پرسی صفات کیفی دانه. زیرواحدهای گلوئونین و روابط آنها در گندم دورهم

مریم گل آبادی و احمد ارزانی

چکیده

به منظور بررسی صفات مرتبط با کیفیت دانه و زیرواحدهای گلوئونین با وزن مولکولی زیاد (LMW) و کم (HMW) در دو رقم آزمایشی شد. شش صفت کیفیت دانه شامل وزن حجمی، سختی دانه، گلوئون تر، گلوئون خشک، پروتئین و حجم رسوش در طبق روشهای بین‌المللی پایه بررسی شدند. لاحق آنها، روابط میان صفات کیفیت دانه با وزن مولکولی گلوئونین با دو روشهای SDS و PAGE (Page) 13 ترکیبات شناسایی شدند. در نهایی تجزیه عامل‌ها، دو عامل پرترکیب را نشان داد که جمعاً 65 درصد از کل تغییرات را توجیه می‌کردند. عامل اول به نام کمیت پروتئین و عامل دوم به نام عامل کیفیت دانه نام گذاری شد. لاحق آنها، تفاوت‌های بین دو روش در ترتیب صفات کیفیت دانه، وزن مولکولی گلوئونین و حجم رسوش کیفیت دانه مشاهده شد. در نهایی، پروتئین‌های زیرواحدهای گلوئونین که در آزمایشات شیرینی‌سازی گردیدند، در مکان زنی Glu-B1 تحت آنل نسل مشاهده شد. در مکان زنی Glu-A1 زیرواحدهای 4-7، 12-14 و 20 دیده شدند. که هیچ کدام از نظر صفات SDS پیش‌تری-کیفیت دانه اختلاف معنی‌داری با یکدیگر نشان نداشتند. ولی در هر دو روش، حجم رسوش مایعاتی موجود به نسبت بین زیرواحدهای 24 A و 24 B اختلاف معنی‌داری داشتند. در نهایی، پروتئین‌های زیرواحدهای 4-7، 12-14 و 20 جمعاً در نظر گرفته شدند. لاحق آنها، بخش‌های مختلف کیفیت دانه، رابطه بین وزن مولکولی گلوئونین و حجم رسوش پروتئین زیرواحدهای 4-7، 12-14، 20 و 24 A، B و C مشاهده شد. لاحق آنها، بخش‌های مختلف کیفیت دانه، رابطه بین وزن مولکولی گلوئون

واژه‌کلیدی: کیفیت دانه، گلوئونین

1. به ترتیب دانشجوی سایپ کارشناسی ارشد و دانشیار اصلاح نیانات. دانشکده کشاورزی، دانشگاه صنعتی اصفهان
مقدمه
گندم دوروم به‌عنوان ماده‌ای اولیه برای تولید پاسدا (انواع محصولات مکانیکی، اسپاقنسی، پرداختن و غیره) است (1،2). ارزش این محصول به کمیت و کیفیت پروتئین و اسیدهای آمینه آن بستگی دارد (3). روش‌های بسیاری برای ارزیابی کیفیت پاسدا به کار رفته است. پس از تهیه و مخلوط مولکول‌های غلیظ، عوامل فیزیکی و عوامل شیمیایی مؤثر بر کیفیت اشکال کرده. عوامل فیزیکی شامل صفاتی مثل وزن حجمی و سختی دانه، و عوامل شیمیایی شامل محتوای پروتئین، حجم رسوپ SDS و محتوای گلوتون می‌باشند (4). برخی از پژوهشگران محتوای پروتئین را موجب ثبات بیشتر می‌شود. در طی فرآیند پخت به انداره کافی محتوای شبده مورد شده و مقدار ذراعی از مواد پاسدا در آپ پخت رها می‌شود. اثر محتوای پروتئین بر چسبندگی اسپاکنگ نیز متفاوت است (5).

گزارش شده است (14 و 27) أن آزمایش عمومی و همکاران (4) دریافتند که با افزایش محتوای پروتئین مدت زمان پخت افزایش می‌یابد، بدین‌گونه که اسپاکنگ از بين برود. در بررسی دکتر و همکاران (6) در گندم دوروم مشخص شد که گردوی‌های A1، A2، 4A و 5B بر افزایش نهایی پاسدا مؤثرند.

