تعيین و بررسی برخی خواص فیزیکی و مکانیکی خرما رکم کباب

علی مسالی‌الله کرمانی ۱، پاسیب قبادی ۲ و محمد غلامی پرشهلوی ۲

(تاریخ دریافت: ۱۳۹۱/۸/۲۳؛ تاریخ پذیرش: ۱۳۹۱/۱۲/۲۴)

چکیده
در این تحقیق تعدادی از خواص فیزیکی و مکانیکی خرما رکم کباب اندازه‌گیری و ارزیابی شد. مقادیر متوسط طول، عرض و ارتفاع، وزن هزار میوی و یک واحد میوی، قطر متوسط هندسی، حجم، مساحت سطح روی و سطح مقطع، قللای قدرتی (میوی)، قللای نهایی (میوی)، نرخ جوشیدن، تخلخل میوه خرما رکم کباب با میزان رطوبت ۲۲ درصد برای تهیه عیاره بوده است. این نتایج نشان می‌دهد که برای تهیه عیاره بهترین میزان حجم رکم کباب متعلق به گرم، گرم و گرم می‌باشد. در این تحقیق شکل‌گیری نواحی مختلف به شکل های ۹۰ درصد و ۸۷ درصد را به در نظر گرفته شد و نتایج نشان داد که بر خرما رکم کباب این نواحی بهترین خواص فیزیکی و مکانیکی دارند.

واژه‌های کلیدی: خواص فیزیکی، ضریب اصطکاک، خواص مکانیکی، سرعت بارگذاری، خرما

۱. استادیار گروه فنی کشاورزی، پردیس اوریشان، دانشگاه تهران
۲. بی‌ترتیب دانشجوی سال گرایی دانشگاه اوریشان و استادیار مکانیک ماشین‌های کشاورزی، دانشگاه آزاد اسلامی، واحد اراکان

amkermani@ut.ac.ir

* مسئول مکاتبات، پست الکترونیکی:
مقمه

خرما از محصولات عمده کشاورزی ایران است و در حال حاضر یکی از محصولات مهم و بررسی کشور به شمار می‌آید. امروزه خرما مورد توجه منحصرين امر تغذیه و دیگر رشته‌ها

در رابطه با خواص فیزیکی خرما، کرامت جهانی و همگان از عوامل مؤثر در خواص مکانیکی، تعدادی از بیانیاتی نوشته‌هایی به صورت متفاوت و متفاوت در صنایع مختلف نظر می‌دهند. میانگین خرما مورد توجه برای استفاده در رابطه با خواص مکانیکی و مکانیکی برای خروصایی مهیه‌ای مورد توجه گردیده است. اما طراحی مکانیکی خرما کشور به دو نوع می‌تواند

اين پارامترها ناقص بود و معقول به نوبه خلاف می‌آید (13 و 17). با هر یک از اعمال و ترکیب بوده است که در

دبی تحقیقات زیادی در زمینه تعیین و بررسی خواص فیزیکی و مکانیکی محصولات مختلف از جمله مواد دانه‌ای (1، 4 و 11) و خشک‌بیاری (2 و 7 و 8) مختلف کشاورزی

انجام شده است. محصولات مختلف کشاورزی از جمله خرما در اکثر

عملیات پیش برداشت از جمله استفاده با ماشین‌های تهیه قابلیت فشار خرما تحت تأثیر نرخ‌های مختلف قرار

می‌گیرند. از این‌رو، بررسی و شناخت خواص آنها تحت

پرداختن یک لازم و ضروری است، این روز، با

توجه به اینکه اطلاعاتی پیرامون خواص فیزیکی و مکانیکی

خرما دقیق در ارتفاع مورد کشت در استان بوشهر

وجود نبود، در این پژوهش برخی از خواص فیزیکی این رقم

شامل ویژگی‌های ابتدایی، حجم، چگالی‌ها، تخلخل و ضریب

اصطلاحی ویژگی‌های مختلف اندازه‌گیری و محاسبه شده

است. همچنین نتایج مکانیکی آن نیز در برابر فشاری با

سرعت‌های مختلف مورد بررسی قرار گرفت.
(True fruit) and bulk density (ρb)

چگالی های میوه و توده (ρb) با اندازه‌گیری وزن حاصل از ریختن دانه‌ها از ارتقای 15 ثانیه متر بر ریخت کنونی در ظرفی به حجم 500 میلی لیتر برای 10 تکرار تغییر شد. برای تعیین چگالی میوه (حقیقی) (ρf) از روش جایگاهی مایع استفاده شد. سرای این کار به‌جای آب، تولوئن (C6H6) به کار گرفته شد و این طبقات دارای کشت سطحی کم بوده و جذب میوه نیز نیم‌شود (3). این کار نیز به تارک انجام شد و میانگین نتایج به‌منظور چگالی میوه (حقیقی) در روز گرفته شده با تعیین چگالی توده و چگالی میوه درصد تخلخل (e) برای میوه و هسته خرما از رابطه حساب شد (12).

