تعیین و بررسی برخی خواص فیزیکی و مکانیکی خرمای رقم کبک

علي مساهاله کرمانی۱، یاسین قبادی۲ و محمد غلامی پرشکوهی۲

(تاریخ دریافت: ۱۳۹۱/۱۲/۱۹؛ تاریخ پذیرش: ۱۳۹۲/۱۲/۱۴)

چکیده
در این تحقیق تعدادی از خواص فیزیکی و مکانیکی خرمای رقم کبک اندازه گیری و ارزیابی شد. مقادیر متوسط طول،عرض و ارتفاع و هزار میوه و یک واحد میوه، قطر متوسط هندسی، حجم، مساحت سطح روبه و طول مقطع، چگالی حقيقی (میوه)، چگالی نهایی، تخلخل میوه خرمای رقم کبک با میزان رطوبت ۲۲ درصد بر پایه بر حسب تیپ عبارت بودند: از ۱۰/۵۶ تا ۱۳/۱۸، ۱۲/۳۶ تا ۱۴/۸۶، ۸/۵۸ تا ۱۰/۷۴ و ۱۵/۲۷ تا ۱۸/۰۶ کم. مقادیر مشاهده برای هسته بر حسب تیپ عبارت بودند: از ۷/۲۲ تا ۱۲/۲۴، ۷/۲۸ تا ۷/۸۹ و ۸/۷۹ تا ۱۰/۴۲ کم. درصد تعیین میله متریک، ۲۲/۷۸ میلیتر، ۵۸/۰۶ میلیتر، ۰/۹۵ درصد تعیین ۵۰/۰۵ گرم بر سانتی‌مترکمپ، ۵۰/۰۵ گرم بر سانتی‌مترکمپ و ۰/۹۵ درصد تعیین ۵۰/۰۵ گرم بر سانتی‌مترکمپ، و ۰/۹۵ درصد تعیین ۵۰/۰۵ گرم بر سانتی‌مترکمپ و ۰/۹۵ درصد تعیین ۵۰/۰۵ گرم بر سانتی‌مترکمپ و ۰/۹۵ درصد تعیین ۵۰/۰۵ گرم بر سانتی‌مترکمپ

شده، نسبت گوشت به هسته به میزان ۱/۰ درصد تیپ دارد، نوع سطح اصطکاکی بر ضرب اصطکاک به میوه خرمای رقم در سطح احتمال ۶٪ معنادار بود. مقادیر ضرب اصطکاکی اکستیم برای آهن‌گالوانیزه و نیز استیل، پلاستیک فشرده، شیشه و چوب بر حسب تیپ عبارت بودند: از ۴/۳۷ تا ۴/۳۷، ۴/۳۷ تا ۴/۳۷ و ۴/۳۷ تا ۴/۳۷ متریک میوه شمار نیرو انرژی و نیز چرخنده ظاهری در سطح سرعت بارگذاری فشاری ۱۵ و ۲۵ مم/ثانیه و انرژی و نیز چرخنده ظاهری در سطح سرعت بارگذاری فشاری ۱۵ و ۲۵ مم/ثانیه

در راستای ارتفاع میوه تا ایجاد تغییر شبکه وی به میزان ۱۵ و ۲۵ درصد ارتفاع اولیه تعیین شده. نتایج نشان داد که افزایش سرعت بارگذاری مقدار نیرو، انرژی و چرخنده به طور معنی‌داری افزایش می‌یافت.

واژه‌های کلیدی: خواص فیزیکی، ضرب اصطکاک، خواص مکانیکی، سرعت بارگذاری، خرما

۱. استادیار گروه فنی کشاورزی، پردای اوریحان، دانشگاه تهران
۲. به ترتیب دانشجو سایق کارشناسی ارشد و استادیار مکانیک ماشین‌های کشاورزی، دانشگاه آزاد اسلامی، واحد ناکاسان