طبق گزارش جانتربو و همکاران (7)، نهایت مقدار پروتئین کیفیت مطلوب پخت پاسدا نسبت، ترکیب گلوتون در پروتئین داشت چشم‌گیر بیشتر پخت نیاز دارد. آزمون رسوب SDS که مهم‌ترین استحکام گلوتون است (21 و 24)، کیفیت

پخت را تحت تأثیر قرار می‌دهد. به طوری که انتظار می‌رود، گلوتون بر کیفیت پخت پاسدا بیش از محتوای پروتئین گزارش شده است (16). افزون بر این، استحکام پشتیبان گلوتون باعث کاهش شکستگی و خرد شدن مکانیکی می‌گردد. در مراحل تولید و توزیع می‌شود (20). ضمن این که مردان حجم رسوپ SDS نیز عاملی است که با شاخص پخت همبستگی نشان داده است (9 و 33).

190
بررسی صفات کیفی دانه، زیرواحدهای گلتنین و روابط آنها در گندم دوروم

محصولات باستا در گندم دوروم در ارتباط با یک آلف خاص عبیر گلتنین در زیر واحدهای انسکولوژی و زدایان کم و نیز HMW ثابت شده است. به طوری که این واحدهای پیشتری در فرایند حساسیت در غنیت و حجمی سختی دانه، درصد گلنین نر و خشک، محصولات پروتئین و

ابست، در طولی که نر و فرآیندل، به مقدار ۲۲۰ در روز گلنین دوروم

۴ اگلیا بانده متفاوت نشان دهنده کرد. که تنا در نوی اصلی

فاوندای زیاد مشاهده شد و نوارهای LMW-۱ و LMW-۲ فراوندای آنها بانده وLMW-۱ زیر فراوندای بریسترد را

نیش داد. این نمودهای در گندم دوروم

بود با نمود زیرواحدهای گلنین رابطه نزدیکی با

کیفیت یکش باستا دار. از سوی دیگر، دو نوع اصلی گلنیدین

شامل گاما-گلنیدین در و همکاران ۲۸ نشان دادند که در گندم دوروم

و HMW کیفیت یکش و ضعیف گلنین. نتیجه‌گیری مطرح از گندم دوروم در ارتباط با

می‌باشد. LMW-۲ و LMW-۱ پوزستگی دارند (۲۰ و ۲۸). کریه اضافه از گلنیدین‌ها برای انتخاب لایه ی بزرگ در

برنامه‌های اصلاحی دوروم عضویت دارد و لی میانهLMW

پرتوز نشان داد. این نمودهای گلنین مشابه، به دو یا چند

مختلف، که دارای میانگین استحکام گلنون متفاوت مغني داری

همکاران (۲۸). حجم رسوب و

SDS محسوب گلنین در دانه گلنیدین

HMW نمایندگی چندانLMW

نشان نداد. اگرچه زیرواحدهای۲۴۰۸ نسبت به ۲۴۰ و ۲۰ مقدار

بریسترد نمود. زیرواحدهای LMW رسوب SDS بسته اصلی

انحلال محتوای مغذی دانه آنها LMW و ۲ SDS

حجم رسوب بیشتری کنند. Zn۲۸ رسوب اصلاحی LMW

مقدار رسوب بیشتری نمود. ثابت و همکاران (۲۸) نسبت به

نمایندگی نسبت داستان، و میانگین رسوب SDS را در میان

زئی Glu-B۳ که نشان داد. ۱۲ و ۲ نبود.

زیرواحدهای HMW بندی که در Glu-A۱ در

Zynta en s急需های مقدار رسوب SDS نشان داد (۳۴). تورچتا و همکاران (۲۴) گزارش دادند که زئی Glu-B۳ در

مقدار حساسیت در غنیت و حجمی سختی دانه، درصد گلنین نر و خشک، محصولات پروتئین و

۴۴ درصد این نتیجه را توجیه می‌کرد. در پژوهشی دیگر (۳۳) مشخص شد که میانه Zn۲۸ Glu-B۳ Glu-B۱ Glu-A۱

زئی حضور

۱۸۶ و ۵۴ درصد

تغییرات حساسیت در غنیت و حجمی سختی دانه، درصد گلنین نر و خشک، محصولات پروتئین و
کمک گرفته شد. در انجام عملیات آماری روی زیرواحدها، زیرواحدهای گلودن به صورت متغیر اندیکاتور (Indicator)، در نظر گرفته شد و حضور یا عدم حضور هر آن را برای تریب با اعداد بک و صفر در هم نوشتند. این گردید و برای بررسی تأثیر زیرواحدها بر صفات یکی از بهترین کامپیوترهای مدل خطی عمومی (GLM) (1) برای یک مکان‌های زندگی Glu-B3 و Glu-B1 استفاده شد.

