چکیده
پسته یکی از محصولات مهم صادراتی کشور است و با توجه به میزان کم بارندگی در ایران تولید آن باید به‌شكل میکروورآب‌رسانی‌های گیاهان مورد استفاده قرار گرفته، اسکوئرد از قارچ‌های میکوریز و باکتری‌های حل دهنده فسفات این، نباید به عنوان بررسی اولیه‌ای قارچ‌های میکوریزی آریوسکولا و Glomus mosseae بر جذب عناصر غذایی نهال‌ها در چهار رزیم آبیاری افسانه شود. محمد حسین شمشیری، عبدالرضا اخگر و مجد اسماعیل زاده
(تاریخ دریافت: 1/1/1390، زبان اصلی فارسی)

واژه‌های کلیدی: باکتری سودوموناس فلورسنت، پسته، نهال خشکی، جذب عنصر، میکوریز، نهال

1. برترین دانشجوی سابق کارشناسی ارشد و استادیاران علوم باغبانی، دانشگاه کشاورزی، دانشگاه ولی عصر رفسنجان
2. استادیار، دانشگاه کشاورزی، دانشگاه ولی عصر رفسنجان
3. مسئول مکاتبات، پست الکترونیکی: shool_136611@yahoo.com

171
بدرس اثر خارج میکوروز آریوسکولا (Glomus mosseae) و باکتری است

نمونه‌ها به مدت 20 روز در محلول (ACC deaminase) قرار گرفتند و سپس به مدت سه روز در محلول یک درصد اسید کاربیدی نگهداری و سپس با مصرف تری‌پتان بل‌رگن آزمایش شدند (38). میزان آسیدگی آنها بر طبیعی فرآیند زیر محسوب شد (30).

آحادسازی خاک، کشت برگ و تیمار خشکی

در این آزمایش از یک‌درصد پسماندری کاهش استفاده شد. ابتدا خاک مزرعه و ماسه به نسبت 2:1 مخلوط (برخی از ورزشی) و شیمیایی مخلوط خاکی در چهار بار شرایط استفاده شد. تیمار قارچ و باکتری در چهار سطح شامل: تیمار باکتری، تیمار میکوروز، تیمار ترکیبی میکوروز و باکتری و گیاهان شاهد (بدون قارچ و باکتری) در زمان کشت انجماد شد.

مواد و روش‌ها

مکان آزمایش، مواد پیولوژیکی و تیمارها

این آزمایش به صورت کنسانسی در سال‌های 1389 و 1390 و در انجام شد. مایه قارچ گل‌مومس مرسه طی یک دوره سه ماهه روز روی گیاه سورگوم تکریک شد و در پایان این دوره با قطع آب‌بار و حذف اندام هواپیمایی، ریشه‌ها قطع شده و با مقدار از خاک گل‌مومس مخلوط شدند. قبل از این مرحله، نمونه‌هایی از ریشه سورگوم به‌طور تصادفی داده شدند. برای ریشه‌های ابتدا آنها به 80 درصد ترشح کرده شدند. سپس به طبقات و سانتی‌متری تقسیم و در محلول هیدروکسفرات در 15 درصد به مدت 24 ساعت قرار گرفتند. در مرحله بعد
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد استفاده در پوشه حاضر

<table>
<thead>
<tr>
<th>ماده</th>
<th>Mn (ppm)</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
<th>Fe (ppm)</th>
<th>Mg (meq/l)</th>
<th>Ca (meq/l)</th>
<th>K (meq/l)</th>
<th>P (mg/kg)</th>
<th>N (%)</th>
<th>EC</th>
<th>pH</th>
<th>سنگ</th>
<th>رس</th>
</tr>
</thead>
<tbody>
<tr>
<td>شن</td>
<td>2/63</td>
<td>0/2</td>
</tr>
<tr>
<td>لومی</td>
<td>2/63</td>
<td>0/2</td>
</tr>
</tbody>
</table>

