درصد افزایش نسبت به تیمار شاهد شدند (جدول ۱). اثر رقم تعداد میت تیوبر در سطح ۵٪ معنی‌دار بود.

وزن و طول میت تیوبر

مطالعه نتیجه نشان داده شده در جدول ۱ استفاده از عوامل بیولوزیک تأثیر معنی‌داری بر وزن و طول میت تیوبر گیاه‌های سیبزمینی نداشت. اما اثر رقم برای هر دو صفت در سطح ۵٪ معنی‌دار شد. به‌طوری که رقم آریندا نسبت به رقم آریندا و مارفونا نسبت به وزن و طول میت تیوبر بیشتری بود.

در گیاه‌های لتقیح شده با ازتوباکتر و سودوموناس گزارش گردید. در گیاه گارد کودهای بیولوزیک Vallisneria spiralis حاوی مخلوط باکتری‌های باسیلوس و سودوموناس سبب افزایش ۴۰ درصد وزن خشک گیاه نسبت به تیمار شاهد شد (۳۱). تناوب تحقیقات زهور و همکاران (۲۵) نشان داد که در اثر تلقیح گیاه درد با ازتوباکتر و سودوموناس وزن خشک گیاه درد تا ۱۸ درصد افزایش یافت و دلیل این موضوع را به‌طور دسترسی و جدید به‌طور عناصر غذایی ذکر کردند. بین دانشند که این موضوع در نهایت باعث افزایش تجربه ماهی خشک در دو فرآیند است.

شکل ۳: اثر متوالی رقم و تیمارهای بیولوزیک بر وزن خشک اندام هواپیمای گیاه‌های سیبزمینی

۶ هر ستون میانگین ۱۰ تکرار (SE) است. (۳۲)
بررسی تأثیر باکتریها و قارچ‌های محور رشد گیاه با افزایش ...
نمایش توزیع و فراوری محصولات زراعی و باغی / سال چهارم / شماره سیزدهم / ۱۳۹۳

شکل ۵ اثر مقیاس رنگ و تیمارهای پیلوژیک بر عملکرد میکن تیوبر گیاهچه‌های سیب‌زمینی

۱۰ حر ستون میانگین ۱۰ تکرار خطا استاندارد (SE) میان‌شاند.

شکل ۶ اثر مقیاس رنگ و تیمارهای پیلوژیک بر وزن خشک کل میکن تیوبر گیاهچه‌های سیب‌زمینی

۱۰ حر ستون میانگین ۱۰ تکرار خطا استاندارد (SE) میان‌شاند.

میکن تیوبر نسبت به تیمار شاهد شد، همان‌گونه که در جدول ۲ ملاحظه می‌شود تیمارهای ازتوکستر+ سودوموناس، سودوموناس و ازتوکستر+ باسیلوس منجر به افزایش وزن خشک کل میکن تیوبر ترتیب به میزان ۳/۸ و ۶/۱۰ درصد نسبت به تیمار شاهد شدند. اثر رقم بر وزن خشک کل میکن تیوبر در مطالعه ۶ معمولی است (جدول ۱). به‌طوری که رقم آریدا و وزن خشک میکن تیوبر بیشتری را نسبت به آری و مفرحونا از خود نشان داده، همچنین اثر مقیاس رقم و تیمارهای پیلوژیک نیز برای وزن خشک کل میکن تیوبر در سطح احتمال ۹۵٪ معنی‌دار نشد، همان‌چنین اثر تأثیر

وزن خشک کل میکن تیوبر تابیت حاصل از تجزیه واریانس و مقایسه میانگین وزن خشک کل میکن تیوبر در جداول ۱ و ۲ نشان داده شده است. همان‌گونه که مشخص است وزن خشک کل میکن تیوبر تحت تأثیر تیمارهای پیلوژیک قرار گرفت. به‌طوری که کاربرد باکری‌ها و فیش‌های محیطی رشد منجر به افزایش وزن خشک کل

۴۶
آریدا تلقیح شده با ازتویاکتر سودوموناس گلوموس بود.