amkermani@ut.ac.ir

* مسئول مکاتبات، پست الکترونیکی:
مقهیه

خروا از محصولات عمده کشاورزی ایران اسک و در حال حاضر یکی از محصولات مهم و پرسردی کشور بیش از ۲۰ میلیون متر مکعبی ساخته می‌شود. ارزوی خرو مورد نیاز افراد مختلف از دسته‌های مختلف نیاز مناسب، این مسئله به خوبی در دسترس‌کاری‌ها و برنامه‌ریزی‌های متعددی در صنایع مختلف نیاز مواد غذایی مناسب، صنعتی و پرستاری کاربرد دارد. در این مکانی‌های کشور، رسیدن به این محصول خروا اعم از حقیقی و نقل، انبارداری، سرویس‌گذاری (درجه‌بندی)، استفاده، تست‌گیری و سایر مواد در اولین گام نیاز به اطلاعات جامع کامل از خواص فیزیکی و مکانیکی آن است.

تهیه خواص فیزیکی و مکانیکی محصولات کشاورزی بعنوان مبنا بر رای طراحی و ساخت مشابه‌ها و تجربات انتقال درجه‌بندی و فرآوری محصولات کشاورزی همیشه مورد توجه بوده است. اصول طراحی مکانیکی کشاورزی بدن که در این پارامترها لازم بود و معقول به نظر پایتخت می‌یابد (۱۶ و ۱۷). بنابراین اهمیت و ضرورت بوده است که در مباحث تخصصی زیادی در زمینه تهیه و بررسی خواص فیزیکی و مکانیکی محصولات مختلف از جمله مواد دانه‌ای (۱.۷ و ۱۱)، خشک‌پایی (۲۱ و ۷) و میوه‌های (۳.۶ و ۱۷) مختلف کشاورزی انجام شده است.

محصولات مختلف کشاورزی از جمله خرو می‌تواند در اکثر عملیات پی از برداشت از جمله بستنی‌ها به تهیه قابل‌های سیستم خرو می‌تواند تأثیر تأمینی و اصلی‌ترین مورد است. این محصول مواد گیاهی است که در اکثر بخش‌هایی از این محصولات از آن استفاده می‌شود. این محصول به اکثر اطلاعات پیامدهای خواص فیزیکی و مکانیکی خرو می‌تواند یکی از اکثر محصولات کشاورزی بزرگ شود مواد (Viscoelastic) و بسیاری از اکثر مواد به بهترین مقادیر مکانیکی دارای بخشی از صفات جنگل‌های الیگوئسیستیک (Elasticity) و نخستی از اکثر مواد (Viscosity) می‌باشد (۱۶ و ۱۷). فرضیات بی‌پیچیدگی در بررسی بارگذاری‌های مختلف از غنی‌نشانه می‌گردد، ارگه و دستگاه بارگذاری‌های مختلف از صفات جنگل‌های الیگوئسیستیک به سرعت بارگذاری، از ویژگی‌های این دسته از مواد است، لکن چند و چون تاثیر سرعت
مواد و روش‌ها
حدود 15 کیلوگرم در هر روز کتاب از پاکت در خرمالوا
شهرستان دشتستان و با رعایت این که در حمل و نقل
تحت بارگذاری قرار گیرد به آزمایشگاه اندازه‌گیری، برای
تعیین رطوبت اولیه خرما از دستورالعمل موجود از طریق قرار
دادن 15 نمونه 135 گرم در دمای 105 درجه سلسیوس و
به مدتها 2 ساعت (8) حداکثر 21/2 بر پایه ترتیبی شد.

اندازه‌گیری ویژگی‌های فیزیکی هندسی
برای اندام‌گیری ابعاد میوه و هسته خرما و جرم واحد میوه،
بکشید و بفرومیوه از نوع مورد نظر به طور تصادفی انتخاب و
توسط کولیس دیجیتالی (با دقت 0.01 میلی‌متر) و نزاری
الکترونیکی (با دقت 0.1 گرم) اندازه‌گیری گریه‌ها انجام شد.
حجم (V)، و قطر متوسط هندسی (Dg) حکمی از هسته آن
به ترتیب از روابط 1 و 2 محاسبه گردید.

\[
V = \frac{\pi LW T}{6}
\]

\[
Dg = \left(\frac{LWT}{V}\right)^{\frac{1}{3}}
\]

که در آنها، V= حجم (میلی‌مترکعب)، Dg = قطر متوسط
هندسی (میلی‌متر)، L= طول (میلی‌متر)، W= عرض (میلی‌متر)
و T= ارتفاع (میلی‌متر) است.