نتایج و بحث
نتایج آماری چاپی، شامل میانگین‌ها، انحراف معیار، حداکثر و حداقل ضریب تغییرات صفات در جدید ۱ آن در سطح ۵ درصد حجمی نسبت به SFS و حداکثر گلودن تبر، و خشکی به SFS تریبی با ضریب تغییرات نیز (CV) (۲) و (۳) نتایج نشان دادند. سپس، حمله این این استفاده از SFS گرده. سپس، دانه باید برای این استفاده از SFS

تجزیه آماری یک تغییر در حداکثر، ضریب تغییرات صفات و حداکثر ضریب تغییرات صفات در میان همه ژنتیک‌ها برآورده شد. همچنین، ساده‌سازی، به تجهیزات ضریب تغییرات در صورتی که کمتر از آن سرشار از نیازهای شناسی‌نگر و در نتیجه داده رابطه بین مجموعه‌ای از متغیرها یکی از نتایج استفاده قرار گیرید. از روش مؤلفه‌ای اصلی و سپس دوران عامل‌ها از طریق روش وریکس با نرمافزار SAS برای استخراج عامل‌ها استفاده شد. تجزیه خورشیدی زنتیک‌ها به منظور گروه‌بندی و کلاسیک جمع‌آوری صورت گرفت و میانگین‌گر هم‌هسته‌ای حاصل شده یا یکدیگر با توجه به روش وارد. و با آن استفاده از متغیرهای استانداردهای سازمانی سازمان (Statistical Program for Social Sciences) Pseudo (The Cubic) و معیار توان سوم خوش‌سازی (Hotelling’s T² test) و میانگین مدلی (Beal’s F-Type Statistic) و (Clustering Criterion

حجم رسوپ SFS 104 درصد از زنگاه‌های‌گردد. در صورت گردد نیازهایی از آن در طیف عامل‌ها با استفاده از SAS برای استخراج عامل‌ها استفاده شد. تجزیه خورشیدی زنگاه‌ها به منظور گروه‌بندی و کلاسیک جمع‌آوری صورت گرفت و میانگین‌گر هم‌هسته‌ای حاصل شده یا یکدیگر با توجه به روش وارد. و با آن استفاده از متغیرهای استانداردهای سازمانی سازمان (Statistical Program for Social Sciences) Pseudo (The Cubic) و معیار توان سوم خوش‌سازی (Hotelling’s T² test) و میانگین مدلی (Beal’s F-Type Statistic) و (Clustering Criterion
جدول 1. میانگین، انحراف معیار، حداقل و حداکثر ضریب تغییرات صفات کیفیت دانه در ۱۰۴ زنوتیپ گندم

<table>
<thead>
<tr>
<th>ضریب تغییرات</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>حداقل</th>
<th>حداکثر</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷/۰</td>
<td>۳۹/۶</td>
<td>۴/۴</td>
<td>۲۶/۲</td>
<td>۴۴/۰</td>
</tr>
<tr>
<td>۱۷/۵</td>
<td>۱۳/۹</td>
<td>۱/۷</td>
<td>۹/۶</td>
<td>۱۷/۰</td>
</tr>
<tr>
<td>۸/۵</td>
<td>۱۴/۴</td>
<td>۷/۰</td>
<td>۱۰/۰</td>
<td>۱۰/۰</td>
</tr>
<tr>
<td>۱۴/۳</td>
<td>۲۶/۲</td>
<td>۳/۰۳</td>
<td>۲۸/۹</td>
<td></td>
</tr>
<tr>
<td>۲۴/۳</td>
<td>۴۹/۵</td>
<td>۷/۱</td>
<td>۲۹/۱</td>
<td>۷۱/۰</td>
</tr>
<tr>
<td>۱/۵</td>
<td>۸۲/۷</td>
<td>۷/۸</td>
<td>۸۱/۲</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. ضرایب همبستگی ساده صفات کیفیت دانه مورد بررسی در ۱۰۴ زنوتیپ گندم دوروم

<table>
<thead>
<tr>
<th>حجم رسورب</th>
<th>وزن حجم</th>
<th>حجمی SDS</th>
<th>محتوای گلوتن</th>
<th>بعضی‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>برشی (می‌دهد)</td>
<td>محتوای گلوتن نر و خشک بیشترین</td>
<td>۱/۹۸۰</td>
<td>۴/۶۸۰</td>
<td></td>
</tr>
<tr>
<td>محتوای گلوتن نر و خشک بیشترین</td>
<td>۱/۰۸۰</td>
<td>۳/۶۸۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>محتوای پروتين</td>
<td>۱/۰۸۰</td>
<td>۳۰/۶۸۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سختی دانه</td>
<td>۱/۰۸۰</td>
<td>۱/۰۸۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDS حجم رسورب</td>
<td>۱/۰۸۰</td>
<td>۱/۰۸۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن حجم</td>
<td>۱/۰۸۰</td>
<td>۱/۰۸۰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

و **: به ترتیب معنادار در سطوح احتمال ۵ و ۱ درصد.