کر میان نمونه‌های خاک و آسیاب شده‌ها وزن که در کوره‌ای 550 درجه سانتی‌گراد به مدت سه ساعت در دما 400 درجه سانتی‌گراد به‌صورت دو بار در تماس با آب سطحی مذکور و سپس به اسید کلرید‌کریکی دو ترمیمال به‌صورت میزان 50 میلی‌لیتر به زمان‌های اضافه شده و در نهایت توسط آب مقرت به حجم 50 میلی‌لیتر رسانده شده‌اند این عصاره‌ها به طور مستقیم جهت تهیه خاک آزمایشی، مایع تهیه شده و در دستگاه چبک مدل Avanta IBC ساخت شرکت Jenway TST7 فنومتر فنومتر

میزان آگوست درصد تشخیص داده شد و برای ایجاد نشانه‌های فرآیند فرار مزروعه استفاده و سطح افزایش وزن مشخص شد و سعلیا میکروب آزمایش آب‌دار شده و روی آنها با نیشونده روش آنها تا نخورنی صورت تجربی و پس از خروج آب اضافی، گل‌دانها مجدداً توزین شده و میانگین اعداد به‌دست امیده گردد وزن گل‌دانهای جهت طرح مزروعه در نظر گرفته شد و به نتیجه‌های خاکی بر منابع آماری محسوس شد. تیمارهای خاکی در هفته سطح مائده 500 درصد فرار مزروعه به‌عنوان شاهد 2/5 و 1/2 درصد فرار مزروعه در نظر گرفته شد و این آزمایش گلدانهای به‌صورت روزانه توزیع و مقدار آب لازم به گلدانها اضافه شد.

طرح آزمایشی و تجزیه و تحلیل آماری

این آزمایش به صورت فاکتوریال با دو فاکتور (خاک‌های دارای و بدون زیستی) در قالب طرح کاملاً تصادفی در چهار تکرار (هر تکرار شامل یک گلدان) انجام شد. تعداد نهایی در هر گلدان SAS سه عدد بود. تجزیه آماری داده‌ها با استفاده از نرم‌افزار MSTATC و SAS انجام و مقایسه میانگین‌ها با استفاده از آزمون MSTATC و داده‌های داده‌های داده‌ها و تعداد احتمال پیک و پنجره درصد صورت گرفت.

وضوح

Google Translate (JPPLUT) at 7:32 IRDT on Tuesday August 18th 2020
جدول ۲: جدول تجزیه واریانس عناصر غذایی برگ، ساچه و ریشه در نهالهای پسته رقم فرودی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>میانگین مربعات درجه آزادی</th>
<th>فنر</th>
<th>پنجم</th>
<th>نهم</th>
<th>دهم</th>
</tr>
</thead>
<tbody>
<tr>
<td>برگ</td>
<td>۰۵/۰۴ **</td>
<td>۲۲۵/۸۸</td>
<td>۱/۰۸</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
</tr>
<tr>
<td>خشکی</td>
<td>۰۱/۰۵ **</td>
<td>۱۴۶/۵</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
</tr>
<tr>
<td>کود زیستی</td>
<td>۰۳/۴۱ **</td>
<td>۴۸/۸</td>
<td>۲/۲۷</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>خشکی</td>
<td>۰۲/۸۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>خطا</td>
<td>۱۹/۱</td>
<td>۲۲/۴</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
</tr>
<tr>
<td>سایه</td>
<td>۰۲/۸۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>خشکی</td>
<td>۰۲/۸۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>کود زیستی</td>
<td>۰۳/۴۱ **</td>
<td>۴۸/۸</td>
<td>۲/۲۷</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>خشکی</td>
<td>۰۲/۸۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>خطا</td>
<td>۱۹/۱</td>
<td>۲۲/۴</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
</tr>
<tr>
<td>ریشه</td>
<td>۰۲/۸۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>خشکی</td>
<td>۰۲/۸۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>کود زیستی</td>
<td>۰۳/۴۱ **</td>
<td>۴۸/۸</td>
<td>۲/۲۷</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>خشکی</td>
<td>۰۲/۸۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>خطا</td>
<td>۱۹/۱</td>
<td>۲۲/۴</td>
<td>۱/۰۹</td>
<td>۱/۳۸</td>
<td>۱/۰۹</td>
</tr>
<tr>
<td>CV</td>
<td>۰۱/۰</td>
<td>۰/۹</td>
<td>۰/۹</td>
<td>۰/۹</td>
<td>۰/۹</td>
</tr>
</tbody>
</table>