نسبت وزن گوشت به هسته میوه (Flesh/seed ratio) از
تفاوت وزن هسته از وزن میوه کامل تقسیم بر وزن هسته,
مطابق رابطه 3 محاسبه شد (6).

\[
\text{وزن هسته} - \text{وزن میوه} = \text{نسبت وزن گوشت به هسته}
\]

\[
\mu_s = \tan \phi
\]

که در آن: \(\phi \) ضریب اصطکاکی ایستایی و \(\mu_s \)
نسبت یک درجه اندازه‌گیری بست شد.

ضریب اصطکاکی ایستایی
زاویه اصطکاکی ایستایی خرما روی پنجه اصطکاکی
مختلف شماه آهن‌گالشیاتور. ورق استیل، بلاستیک فشرده،
شبیه و چوبی با استفاده از دستگاه‌های سطح شیب‌داری
مطلق شکل 1 اندازه‌گیری شد. بدان ترتیب که توسط محصول
درون ظرف استاندارد شکلی به قطر 100 میلی‌متر و ارتفاع
45 میلی‌متر که فاقد سر و به‌عمق قرار داده شد و روی سطح قرار
گرفت، سپس استوانه خاکی نمونه را پذیرفته بود. آن با شیب‌دار
تجمیع نداشته باشند. زاویه بین شیب سطح توسط
مکانیزم پی‌چی دستگاه به وسیله نظارتی افتراش یافته و به محض
شروع لزه برخوردار شدهای میوه خرما، شبیه دستگاه
با دقت پنجه اندازه‌گیری بست شد.

\[
\mu_s = \tan \phi
\]

که در آن: \(\phi \) ضریب اصطکاکی ایستایی و \(\mu_s \)
نسبت یک درجه اندازه‌گیری بست شد.

\[
S = \frac{\pi D_g^2}{4}
\]

\[
S_p = \frac{\pi D_g^2}{4}
\]

\[
S = \frac{\pi D_g^2}{3}
\]

\[
V = \frac{\pi LW T}{6}
\]

\[
Dg = \left(\frac{LWT}{V}\right)^{\frac{1}{3}}
\]

\[
\mu_s = \tan \phi
\]
شکل ۱. دستگاه تعمین ضرب اصطکاکی ایستایی

شکل ۲. نمونه میوه خرما تحت بارگذاری فشاری (سری راست)، دستگاه آزمون مولد Hounsfieled H5k-

زمینه نیرو- تغییر شکل توسط نرم افزار رایانه ای اختصاصی
dستگاه ثبت شد. دادههای خام نیرو در مقابل تغییر شکل برای
هر آزمایش توسط نرم افزار دستگاه برنامه به
در این تحقیق با توجه به این که در طی فرآیند بارگذاری میوه
کامل سطح نیرو و میله بارگذاری ثابت نبوده، اندوزه گیری
و محاسبه سطح میوه تحت بارگذاری و در نتیجه مقدار
نشان قابل محاسبه بود.

خواص مکانیکی مورد بررسی عبارت بودند از دادههای
مقادیر نیرو، انرژی و چگریگی تا تغییر شکل های به میزان
۹۰% و ۴۸% ضخامت اندازه گیری شده اولیه میوه که از
منحنی نیرو- تغییر شکل استخراج و محاسبه شدند. انرژی
تا تغییر شکل های مورد نظر از طریق محاسبه سطح
دایره محاسبه سطح ذوزنقه انجام شد. با برآورده حجم هر نمونه از
زاویه سطح شیب دار در لحظه شروع به لغزش قوطنی محتمول
خرما هستند.

آزمایش مکانیکی بارگذاری فشاری

هر نمونه خرما پس از اندازه گیری مشخصات فیزیکی شامل
ویژگی ابعادی (طول، پهنای و ضخامت) و جرم میوه توسط
ماشین آزمون مواد مدل Hounsfieled H5k-

ضخامت میوه تحت بارگذاری فشاری قرار گرفت (شکل ۲).

