مطالعه تأثیر پرتوتابی اشعه گاما بر پار میکروبی گیاهان دارویی نعنای فلسفی، آویشن شیرازی، مرزه و بادرنجبیوه

راضیه ولی اصلی¹، مجید عزیزی٢، معصومه بحرینی٢ و وحید روشن³

(تاریخ دریافت: ۱۳۹۱/۸/۷؛ تاریخ پذیرش: ۱۳۹۲/۳/۱۳)

چکیده

پرتو گاما می‌تواند به عنوان یک روش مؤثر برای افزایش عمر پس از برداشت محصولات مختلف کشاورزی از طریق کاهش پار میکروبی و ضدعفونی آنها بدون تأثیر سوه ورد استفاده گردد. این تأثیر مربوط به گذش از کاهش میکروارگانیسم‌های بیماری‌زا، حشرات و پارازیت‌های مختلف می‌باشد. در این تحقیق، تأثیر پرتوتابی با اشعه گاما بر پار میکروبی گیاهان دارویی نعنای فلسفی (Mentha piperita) مختلف نباید. در این تحقیق که به‌صورت طرح مورد بررسی قرار گرفت، این تحقیق که به‌صورت طرح (Zataria multiflora)، (Melissa officinalis)، (Satureja hortensis) و آویشن شیرازی (Hortensia) کامل تصادف با سه نکار ارجا شده است. نتیجه‌گیری‌های گیاهان پذیرفته باید که که کمترین میزان میکروارگانیسم‌ها، باکتری‌های کولی‌مری و کیک مخمری به‌بوسد. نتایج نشان داد که پرتو گاما باعث کاهش پار میکروبی نمونه‌های گیاهی مورد بررسی شده بود. در این تحقیق دوز ۴۴۰ (Co 60) (μCi) با دوره‌ای ۳۰، ۳۱، ۳۲، ۳۳ و ۱۵ کیلوگرم پرتوژر شده بود. نتایج نشان داد که که کاهش پار میکروبی گیاهان دارویی می‌تواند مورد استفاده قرار گیرد.

واژه‌های کلیدی: پرتو گاما، بر پار میکروبی، ضدعفونی، گیاهان دارویی

¹ یہنتیب دانشجو سایر کارشناسی ارشد و دانشیار علوم باغبانی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
² استاد حسابی، دانشکده علوم پایه، دانشگاه فردوسی مشهد
³ استاد حسابی، مرکز تحقیقات کشاورزی و منابع علمی فارس
⁴ مسئول مکاتبات، پست الکترونیکی: rvaliasill84@gmail.com

شماره سیزدهم / سال چهارم / ماه فروردین / ۱۳۹۲

۲۶۱
مقدمه
مواد گیاهی به سبب محتوای که در آن رشد می‌کند قابل‌بیانی‌پذیری وزایش باعث شده‌باید آن‌ها را یافته‌بزنیم.\nعملیات رشته‌منشی مثل برداشت، دست وری، ابزار و فرآوری آنها ممکن است باعث این‌رسیدن آخران‌الودیگی و رشد این‌الودیگی‌ها شود که می‌تواند به‌صورت مستقیم سلامتی مصرف‌کننده‌ها حتی اگر این‌اکثریت گیاهان این می‌شود (14). گیاهان دارویی و ادویه‌ای در مانند مختلف جهان تولید می‌شود که این‌رسیدن سبب اختلاش در شرایط یادگیری و کاهش باعث مشکلات مختلفی از جمله افزایش آلودگی و کاهش مدت نگهداری آنها می‌شود که در مقایسه به‌طور مخفی گرفته بود.

محصولات تاکنون‌شناخته‌شده در شرایط گیاه‌داری کنار گیاه‌داری‌های دریافت‌کننده نشان داد که این‌رسیدن در این‌رسیدن بیشتری از گیاهان دارویی و ادویه‌ای با گیاه‌داری درکننده‌ها در این‌رسیدن‌های بت‌بزرگ شده‌بود. (15).

نتایج و جایگاه گیاهان دارویی در زمینه علوم در کتب کتاب‌های بزرگ‌تری نوشته شده‌بود.

که روش‌های عقلانی شناخته شده‌باید می‌تواند برای سلامتی مواد غذایی و تکنولوژی مذکور دسترسی به رافعی مسئله بی‌صرف‌رسانی‌برای این‌رسیدن باعث قابل‌بیانی‌پذیری وزویش می‌کند که در آن رشد می‌کند.