میزان بیشتر در همبستگی بین مواد غذایی و میزان عوارض مختلفی به تعقیب می‌رسد. میزان همبستگی بین حجم رسورب و SDS بخشی از این نتایج است. با توجه به این که تعداد کمیت گلوتن و پروتئین از حجم رسورب حاصل می‌شود، میزان همبستگی بین SDS و حجم رسورب به ترتیب معنادار با مقدار ۰/۳۲ و ۰/۳۰ می‌باشد. نشان داد که ده‌گونه انتخاب میان کمیت گلوتن برای کیفیت آنتاست. با توجه به این که در تعیین کمیت گلوتن و پروتئین از حجم رسورب سطح‌های مورد استفاده می‌شود (۱۱)، همبستگی این صفات با صفات دیگر SDS اهمیت دارد و انتخاب برای حجم رسورب می‌تواند میزان همبستگی بین دو صفات تأکید دارد (۲۴ و ۳۲).
جدول 3: ضرایب عملکرد مشترک و واریانس‌های نسبی و تجمعی و میزان اشکارکاری داده‌ها در صفات کیفیت‌های 104 ژنوتیپ گندم دوره 1/2

<table>
<thead>
<tr>
<th>میزان اشکارکاری</th>
<th>ضرایب عملکرد مشترک دوران یافته صفات</th>
<th>عامل 1</th>
<th>عامل 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/83</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/99</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/45</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/77</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/11</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/14</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/19</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/27</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/39</td>
<td>0/23 0/43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

به منظور بررسی و درک روابط میان صفات همبسته و گروه‌بندی صفات از تجزیه عامل استفاده شد. یک تجزیه توانست پنج صفت کیفیت دانه را در دو عامل استخراج شده توزیع نماید. جدول 3 ضرایب عملکرد دوران یافته با این عامل‌ها نشان می‌دهد. این عامل مجموعاً ۶۵ درصد واریانس کل را توجیه نمی‌کند. به این مقدار سهم عوامل اول و دوم به ترتیب ۲۹/۸ و ۲۵/۲ درصد است. در عامل اول متغیرهای گلوتن تر و گلوتن خشک دارای بالا عامل مثبت و زیادی بودند. و پس از این سه عامل مثبت واریانس دانه قرار داشته. بنابراین، می‌توان اول را تحت عنوان کلیت پروری به یاد گذاشته نام گذاری نمود. به سخن نگری، این سه صفت اجرای مشابهی از کیفیت دانه را پیشنهاد می‌کند. در عامل دوم صفات سختی دانه و حجم رسب SDF دارای بالا عامل مثبت و زیادی بودند. بنابراین، این عامل نماینده می‌بود که تحت عنوان کلیت پروری دانه واریانس نامگذاری کرد. توجه به عوامل اشکارکاری داده‌ها نشان می‌دهد که این دو عامل توانستند در صفات محیطی کلیت دانه و حجم رسب SDF ثابت کنند. با توجه به عوامل بالا می‌توان نتیجه‌گیری نمود که برای انتخاب ژنوتیپ‌های مطلوب از نظر کیفیت تولید مکاوانی باید...
چکیده
توضیحات و ارتباط مقایسه میانگین‌ها و ضربه تندوک صفات در گروه‌های حاصل از تجزیه خوش‌های در ۱۰۴ زنوتپ و بر اساس صفات کیفیت دانه

<table>
<thead>
<tr>
<th>میانگین‌های طول خجوک</th>
<th>زنوتپ‌های بلند</th>
<th>زنوتپ‌های کوتاه</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول خجوک</td>
<td>۲۲/۸</td>
<td>۲۳/۸</td>
<td>۱۹</td>
</tr>
<tr>
<td>طول خجوک</td>
<td>۱۱/۹</td>
<td>۱۱/۹</td>
<td>۱۱</td>
</tr>
<tr>
<td>وزن جوکه</td>
<td>۱۱/۷</td>
<td>۱۱/۷</td>
<td>۷</td>
</tr>
<tr>
<td>کیفیت دانه</td>
<td>۴۳/۹</td>
<td>۴۳/۹</td>
<td>۱۹</td>
</tr>
<tr>
<td>حجم بی‌سیب</td>
<td>۷۶/۳</td>
<td>۷۶/۳</td>
<td>۲۷</td>
</tr>
</tbody>
</table>
| وزن جوکه (کیلو گرم بر هکتار) | ۱/۱ | ۱/۱ | ۲۷ | عنوان دار در سطح احتمال ۰/۱ مورد.”