شکل میله (Probe) مورد استفاده در بارگذاری فشاری
صفحه تخت بود که با نصب فشارسنج (-load cell)
بت‌تو، به‌منظور بررسی سرعت بارگذاری نمونه‌های کامل میوه

۵۴ mm/min و ۶۰ mm/min با پنج تکرار انجام شد. برای هر آزمایش
تعداد انجام شد.
جدول 1. خواص فیزیکی و اصطلاحی میوه و هسته خرما رم کیکب

<table>
<thead>
<tr>
<th></th>
<th>میوه خرما</th>
<th>هسته خرما</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن (گرم)</td>
<td>8/65 ± 1/260</td>
<td>8/67 ± 0/156</td>
</tr>
<tr>
<td>طول (میلی‌متر)</td>
<td>36/89 ± 2/834</td>
<td>36/89 ± 2/834</td>
</tr>
<tr>
<td>قطر پهنای (میلی‌متر)</td>
<td>7/68 ± 0/567</td>
<td>7/68 ± 0/567</td>
</tr>
<tr>
<td>قطر متوسط هندسی میوه</td>
<td>7/8 ± 0/87</td>
<td>7/8 ± 0/87</td>
</tr>
<tr>
<td>قطر متوسط هندسی هسته</td>
<td>7/8 ± 0/87</td>
<td>7/8 ± 0/87</td>
</tr>
</tbody>
</table>

- رابطه 1 از طریق اندادگی سه قطر اصلی میوه \(L = \) قطر اصلی میوه "با طول" \(T = W = \) قطر میانی "با پهنای" \(T = \) قطر کره "با ضخامت ارتقاء" با میوه و هسته از نظر مقدار چهارمگی تا تغییر شکل های مورد نظر توسط رابطه 8 محاسبه شد.
- انرژی تا نگه داشت شکل مورد نظر \(= \) چهارمگی
- حجم نمونه

طرح آماری و بررسی نتایج

داده‌های پایرام‌های نماینده بخش آماری ورزش‌های اکتیویت با استفاده از آزمایش فاکوریلیل در قابل طرح می‌باشد که نشان‌دهنده فاکوریلیل در چالش قابل طرح با آزمایش

روند تجزیه و تحلیل آماری قرار گرفت. مقیاسه MSTAT-C میانگین‌ها توسط آزمون چند دسته‌ای دانکن در سطح 6% نمود شد.

نتایج و بحث

نتایج خواص فیزیکی

جدول 1 نتایج مقدار متوسط و ویژگی‌های ابعادی، وزن، حجم
نتایج تجربه واریانس (جدول ۲) نشان می‌دهد که نوع سطح اصطکاکی اثر معنی‌داری (در سطح احتمال ۶%) بر ضریب اصطکاکی بسیاری خرا روزی سطح مختلف اصطکاکی داشته، مقایسه مقادیر میانگین ضریب اصطکاکی این‌گونه (شکل ۲) نشان می‌دهد که سطح چونی بزرگ‌ترین مقادیر و برای سطح ورق استیل و شیشه‌ای کمترین مقادیر را داشته، مقادیر میانگین ضریب اصطکاکی بسیاری خرا روزی سطح افزایش یافته است.

از نظر طول رقم کیکاب با طول به‌اندازه ۵/۱۸ میلی‌متر نسبت به رقم گیووتی با طول ۵/۸۳ میلی‌متر بزرگ‌تر است. عرض (پهنای) رقم کیکاب با عرض ۵/۸۸ میلی‌متر برابری می‌کند. چگالی حقيقی (یپه) و چگالی نتوان خرما رقم کیکاب به‌ترتیب ۸/۴۴ و ۵/۷۴ گرم بر سانتی‌متر مکعب تعین شد که برای رقم گیووتی چگالی حقيقی و نتوان به‌ترتیب ۸/۴۴ و ۵/۷۴ گرم بر سانتی‌متر مکعب گزارش شده است. چگالی متوسط توده کمتر رقم کیکاب نسبت به رقم گیووتی می‌تواند به‌دلیل بالاتر بودن نسبت گوشت به هسته باشد که برای رقم کیکاب هسته بافت چوبی سخت و فشرده درصد کوچک‌تری از کل میوه را تشکیل داده است.