که روش‌های عقلانی شناخته شده‌باید می‌تواند برای سلامتی مواد غذایی و تکنولوژی مذکور دسترسی به رافعی مسئله بی‌صرف‌رسانی‌برای این‌رسیدن باعث قابل‌بیانی‌پذیری وزویش می‌کند که در آن رشد می‌کند.
پرتوده نمونه‌های گیاهی

جهت پرتوده، نمونه‌های گیاهی به صورت بسته‌های ۱۵ گرمی با ۸ تکرار در پاک‌های پلاستیکی آنالوژیک (zip bags) با (پلاستیکی) پشتیبانی شدند. سپس پاک‌های حاوی نمونه‌های گیاهی به آزمایشگاه دولتی زیوتکسکد کاربرد پرتو واقع در سایت‌های مختلف ایران منتقل شد. پاک‌هایی با چشم‌های پلی اتیلنی در داخل دستگاه ۲۲۰ - Gamma cell بررسی می‌شد.
جدول ۱. نتایج تجربه واریانس تأثیر پرتون‌گاما بر بار میکروبری مزرعه

<table>
<thead>
<tr>
<th>مجموع معترضات</th>
<th>درجه آزادی</th>
<th>کیک و مخمرک</th>
<th>پرتون‌گاما</th>
<th>نسبت</th>
<th>ضریب تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلوگرم</td>
<td>۱۰/۸۹</td>
<td>۱/۳۴۳</td>
<td>۱/۴۲</td>
<td>۳/۴۲</td>
<td>۱/۴۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>۱/۴۲</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

متن در سطح احتمال ۱ درصد.

جدول ۲. مقایسه میانگین بار میکروبری مزرعه تحت تأثیر پرتون‌گاما (پرساس واحد کلی شکل‌پذیر)

<table>
<thead>
<tr>
<th>نوع بار</th>
<th>نسبت</th>
<th>نوع بار</th>
<th>نسبت</th>
<th>نوع بار</th>
<th>نسبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳ کیلوگرم</td>
<td>۱/۳۴۳</td>
<td>۷ کیلوگرم</td>
<td>۱/۴۲</td>
<td>۱۵ کیلوگرم</td>
<td>۱/۴۲</td>
</tr>
<tr>
<td>پرتون‌گاما</td>
<td>۱/۴۲</td>
<td>پرتون‌گاما</td>
<td>۱/۴۲</td>
<td>پرتون‌گاما</td>
<td>۱/۴۲</td>
</tr>
</tbody>
</table>

(+log CFU/g)

<table>
<thead>
<tr>
<th>کیلوگرم</th>
<th>۳/۴۲</th>
<th>۱۵ کیلوگرم</th>
<th>۳/۴۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۳/۴۲</td>
<td>شاهد</td>
<td>۳/۴۲</td>
</tr>
</tbody>
</table>

حرفه مشابه در هر سه بین‌گذر عدم وجود اختلاف معنادار بر پرساس آزمون دو-خانه در LSD = ۰/۰۵.

این تحقیقی است که تأثیر پرتون‌گاما بر بار میکروبری مزرعه بر اساس اساس جدول مقایسه میانگین (۲) مربوط به تأثیر ابتدا نشان داد که در کیلوگرم ۱۵ استفاده کرده شاهد در نمونه‌هایی که با دوز ۱۰ کیلوگرم پرتون‌گاما نسبت به شاهد کمتر بود، نتیجه‌گیری کرد که ۱۰ کیلوگرم پرتون‌گاما در نمونه‌هایی که با لاژه‌های ۵ و ۱۰ کیلوگرم پرتون‌گاما اختلاف معناداری نداشت ولی کمترین آلودگی کیلوگرمی در هر دوز ۱۵ کیلوگرمی شاهد که نسبت به سایر دووزه هواشده بود. به‌طور جهت تشکیل درست نتیجه‌گیری کرده که با دوز ۱۵ کیلوگرمی پرتون‌گاما شده بودند کمترین میزان بار میکروبری را نسبت به شاهد و سایر دووزه‌های مورد بررسی داشتند.

نتایج حاصل از جدول تجربه واریانس تأثیر پرتون‌گاما، اینگونه می‌باشد که پرتون‌گاما کیلوگرمی نسبت به شاهد داده که کاهش معناداری داشته است و باز میکروبری مادری با هم نداشتند.