نتایج

عناصر غذایی

فنر براساس تناش خشکی خشکی ساچه و برگ را تحت تأثیر قرار داد. در خشکی کود زیستی فقط تحت تأثیر سطوح کود زیستی
قرار گرفت. تناش مربوط به این اثرات در گزارش شده است. غلظت فسفر ساچه و برگ در گیاهان شاهد بهدست تحت
تأثیر سطوح بالای خشکی (۵۰ و ۶۰٪ ظرفیت مزرعه) کاهش

محتواي پناسيم سلولهای ریشه و غلظت پناسيم در برگ تحت

١٧٥
شاخص بالای هر ستون نشان‌دهنده خطای استاندارد (±SE) است. حروف مشابه نشان‌دهنده عدم اختلاف معنی‌دار در آزمون چند دامنه‌ای دانکن در سطح 0.05 را پذیرفته‌اند.

![شکل 1](https://example.com/image1.png)

شکل 1. تأثیر ترکیبات نشان‌دهنده در سطح ترس گلفت (جدول 2) اما نجات آن در سطح ترس گلفت (جدول 1) اما نجات آن در سطح ترس گلفت (جدول 1)

![شکل 2](https://example.com/image2.png)

شکل 2. تأثیر ترکیبات نشان‌دهنده در سطح ترس گلفت (جدول 2) اما نجات آن در سطح ترس گلفت (جدول 1) اما نجات آن در سطح ترس گلفت (جدول 1)

تأثیر نوع کود زیرینی کنار گرفته (جدول 2) اما نجات آن در سطح ترس گلفت (جدول 1) اما نجات آن در سطح ترس گلفت (جدول 1) اما نجات آن در سطح ترس گلفت (جدول 1)
تشنج خشکی بر میزان کلسیم ریشه در شکل (۱F) نشان داده شده است. با افزایش تنش خشکی میزان کلسیم ریشه تا سطح تنش خشکی متوسط کاهش یافت که این کاهش نسبت به شاهد معنا ندارد و سپس در تنش خشکی شدید میزان کلسیم ریشه افزایش یافت، به طوری که مقدار بیشتری نسبت به شاهد رشد داشت.

عناصر کم مصرف
غلظت عنصر روی در اینام هواپی نهالهای پسته تحت تأثیر برهمکشی تیمارهای خشکی و کود زیستی قرار گرفت و در ریشه نهایی که تنش خشکی در گیاهان شاهد بسیار کاهش می‌یافت (جدول ۲) در میزان حساسیت عنصر روز در سطح شاهد، در حالی که بر غلظت آن در بذر تأثیری نداشت. کاربرد کودهای زیستی در شرایط تنش در مقایسه با شاهد (۱۰۰٪ ترش مزروعه) دارای تأثیر بهتری بود. اما در نتیجه سطح خشکی تفاوت معنی‌داری بین شاهد و سطح کود زیستی دیده نشد (شکل ۲C).