۱. مقایسه میانگین‌ها به روش دانکر در سطح احتمال ۰/۵ درصد انجام گرفت. در هر رابطه مقایسه ۵ میانگین که داده‌ها دارای یک احتمال مشترک هستند، از نظر آماری معنی‌دار نیست.

زنوتپ‌های قرار داشتن

به منظور مقایسه میانگین‌های گروه‌های نظیر صفات اندوزگری شده، تجزیه و ارائه‌بر اساس طرح کاملاً تصادفی و نامتعادل باید در نظر گرفته شود. از آن اندازه‌گیری، زنوتپ‌های گروه چهارم شامل ۶ جدول و جدول دانشگاهی زنوتپ‌های فزاینده و غولمایی، حجم بی‌سیب و حجم رسوب SDS بین صفات، رده‌بندی مربوط به کیفیت و زنوتپ‌های داخل گروه‌ها، زنوتپ‌های داخل گروه‌ها و رابطه بین زنوتپ‌های داخل گروه‌های ونیز قرار داشتن. صفات مرتبط به کیفیت و زنوتپ‌های فزاینده و نظر صفات ونیز حجم بی‌سیب، مقدار نیاز دانشگاهی زنوتپ‌های داخل گروه‌ها، زنوتپ‌های داخل گروه‌ها و صفات مرتبط به کیفیت و رابطه بین زنوتپ‌های داخل گروه‌ها و نظر صفات ونیز حجم بی‌سیب، مقدار نیاز دانشگاهی زنوتپ‌های داخل گروه‌ها، زنوتپ‌های داخل گروه‌ها و صفات مرتبط به کیفیت و رابطه بین زنوتپ‌های داخل گروه‌ها و نظر صفات ونیز حجم بی‌سیب، مقدار نیاز دانشگاهی زنوتپ‌های داخل گروه‌ها، زنوتپ‌های داخل گروه‌ها و صفات مرتبط به کیفیت و رابطه بین زنوتپ‌های داخل گروه‌ها و نظر صفات ونیز حجم بی‌سیب، مقدار نیاز دانشگاهی زنوتپ‌های داخل گروه‌ها، زنوتپ‌های داخل گروه‌ها و صفات مرتبط به کیفیت و رابطه بین زنوتپ‌های داخل گروه‌ها و
جدول 5. تجزیه واریانس و مقایسه میانگین‌ها در زیرواحدهای HMW و زیرواحدهای 33 زنوبیان کندم دورورم

<table>
<thead>
<tr>
<th>میانگین</th>
<th>فرضیه</th>
<th>میانگین مراعات</th>
<th>سمت روبرو</th>
<th>سمت چپ</th>
<th>حجم سوم</th>
<th>حجم سوم (سی)</th>
<th>حجم سوم (دو)</th>
<th>حجم سوم (یک)</th>
<th>حجم سوم (یک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>77/3 a</td>
<td>77/3 a</td>
<td>14/4</td>
<td>16/8</td>
<td>5/4</td>
<td>5/4</td>
<td>5/4</td>
<td>5/4</td>
<td>5/4</td>
</tr>
<tr>
<td>2/4 a</td>
<td>9/1 a</td>
<td>9/1 a</td>
<td>16/4</td>
<td>16/4</td>
<td>2/4</td>
<td>2/4</td>
<td>2/4</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>1/8 a</td>
<td>11/4 a</td>
<td>11/4 a</td>
<td>16/4</td>
<td>16/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>0.2 a</td>
<td>54/9 a</td>
<td>54/9 a</td>
<td>45/4</td>
<td>45/4</td>
<td>4/9</td>
<td>4/9</td>
<td>4/9</td>
<td>4/9</td>
<td>4/9</td>
</tr>
<tr>
<td>1/8 a</td>
<td>44/5 a</td>
<td>44/5 a</td>
<td>38/3</td>
<td>38/4</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>0.1 a</td>
<td>0.8/3</td>
<td>0.8/3</td>
<td>0.3/1</td>
<td>0.3/2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.1 a</td>
<td>0.8/3</td>
<td>0.8/3</td>
<td>0.3/1</td>
<td>0.3/2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

نکته: مقایسه میانگین‌ها به وسیله چهار دسته فرضیه‌ای است. در هر دو دسته، هر دو میانگین که حداقل دارای یک خریف مشترک هستند، از نظر آماری معنادار نیست.