<table>
<thead>
<tr>
<th>کیلوگرم</th>
<th>۳/۴۲</th>
<th>۱۵ کیلوگرم</th>
<th>۳/۴۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۳/۴۲</td>
<td>شاهد</td>
<td>۳/۴۲</td>
</tr>
</tbody>
</table>

۲۴۲
جدول ۳. نتایج تجزیه و اریانس تأثیر پرتو گاما بر بار میکروی آویش شیرازی (log cfu/g)

<table>
<thead>
<tr>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>شمارش کل</th>
<th>کیک و مخمرک</th>
<th>پرتو گاما</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلوگرم</td>
<td>۱/۷۷</td>
<td>۱/۰۴</td>
<td>۴</td>
<td>۰/۵۶۶</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۱/۱۰۰</td>
<td>۰/۱۰۰</td>
<td>۰</td>
<td>۰/۵۶۶</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۱/۵۱</td>
<td>۱/۵۱</td>
<td>۰</td>
<td>۰/۵۶۶</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۳/۸۷</td>
<td>۳/۸۷</td>
<td>۱</td>
<td>۰/۵۶۶</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۳/۸۷</td>
<td>۳/۸۷</td>
<td>۱</td>
<td>۰/۵۶۶</td>
</tr>
</tbody>
</table>

جدول ۴. مقایسه میانگین بار میکروی آویش شیرازی تحت تأثیر پرتو گاما (log cfu/g)

<table>
<thead>
<tr>
<th>شمارش کل</th>
<th>نوع تیمار</th>
<th>کیک و مخمرک</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلوگرم</td>
<td>۱۵</td>
<td>۴</td>
<td>۱۵</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۳</td>
<td>۱</td>
<td>۳</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۱۰</td>
<td>۱</td>
<td>۱۰</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۳۵</td>
<td>۱</td>
<td>۳۵</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۱۰۱</td>
<td>۱</td>
<td>۱۰۱</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>۱۵۱</td>
<td>۱</td>
<td>۱۵۱</td>
</tr>
</tbody>
</table>

جدول ۵. نتایج حاصل از آنالیز تجزیه و اریانس (جدول ۴) تأثیر

نتایج به‌دست آمده از جدول نشان داد که با افزایش میزان شمارش کل و کیک و مخمر، به‌طور کلی کاهش شده است. بنابراین، کیک و مخمر به‌طور متوسط کاهش یافته‌اند. بنابراین تأثیر تیمار در بالا داده شده است.

جدول ۶. نتایج حاصل از آنالیز تجزیه و اریانس (جدول ۴) تأثیر

نتایج به‌دست آمده از جدول نشان داد که با افزایش میزان شمارش کل و کیک و مخمر، به‌طور کلی کاهش شده است. بنابراین تأثیر تیمار در بالا داده شده است.
جدول ۵. تابع تجزیه واریانس تأثیر پرتگالیا بر پار میکروپی نمایه‌گزی (log cfu/g)

<table>
<thead>
<tr>
<th>شماره‌گذاری</th>
<th>درجه آزادی</th>
<th>شمارش کل</th>
<th>کیک و مخمر کلم</th>
<th>کولرفرم</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرتگالیا</td>
<td>4</td>
<td>0/09</td>
<td>0/42</td>
<td>0/59</td>
<td>10</td>
</tr>
<tr>
<td>نظارت</td>
<td>10</td>
<td>0/12</td>
<td>0/05</td>
<td>0/47</td>
<td>51</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>0/61</td>
<td>0/64</td>
<td>0/51</td>
<td>2/65</td>
<td></td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنی‌دار و عدم معنی‌دار در سطح احتمال 1 درصد

جدول ۶. مقایسه میانگین پار میکروپی نمایه‌گزی تحت تأثیر پرتگالیا (log cfu/g)

<table>
<thead>
<tr>
<th>نوع تیمار</th>
<th>کولرفرم</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیک مخمر کلم</td>
<td>3/76 b</td>
<td>3/76</td>
</tr>
<tr>
<td>کیک مخمر کلم</td>
<td>3/42 a</td>
<td>3/42</td>
</tr>
<tr>
<td>پرتگالیا</td>
<td>3/25 b</td>
<td>3/25</td>
</tr>
<tr>
<td>پرتگالیا</td>
<td>2/93 c</td>
<td>2/93</td>
</tr>
</tbody>
</table>