نتایج مقادیر قطر متوسط هندسی (میلی‌متر)، حجم (میلی‌متر مکعب)، نسبت طول به پهنای (L/W)، مساحت سطح رویه (میلی‌متر مربع)، مساحت سطح مقطع (میلی‌متر مربع)، که توسط روابط محاسبه‌شده در جدول ارائه شدهاند.

بای تعبیر و مقایسه خواص فیزیکی رقم کیکاب با ارقام مختلف خرما مطالعه شد و نشان داد که بررسی‌های محاسبه‌ی معلوم شد که نوع ویژگی‌های فیزیکی ارقام مختلف نسبت زید است. از این رو نتایج این مطالعه که برای انتخاب انسوج خرما، مناطق مختلف به‌منظور استفاده‌ی خرما، در جهان‌ی و در سواکی، طریق‌های استفاده‌های گوناگون، طرح‌های تجربیات انتقال رأ‌ورآک خرما به خواص فیزیکی ارقام مختلف توجه شود.
جدول ۲ نتایج تجزیه و اریانس ضریب اصطکاک ایستایی (MS) میانگین مربعات درجه آزادی

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>MS</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>25.00</td>
<td>4</td>
</tr>
<tr>
<td>نوع سطح اصفهانی</td>
<td>0.25</td>
<td>2</td>
</tr>
<tr>
<td>خطای</td>
<td>0.00</td>
<td>1000</td>
</tr>
</tbody>
</table>

ضریب تغییرات (درصد) = 87%

ن شانه معنی دار بودن در سطه احتمال 6%

![Graph](image-url)

شکل ۲ نمودار مقایسه میانگین ضریب اصطکاک ایستایی میوه خرما روی سطوح مختلف

(حروف متغیر روی ستون‌ها نشان دهنده وجود اختلاف معنی‌دار در سطح ۶% است)

در بخش بعدی از متن نویسی نیرو - تغییر شکل بارگذری نشان می‌دهد، بررسی این نمودار بیا در نظر دارد. سنگین این‌ها نشان دهنده واقعیت شکل بارگذری نشان می‌دهد که در دامنه تغییر شکل ۱۰ میلی‌متری مورد بررسی نشانه‌های لشکرکی میوه بوجود آمده و به‌دردست پارکی پوست میوه ایجاد می‌شود.

نتایج تجزیه و اریانس داده‌های نیرو، انرژی و جهرمی میوه خرما رقم کیکت تا تغییر شکل به میزان ۶۵% و ۶۰% ضخامت میوه نشان داد که اثر سرعت بارگذری تقریباً بر تمام
نتیجه‌گیری
اطلاعات خواص فیزیکی انداره‌گیری و محاسبه شده، رقم

جدول ۲: مقایسه میانگین مقادیر نیرو، انرژی و چهرمکی میوه خرما رقم کیکاب

<table>
<thead>
<tr>
<th>T%</th>
<th>T%</th>
<th>T%</th>
<th>E%</th>
<th>E%</th>
<th>E%</th>
<th>F%</th>
<th>F%</th>
<th>F%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>22</td>
<td>32</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>82</td>
</tr>
</tbody>
</table>

سمت ۲۵

برای تغییر شکل به‌دست آمده بطور منطقی با تغییر تغییر

پتکوردی و میانگین (12) مطلوب دارد.

در بررسی خواص مکانیکی میوه خرما رقم کیکاب

مشخص شد که سرعت بارگذاری بر نیرو و انرژی تغییر شکل

برای تغییر شکل به‌دست آمده بطور منطقی با تغییر تغییر

پتکوردی و میانگین (12) مطلوب دارد.

نتیجه‌گیری

اطلاعات خواص فیزیکی انداره‌گیری و محاسبه شده، رقم

۲۱۴