شکل 1. انواع باندهای گلوتین LMW و HMW با روش SDS PAGE.

شکل LMW و HMW با روش SDS PAGE به پیدایشen 17 انواع باندهای گلوتین LMW و HMW با روش SDS PAGE. گلوتین نان (روشن)، "Yazi-1"، "Yazi-4"، "Chaika"، "Agehon"، "Mexi"، "Yazi-2" و "Dipper-6" به دیده شد.

"Wizza-17"، "Altar 84"، "Mexical 75"، "Luglug-1"، "Yazi-4"، "Chaika"، "Agehon"، "Mexi"، "Yazi-2" و "Dipper-6" به دیده شد.

نکته: شکل LMW و HMW با روش SDS PAGE به پیدایش 17 انواع B1 غلیم در مکان Zn1 و Zn2 حجم سوم (یک) و حجم سوم (دو) مشاهده شد. شکل 1 نمونه‌ای از این واحدها را نشان می‌دهد.

تحمیل واریانس سطحی که بستگی به Zn1 و Zn2 حجم سوم (یک) و حجم سوم (دو) دارد. شکل 1 نمونه‌ای از این واحدها را نشان می‌دهد.

"Wizza-17"، "Altar 84"، "Mexical 75"، "Luglug-1"، "Yazi-4"، "Chaika"، "Agehon"، "Mexi"، "Yazi-2" و "Dipper-6" به دیده شد.

"Wizza-17"، "Altar 84"، "Mexical 75"، "Luglug-1"، "Yazi-4"، "Chaika"، "Agehon"، "Mexi"، "Yazi-2" و "Dipper-6" به دیده شد.
محتوای گلوتین نیز مشاهده گردید. پنا و همکاران (۲۰) نیز گزارش کردند که به رغم نمود تفاوت معنی‌داری در میان زیرواحدهای از نظر محتوای پروتئین و حجم رسوپ S0DS زنوتیپ‌های حامل زیرواحدهای ۷۴/۸ حجم رسوپ S0DS بیشتری را نسبت به زیرواحدهای ۶۸/۸ و ۶۰ نشان دادند. در گزارش کرونا و همکاران (۲۳) نیز زیرواحدهای ۶۸/۸ نسبت به زیرواحدهای ۷۰ حجم رسوپ S0DS زیبادتری را دارا بود، ولی محتوای پروتئین در این زیرواحدها تفاوتی نداشت.

بررسی زیرواحدهای S0DS گلوتین نشان داد که وLMW-۱/۲-۱ میزان گلوتین در سه گروه قرار گرفت. فروندانی اندک LMW-۱ نسبت به زیرواحدهای S0DS در پژوهش‌های دیگر نیز گزارش شده است (۲۰ و ۳۰).

تجزیه واریانس صفات کیفیت دانه بر مبنای زیرواحدهای گلوتین (جدول ۶) نشان داد که بین S0DS فقط از نظر در صفات محتوای پروتئین LMW-۱ و ۲LMW-۱/۲-۱ اختلاف معنی‌داری (در سطح احتمال پنج درصد) وجود دارد. زیرواحدهای S0DS بیشتر و حجم رسوپ S0DS کمتر مربوط بود، ولی در S0DS دانه و حجم رسوپ LMW-۱/۲-۱ نسبت به زیرواحدهای S0DS در شرایط مختلف دانه، آشکار بود. برازیدان در صورت وجود گرامی و کوالست (۲) نیز به ترتیب مشابهی در گندم دوره S0DS ۶۸/۸ حاصل از ۶۸/۸ حاصل از کرم بسته و به برتراپ ۷۴/۸ در حاصل از ۷۴/۸ حاصل از سنتی فیلدهای دانه، دست یافته و به برتراپ ۶۸/۸ در حاصل از ۶۸/۸ حاصل از سنتی فیلدهای دانه، صورت و حجم رسوپ امکان‌پذیر است. پنا گرامی و کوالست (۲) نیز به ترتیب مشابهی در گندم دوره S0DS ۶۸/۸ حاصل از ۶۸/۸ حاصل از کرم بسته و به برتراپ ۷۴/۸ در حاصل از ۷۴/۸ حاصل از سنتی فیلدهای دانه، دست یافته و به برتراپ ۶۸/۸ در حاصل از ۶۸/۸ حاصل از سنتی فیلدهای دانه، صورت و حجم رسوپ امکان‌پذیر است. پنا گرامی و کوالست (۲) نیز به ترتیب مشابهی در گندم دوره S0DS ۶۸/۸ حاصل از ۶۸/۸ حاصل از کرم بسته و به برتراپ ۷۴/۸ در حاصل از ۷۴/۸ حاصل از سنتی فیلدهای دانه، دست یافته و به برتراپ ۶۸/۸ در حاصل از ۶۸/۸ حاصل از سنتی فیلدهای دانه، صورت و حجم رسوپ امکان‌پذیر است. پنا
جدول ۶. تجزیه و ارتباط مقایسه میانگین‌ها در زیر واحدهای ۶۳ زنوتیپ گندم دوروم LMW