\[e = \frac{1}{1 - \frac{\rho_b}{\rho_f}} \times 100 \]

ضریب اصطکاک ایستایی

زاویه اصطکاک ایستایی خرما روی سطح اصطکاک مختلط شال اکستروی و رق استیل، پلاستیک سردرد، شیشه و چوبی با استفاده از دستگاه دارای سطح شیب‌داری مطلق شکل 1 انداره‌گیری شد، بعد ترتیب که تارک حصول درون چرخ استوانهای شکلی به قطر 100 میلی متر و ارتفاع 60 میلی متر که فاقد سر ونه بود و قرار داده شده و روی سطح تارک گرفته، سپس استوانهای حاوی میوه را قدری بدون آنکه غیر لایه‌دار نشود و روی داشت. سپس با استفاده از تارک انجام شد. اصطکاک در تارک کنار گرفته شد و روی سطح زیر خامه با مکان‌بندی بسته کننده سازی طرح شویی مناسب به وجود می‌آید شروع لغزش محدود می‌شود. اصطکاک با محض بسته کننده شد و در بهترین ضریب اصطکاکی ایستایی با استفاده از رابطه 7 محاسبه شد (13).

\[\mu_s = \tan \varphi \]

که در آن: \(\mu_s \) و \(\varphi \) به ترتیب ضریب زاویه اصطکاک ایستایی و

مواد و روش‌ها

حدود 15 کیلوگرم خرما را کیکبک از یافته‌های خرما شهرستان دشت‌نیو و به رعایت این که محدود و نقل تحت بارگذاری قرار نگردید، به آزمایشگاه انتقال یافت. برای تعیین رطوبت اولیه خرما از دستورالعمل موجود از طریق قرار دادن 15 نمونه 125 گرمی در دمای 105 درجه سلسیوس و به مدت 24 ساعت (7) حاوی 5/21 بر بالای تر تغییر شد.

اندازه‌گیری ویژگی‌های فیزیکی هندسی

برای اندازه‌گیری ابعاد میوه و هسته خرما و جرم و حجم میوه، بکنش و بنچ میوه از نوع مورد نظر به روش تصادفی انتخاب و توسط کولین دیجینتو (با دقت 0/1 میلی‌متر) و ترارزوی الکترونیکی (با دقت 0/1 میلی‌متر) اندازه‌گیری شد. حجم و جرم (V) و طول متوسط هندسی (Dg) خرما و هسته آن بحث ترتیب از روابط 1 و 2 محاسبه گردید.

\[V = \pi LWT / 6 \]

\[\frac{1}{D_g} = (LWT)^{\frac{1}{3}} \]

که در آن: \(V \) جرم (میلی‌متر مکعب) = Dg و قطر متوسط هندسی (میلی‌متر) = L طول (میلی‌متر) = W و طول (میلی‌متر) = T ارتفاع (میلی‌متر) است.

نسبت وزن گوشته به هسته میوه (Flesh/seed ratio) از تفاوت وزن هسته از وزن میوه کامل تقسیم بر وزن هسته، مطلق رابطه 3 محاسبه شد (9).

\[\text{وزن هسته} - \text{وزن میوه} = \text{نسبت وزن گوشته به هسته} \]

\[\text{وزن هسته} \]

\[S = \pi D_g^2 \]

\[S_p = \frac{\pi D_g^2}{4} \]

\[\text{مساحت سطح رویه} (S) \]

\[\text{مساحت سطح رویه} (S) \] و سطح مقطع (S) (Surface area) بیوس و هسته خرما به ترتیب بر اساس مساحت سطح رویه (Sf) (Projected area) آزمایش‌ها برای هر سطح اصطکاکی با پنج تکرار انجام نسبت سطح مرکز دارای مقطع قطر متوسط هندسی آنها در نظر گرفته شد و از روابط 4 و 5 محاسبه شد (9).

\[\frac{S}{S_p} = \frac{\pi D_g^2}{4} \]
منحنی نیرو- تغییر شکل میدان نیرو در مقابل تغییر شکل برای
برای Excel هر آزمایش میدان نیرو در بررسی میدان در هر قسمت به
در این رابطه با توجه به این که در طی ایجاد برگزاری میدان
کامل میدان میوه و میله برگزاری نتیجه نکده، اندماهگیری
و محاسبه سطح میدان برگزاری و در نتیجه مقدار
تشن قابل محاسبه نبود.