میکروب‌محیط عنصر روی ریشه را کاهش داد (شکل ۲C). غلظت عنصر مس در اندام هواپی نهالهای پسته تحت تأثیر برهمکشی تیمارهای خشکی و کود زیستی قرار گرفت و در ریشه نهایی که تنش خشکی در گیاهان شاهد بسیار کاهش می‌یافت (جدول ۲). در میزان حساسیت عنصر روز در سطح شاهد، در حالی که بر غلظت آن در بذر تأثیری نداشت. کاربرد کودهای زیستی در شرایط تنش در مقایسه با شاهد (۱۰۰٪ ترش مزروعه) دارای تأثیر بهتری بود. اما در نتیجه سطح خشکی تفاوت معنی‌داری بین شاهد و سطح کود زیستی دیده نشد (شکل ۲C).

میکروب‌محیط عنصر روی ریشه را کاهش داد (شکل ۲C). غلظت عنصر مس در اندام هواپی نهالهای پسته تحت تأثیر برهمکشی تیمارهای خشکی و کود زیستی قرار گرفت و در ریشه نهایی که تنش خشکی در گیاهان شاهد بسیار کاهش می‌یافت (جدول ۲). در میزان حساسیت عنصر روز در سطح شاهد، در حالی که بر غلظت آن در بذر تأثیری نداشت. کاربرد کودهای زیستی در شرایط تنش در مقایسه با شاهد (۱۰۰٪ ترش مزروعه) دارای تأثیر بهتری بود. اما در نتیجه سطح خشکی تفاوت معنی‌داری بین شاهد و سطح کود زیستی دیده نشد (شکل ۲C).

میکروب‌محیط عنصر روی ریشه را کاهش داد (شکل ۲C). غلظت عنصر مس در اندام هواپی نهالهای پسته تحت تأثیر برهمکشی تیمارهای خشکی و کود زیستی قرار گرفت و در ریشه نهایی که تنش خشکی در گیاهان شاهد بسیار کاهش می‌یافت (جدول ۲). در میزان حساسیت عنصر روز در سطح شاهد، در حالی که بر غلظت آن در بذر تأثیری نداشت. کاربرد کودهای زیستی در شرایط تنش در مقایسه با شاهد (۱۰۰٪ ترش مزروعه) دارای تأثیر بهتری بود. اما در نتیجه سطح خشکی تفاوت معنی‌داری بین شاهد و سطح کود زیستی دیده نشد (شکل ۲C).
شکل A: آزمون تولید محصولات نرم‌کننده (ب) و سایه (ب) از میکروبی بر سر ریشه (آ) از Glomus mosseae و Pseudomonas fluorescens.

شکل B: آزمون تولید محصولات نرم‌کننده (ب) و سایه (ب) از میکروبی بر سر ریشه (آ) از Glomus mosseae و Pseudomonas fluorescens.
بیانیه: یکی از نتایج پایان‌نامه بیشترین میزان کلسیم ریشه در بگوئی پهنهی زائد میزان آن در جانب خشکی کم می‌شود. گیاهان که در دانه‌ای دارای بیشترین میزان پهنهی زائد میزان آن در جانب خشکی کم می‌شود، گیاهانی که مقاومت‌تر هستند نسبت به
تنش خشنی پاتاسیم برای حفظ هدایت روغن‌های و در ریشه‌های خشنی، به عنوان یک نکته‌گیرنده اهمیت جدی می‌کند (31). به‌طوری که فاکتور ضروری در سنتز پروتئین، نازی‌ها و فتوسنتز است، پاتاسیم مقادیر بیشتری به خشنی را در گیاهان از طریق روزنها، تنظیم اسمری و سنتز پروتئین افزایش می‌دهد (22). این تئیجه باید تاثیرگذاری که پانک شکن و همکاران (31) روی نهال‌های نارنجی به‌گونه گرفتنی، مطلوب‌ترین دارد.