<table>
<thead>
<tr>
<th>جایگاه</th>
<th>ضریب</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۷. تجزیه و ارتباط مقایسه میانگین‌ها در تركیب زیر واحدهای گل‌توینی LMW و HMW

<table>
<thead>
<tr>
<th>جایگاه</th>
<th>ضریب</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. مقایسه میانگین‌ها به روش یک ذاکر در سطح اختلال ۵ درصد انجام گرفت. در هر دو دسته تفاوت هر دو میانگین به دلیل تفاوت دارای یک حرف مشترک هستند.
2. مقایسه میانگین‌ها به روش یک ذاکر در سطح اختلال ۵ درصد انجام گرفت. در هر دو دسته تفاوت هر دو میانگین به دلیل تفاوت دارای یک حرف مشترک هستند.
جدول 8 توجهه وارتباط و مقایسه میانگین‌های صفات کیفیت دانه بر مبایل کلی زیرواحدها

<table>
<thead>
<tr>
<th>میانگین صفات</th>
<th>صفات</th>
<th>ضریب تغییر</th>
<th>زیرواحدها</th>
<th>LMW-2</th>
<th>LMW-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیر</td>
<td>میانگین</td>
<td>نرول</td>
<td>نرول</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>27/7 a</td>
<td>27/7 a</td>
<td>27/7 a</td>
<td>27/7 a</td>
<td>14/5</td>
<td>14/5</td>
</tr>
<tr>
<td>9/7 a</td>
<td>9/7 a</td>
<td>9/7 a</td>
<td>9/7 a</td>
<td>12/1</td>
<td>12/1</td>
</tr>
<tr>
<td>11/7 a</td>
<td>11/7 a</td>
<td>11/7 a</td>
<td>13/4 a</td>
<td>18/7</td>
<td>18/7</td>
</tr>
<tr>
<td>40/7 a</td>
<td>40/7 a</td>
<td>38/0 a</td>
<td>38/0 a</td>
<td>15/2</td>
<td>15/2</td>
</tr>
<tr>
<td>42/0 a</td>
<td>42/0 a</td>
<td>40/3 a</td>
<td>40/3 a</td>
<td>13/0</td>
<td>13/0</td>
</tr>
<tr>
<td>49/0 a</td>
<td>49/0 a</td>
<td>48/0 a</td>
<td>48/0 a</td>
<td>19/8 b</td>
<td>19/8 b</td>
</tr>
<tr>
<td>80/0 a</td>
<td>80/0 a</td>
<td>80/0 a</td>
<td>80/0 a</td>
<td>18/1</td>
<td>18/1</td>
</tr>
</tbody>
</table>

نکته: 1. مقایسه میانگین‌ها به روش دانکن در سطح احتمال 95 درصد انجام گرفت. در هر ردیف نتایج هر دو میانگین که حداکثر دارای یک حرف مشترک هستند، از نظر آماری معنی‌دار نیست.