خواص مکانیکی مورد بررسی عبارت بودند از داده‌های
مقدار نیرو، لنزی و چگونگی تغییر شکل میوه به میزان 55%
و 65% ضخامت اندازه‌گیری شده اولیه میوه که از
منحنی نیرو- تغییر شکل استخراج و محاسبه شدند، انزیم
تا تغییر شکل میدان نیرو نظر از طریق محاسبه مساحت سطح
زیر منحنی نیرو- تغییر شکل به کمک داده‌های خام و به روش
محاسبه میدان نیرو در انجام شد. با پرآوری حجم هر نمونه از
زاویه سطح شبیه در لحظه شروع به لغزش قوطنی محتمول
خوابین هستند.

آزمایش مکانیکی برگزاری فشاری
هم‌نشان میدان از اندازه‌گیری مشخصات فیزیکی شامل
ویژگی‌های ابعادی (طول، پهنای و ضخامت) و جرم میدان توسط
ماشین آزمایش مدل Hounsfield H5k-8، مورد استفاده در
پس از انجام آزمایش

ضخامت میدان تحت برگزاری فشاری قرار گرفت (شکل 2). شکل میله (Probe) مورد استفاده در برگزاری فشاری می‌باشد
پس از بررسی تغییر
نتیجه بود که با نصب فشارسنج (Load cell) به طرفی

50 روی ماشین آزمایش به منظور بررسی مورد
سرعت برگزاری نمونه‌های کامل میدان نموده و هر آزمایش
فشاری در سه سطح سرعت 5 و 15 و 25 mm/min و 60 نتایج تغییر
شکل به میزان
10 با پنجم تکرار انجام شد. برابر هر آزمایش

9710
جدول 1. خواص فیزیکی و اصطکاکی میوه و هسته خرما و رقم کیکاب

<table>
<thead>
<tr>
<th>اصطلاح</th>
<th>وزن (گرم)</th>
<th>طول (میلی‌متر)</th>
<th>پهنای (میلی‌متر)</th>
<th>ضخامت (میلی‌متر)</th>
<th>وزن هزار میوه (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>هسته خرما</td>
<td>0.79 ± 0.56</td>
<td>2.77 ± 0.79</td>
<td>2.78 ± 0.79</td>
<td>1.82 ± 0.63</td>
<td>2.79 ± 0.79</td>
</tr>
<tr>
<td>میوه خرما</td>
<td>8.60 ± 0.74</td>
<td>3.59 ± 0.57</td>
<td>3.58 ± 0.57</td>
<td>1.85 ± 0.65</td>
<td>3.58 ± 0.57</td>
</tr>
</tbody>
</table>

رابطه 1 از طریق اانتزاعی سه قطعات اصلی میوه (L) = قطع اصلی‌با طول، W = قطر میانی با پهنای T = قطر کوچک با ضخامت انتفاعی میوه. و تبعیض انتزاعی، مقدار چگونگی تا نمی‌باشد شکل‌های مورد نظر نیز توسط رابطه 8 محاسبه شده.

\[\text{حجم نمونه} = \frac{L}{W} \]

طقح آماری و برویس تایپ

دایه‌های پارامترهای مکانیکی این آزمایش با کوکوره و فاکوریل در قابل طرح بالک‌های کامل تصادفی بک فاکوره به منظور بررسی عمل سرعت دارگاه این تکرار توسط نمایار مورد تجربه و تحلیل آماری قرار گرفت. مقایسه MSTAT-C میانگین‌ها توسط آزمون چند دامنه‌ای با دستفم و نتایج ۶٪ نامناسب.

نتایج و بحث

تایپ خواص فیزیکی

جدول 1 نتایج مقدار متوسط و ویژگی‌های ابعادی، وزن، حجم
ترعیب فراوانی و وزن‌های ابعادی

شکل ۳: منحنی توزیع فراوانی ابعاد ابعاد اصلی میوه و هسته خرمایی کیکاب (سه قطر اصلی)

از نظر طول رقم کیکاب با طولی به اندازه ۶/۴۳ میلی‌متر نسبت به رقم گیوبنی با طول ۱۸/۲۵ میلی‌متر و بزرگ‌تر است. عرض (پهنای) رقم کیکاب با عرض ۱۴/۲۷ میلی‌متر و بزرگ‌تر است و رشته طولی همتای برای هر سنگی کیکاب بیشتر از ۳/۵۴ میلی‌متر بزرگ‌تر است. شکل ۴: منحنی توزیع فراوانی ابعاد ابعاد اصلی میوه و هسته خرمایی کیکاب (سه قطر اصلی)