جدول ۷. نتایج تجزیه واریانس تأثیر پرتگالیا بر پار میکروپی با درنژیوه (log cfu/g)

<table>
<thead>
<tr>
<th>درصد</th>
<th>درجه آزادی</th>
<th>شمارش کل</th>
<th>کیک و مخمر کلم</th>
<th>کولرفرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرتگالیا</td>
<td>4</td>
<td>0/19</td>
<td>0/12</td>
<td>0/29</td>
</tr>
<tr>
<td>نظارت</td>
<td>10</td>
<td>0/01</td>
<td>0/09</td>
<td>0/14</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>0/41</td>
<td>0/45</td>
<td>0/49</td>
<td>0/42</td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنی‌دار و عدم معنی‌دار در سطح احتمال 1 درصد

شده، این در حالت است که پیش‌ترین شمارش کلم مشاهده شده در دو زمان ۳ و ۷ کیلولوگری است و تیمار شاهد و دور ۱۰ کیلولوگری از نظر شمارش کلم تفاوت معنی‌داری نشان داده و شمارش کلم در آنها در یک سطح بود. این نتایج نشان داد که در نمونه‌های گیاه با درنژیوه که با دور ۱۵ کیلولوگری اشعه گاما پرتویی شده تأثیر بهتری در کاهش شمارش کلمی داشت. تأثیر اشعه گاما بر تعداد کیک و مخمر مشخص کرد که تیمار
جدول 8 مقایسه میانگین بار میکروپی بادنجانی تحت تأثیر پرتگالا (log cfu/g)

<table>
<thead>
<tr>
<th>نوع تیمار</th>
<th>شمارش کل</th>
<th>کیک و منجمد کل</th>
<th>کیک</th>
<th>منجمد کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>3/54 مع.</td>
<td>3/54 مع.</td>
<td>3/54 مع.</td>
<td></td>
</tr>
<tr>
<td>پرتگالا</td>
<td>3/54 مع.</td>
<td>3/54 مع.</td>
<td>3/54 مع.</td>
<td></td>
</tr>
</tbody>
</table>

توجه کنید که لیست مقادیر مربوط به دوزهای مختلف اشعه گاما کاهش یافته بطوری که پشتیبانی بار میکروپی در تیمار شاهد و دوزهای 3 و 7 کیلوگرمی و کمترین بار میکروپی در دوزهای 10 و 15 کیلوگرمی مشاهده شد.

بهطورکلی در بین دوزهای اشعه گاما که در سال سازی نمونه‌ها گیاه بادنجانی استفاده شد، دوز 15 کیلوگرم پشتیبانی تأثیر را در کاهش بار میکروپی این گیاه به خود اختصاص داد. در حالی که کاهش قابل توجهی در بار میکروپی در سایر دوزهای استفاده شده اشعه گاما دیده نشد.

بحث

بهطورکلی نتایج تأثیر دوره پرتگالا با اشعه گاما بر بار میکروپی گیاهان نشان داد. به خصوص در بار میکروپی گیاهان با اشعه گاما مقدار انرژی 15 کیلوگرمی تأثیر را کاهش بار میکروپی ایجاد کرد، در حالی که بار میکروپی گیاهان با اشعه گاما به همراه پشتیبانی تأثیری نداشت. این نتایج نشان داد که کاهش افزایش آنتی اکسیدانی این گیاهان شد.

بر اساس نتایج، افزایش مقادیر فلز فلفل و خاکسازی بار میکروپی گیاهان افزایشی آنتی اکسیدانی این گیاهان شد.

تأثیر دوره‌های 1، 2 و 3 کیلوگرمی اشعه گاما طی مدت 12 روز از انبار در دمای 4 سانتی‌گراد چیونه یا بررسی netalumus nucifera مورد بررسی قرار گرفت و نتایج نشان داد که تعداد باکتری‌ها در روز نهم و دوازدهم نسبت به روز اول در تمام دوزهای بسیار رتفه افزایش یافته بود و نتایج قارچ‌های روز اول به بعد افزایش چشمگیری یافته بود (۱۶). ابتدا و همکاران با بررسی تأثیر دوره انبار و دوزهای 2 و 6 کیلوگرمی همکاران با بررسی تأثیر دوره انبار و دوزهای 2 و 6 کیلوگرمی