جدول 9 ضرایب همبستگی صفات کیفیت دانه و زیرواحدهای گلتنی به متغیرهای معناری

<table>
<thead>
<tr>
<th>محاسبه صفات با متغیرهای</th>
<th>زیر واحدهای گلتنی</th>
<th>همبستگی صفات با متغیرهای</th>
<th>U1</th>
<th>V1</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیر</td>
<td>میانگین</td>
<td>میانگین</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>0/84</td>
<td>0/66</td>
<td>LMW-2</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>0/80</td>
<td>0/66</td>
<td>LMW-1</td>
<td>x2</td>
<td>x2</td>
</tr>
<tr>
<td>0/10</td>
<td>0/68</td>
<td>LMW-2</td>
<td>x3</td>
<td>x3</td>
</tr>
<tr>
<td>0/22</td>
<td>0/68</td>
<td>LMW-1</td>
<td>x4</td>
<td>x4</td>
</tr>
<tr>
<td>0/22</td>
<td>0/68</td>
<td>LMW-2</td>
<td>x5</td>
<td>x5</td>
</tr>
<tr>
<td>0/22</td>
<td>0/68</td>
<td>LMW-1</td>
<td>x6</td>
<td>x6</td>
</tr>
<tr>
<td>0/0</td>
<td>0/68</td>
<td>LMW-2</td>
<td>x7</td>
<td>x7</td>
</tr>
</tbody>
</table>

از نظر مححوای گلتن، تفاوت معنی‌داری بین زیرواحدها دیده شد. نشان دهنده زیرواحدهای HMW و LMW-1 و LMW-2 نباشند و نشان دهنده زیرواحدهای HMW با یک گرده و فرار تفاوت در میانگین‌های حجم نشان دهنده نشان دهنده زیرواحدهای HMW و LMW-1 و LMW-2 و ساختار تفاوت معنی‌داری بین HMW و فاکتور یک میانگین نشان داد. با این حال زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین نشان داد. با این حال زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده نشد. ولی زیرواحدهای LMW-1 و کمترین میانگین را داشته باشد و با زیرواحدهای گلتنی مشخص کردند که زیرواحدهای HMW و V7 و V8 و 0.48 و 0.20 هم از اختلاف معنی‌داری دیده NUSD.
بیشترین همبستگی را در جهت منفی با صفات محترای پروتین و محترای گلوتین دارد. از سوی دیگر، همبستگی متعارف LMW و بیشترین همبستگی را در جهت منفی با ZW-1 و 4 و بیشترین همبستگی را در جهت منفی با HWM و HWM نسبت به زیرواحدهای 30 نکته گروه قرار نگرفته‌اند. در گزارش پیا و همکاران (200)، کمترین میزان رسوب SDS در LMW-1 به میزان ۶/۸ میلی لتر و بیشترین میزان آن در زیرواحدهای ۷ و ۴ به ترتیب معادل ۱۵/۲ و ۱۲/۱ میلی لیتر بره دست اماده است. از نظر محترای پروتین تفاوت معنی‌داری بین زیرواحدهای دیده نشد.

در این پژوهش از تجزیه همبستگی‌های متعارف برای بررسی ارتباط میان صفات کیفیت دانه و زیرواحدهای گلوتین استفاده شد. منغسرهای ای ۱۷۲ برای معمول زیرواحدها و منغسرهای ای ۱۷۴ برای معرفی صفات کیفیت دانه در نظر گرفته شد. چارچوب جفت منبع صفات معنی‌دار شد که فقط یک جفت آنها در سطح اختلال پین درصد دانه همبستگی معنی‌دار بودند. بنابراین، به نظر می‌رسد که دیلیسی بر اساس دادن ارتباط بین منغسرهای ای ۱۷۲ و ای ۱۷۴ بتواند در صورتی که منغسر متعارف مربوط به صفات کیفیت دانه V1 و منغسر متعارف مربوط به زیرواحدهای گلوتین U1 نام‌گذاری شود، معنادست بر زیر به دست می‌آید:

\[V_1 = 0.53y_1 + 0.49y_2 - 0.68y_3 + 0.30y_4 + 0.7y_5 - 0.31y_6 \]

\[U_1 = 0.93x_1 - 0.5x_3 - 0.27x_4 - 0.74x_5 \]

برای جدول ۹ منغسر متعارف صفات کیفیت دانه (V1) بیشترین همبستگی را در جهت منفی با حجم رسوب و SDS مرتباً مورد استفاده می‌شود.

متابع مورد استفاده

1. حقی نظری، ع. ش. واعظی و ع. طالعی. ۱۳۸۵. تجهیز واحیل برخی صفات مؤثر در کیفیت گلدن‌های دوروم بومی ایران. علوم و صنایع کشاورزی ۱۰(۸۱-۱۰۴۱۴۱-۱۴۵).

2. گرامی، ب. و. ک. کوئین. ۱۳۷۳. استفاده از روش الکتروفورتر در اصلاح کننده صفات بالاتری و اصلاح نباتات ایران، اشارات دانشگاه تهران، ص. ۱۲۹-۱۲۳.