نتایج تجربه‌ای و ارایه‌ای (جدول ۱) نشان می‌دهد که نوع سطح اصطکاکای اثر معنی‌داری (در سطح احتمال ۶%) بر ضرب اصطکاکای ابتایی میوه خرمایی داشته، مقایسه میانگین ضرب اصطکاکای ابتایی (شکل ۴) نشان میدهد که سطح جویانه برزگ‌تر مقدار و برای سطح ورق استیل و شیشه‌های کمترین مقدار را داشت، مقایسه میانگین ضرب اصطکاکای ابتایی خرمایی روز سطح
جدول 2- نتایج تجزیه واریانس ضریب اتصالک ایستایی

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>میانگین مرعیات (MS)</th>
<th>تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع سطح اتصالک</td>
<td>2</td>
<td>0.021</td>
<td>4</td>
</tr>
<tr>
<td>خطای</td>
<td>8</td>
<td>0.0003</td>
<td>87</td>
</tr>
</tbody>
</table>

ضریب تغییرات (درصد) 87

نکته: میانگین داده‌های نشاندهنده وجود اختلاف معنی‌دار در سطح 95% است.

![شکل 2 نمودار مقایسه میانگین ضریب اتصالک ایستایی به میانگین مرعیات (MS) در سطوح مختلف](image)

(حروف متغیرت روی ستون‌ها نشان دهنده وجود اختلاف معنی‌دار در سطح 95% است.)

توجه کنید که با افزایش سرعت بارگذاری مقدار نیروی مورد نیاز برای تغییر شکل‌های پیکان افزایش می‌پیدا، تأثیر‌پذیری خواص مکانیکی نمونه‌ها از سرعت بارگذاری برای تغییر شکل‌های به اندامه 15 و 30 درصد، به نوعی غلظب بودن انرژی سبب پاسخ به نیروی وارده نمی‌شود، در حالی که افزایش انرژی سبب پاسخ به نیروی وارده می‌شود. در اینجا نیروی نیروی مورد نیاز بالاتر در پاسخ به نیروی وارده می‌شود.

نتایج خواص مکانیکی

شکل 3 نمودار مقایسه ضریب اتصالک ایستایی و کاهش شکل‌های نشان‌دهنده وجود اختلاف معنی‌دار در سطح 95% است.

![شکل 3 نمودار مقایسه ضریب اتصالک ایستایی و کاهش شکل‌های نشان‌دهنده وجود اختلاف معنی‌دار در سطح 95% است.](image)

نتایج تجزیه واریانس داده‌های نیرو، انرژی و جغافلگی میوه نشان داد که اثر سرعت بارگذاری چشمگیری بر تامین نیروی مورد نیاز می‌باشد.

![شکل 4 نمودار مقایسه ضریب اتصالک ایستایی و کاهش شکل‌های نشان‌دهنده وجود اختلاف معنی‌دار در سطح 95% است.](image)
نتایج تغییرات واریانس مقدار سمتی (E) و چپ‌ساخته (F) میو خرمای رقم کیکاب

جدول ۳. مقایسه میانگین مقدار سمتی (E) و چپ‌ساخته (F) میو خرمای رقم کیکاب

<table>
<thead>
<tr>
<th>پنجره (MS)</th>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>T%50</th>
<th>T%20</th>
<th>E%50</th>
<th>E%20</th>
<th>F%50</th>
<th>F%20</th>
<th>F%5</th>
<th>F%1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>تکرار</td>
<td></td>
<td>۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>سرعت بارگذاری</td>
<td></td>
<td>۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ضریب تغییرات</td>
<td></td>
<td>-۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴. مقایسه میانگین مقدار بارگذاری (T) از شکل درانزی و چپ‌ساخته (F) میو خرمای رقم کیکاب

<table>
<thead>
<tr>
<th>پنجره (MS)</th>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>T%50</th>
<th>T%20</th>
<th>E%50</th>
<th>E%20</th>
<th>F%50</th>
<th>F%20</th>
<th>F%5</th>
<th>F%1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>سرعت بارگذاری</td>
<td></td>
<td>۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ضریب تغییرات</td>
<td></td>
<td>۲۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در نهایت، تغییرات شکل و بارگذاری به طور منظم باعث تغییر میو خرمای رقم کیکاب در پنتله داده می‌شود. در نتیجه، باید اطمینان کنیم که سرسنج و بارگذاری بر نحوی و انتزی تغییر شکل در بررسی خواص مکانیکی میو خرمای رقم کیکاب مشخص شود.