در ارتباط با نقش تنش خشنی بکاره کم مصرف تاثیب متفاوتی گزارش شده است، رطوبت بین خاک می‌تواند باعث کم‌بود در عناصر متنگر اتم و روز در گیاه شود (15). تاثیب که در این پژوهش به‌دست آمده نشان داد که غلظت عناصر کم‌تری را تحت تنش نشان داد. افزایش غلظت عناصر کم مصرف در شاخه‌ها تحت تنش خشنی سبب کاهش می‌شود. به آهنگ رشد ایندی‌های و اثر غلظت عناصر بوده است. این تئیجه با تاثیرگذاری که بی‌قرار و همکاران (7) روی گیاه به‌نتیجه‌گیری گرفته و تنش خشنی سبب افزایش عناصر کم مصرف شد.

مطالعه‌دار در این آزمایش فسفر برگ، ساحل و ریشه‌ها کاملاً کودیزی نسبت به شاهد افزایش نشان داد. به‌طوری که ارتباط زیادی بین وضعیت نقده‌های گیاهان و مقاومت به خشنی وجود دارد که میکروبریز این وضعیت را تغییر می‌دهد (5). بکه یکی از مهم‌ترین نقش‌های میکروبریز در ارتباط با همبستگی جذب فسفر در تنش خشنی بایستد که مقاومت گیاه‌ها را در بررسی خشنی افزایش می‌دهد (21). نقش فسفر بر رشد گیاه تحت تنش خشنی به‌افزایش کارایی استفاده از آب، هما‌الین و فشار روزنه‌های فتوسنتز و اثر روزنه‌های آب نسبت به داده می‌شود (19). مقاومت این جدید فسفر در خاک اندک و به‌صورت مقاومت غیرالنی
جدول ۳: جدول تجدید واریانس مربوط به آلفهای ریشه

<table>
<thead>
<tr>
<th>آلفهای ریشه</th>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>خشکی</td>
<td>۲۱/۹۹۵</td>
<td>۳</td>
<td>۳۴/۹۸۹</td>
</tr>
<tr>
<td>کود زیستی</td>
<td>۹۴/۷۷۲/۷۷۵</td>
<td>۳</td>
<td>۳۴/۷۴۲</td>
</tr>
<tr>
<td>خشکی کود زیستی</td>
<td>۱۸/۵۲۳</td>
<td>۸</td>
<td>۴۴/۹۹۹</td>
</tr>
<tr>
<td>خطا</td>
<td>۴/۸۹</td>
<td>۴۸</td>
<td>۴۸/۵۶</td>
</tr>
</tbody>
</table>

* ضریب متوسط داده و در این آزمایشات تیمار میکوریز سبب کاهش روزی در ریشه شد و همچنین در نتایج بررسی داده‌های قرار داده شد. تیمار میکوریز سبب کاهش در روزی برج شد. در آزمایشات که رانجین (۱۲) روی گیاه آلبالو و سایر انواع و چارگیر روز گیاهی در این آزمایش‌ها داده نشان داد که تیمار میکوریز سبب کاهش آهون ساقه و در آزمایش‌ها حاصل تیمار باکتری سبب افزایش آهون ریشه شد. این نتیجه با پیشنهاد و همکاران (۹) از روی گیاه می‌گردد و تیمار باکتری سبب افزایش مس Dalbergia sissso ریشه شد.

در این آزمایش تیمار‌ها با کمک میدانی و میکروبی زیستی

در افزایش مس، آهون و منجکر ریشه شد. با توجه به این که باکتری‌های مضر کاهش دادن سبب می‌گردد به گیاه می‌شود و یکی از نقش‌ها مهم باکتری‌های مضر کاهش در گیاه تولید تکثبات کل که آنها یا سیدروفورها می‌باشد (۱۸) سیدروفورها مولکول‌هایی با ژن مولکول‌های کم‌ستند که در شرایط نرم بوده آهون توسط تعدادی از میکروگانیسم‌ها تولید و ترشح شده و با آهون موجود در خاک تولید می‌کنند. آهون - سیدروفور می‌نمایند (۱۶) در...

