مطالعه تأثیر پروتئین اشعه گاما بر باز میکروبی گیاهان دارویی نعنا فلگلی، آویشن شیرازی، مرزه و بادرنجیوه

راضیه ولی اصلی، مجد عربی‌پور، مصصمه بهرینی و وحید روشان

(تاریخ دریافت: 1391/6/3؛ تاریخ پذیرش: 1392/3/20)

چکیده
پترو گاما معادن به عنوان یک روش مؤثر برای انباشی عصر پس از برداشت محصولات مختلف کشاورزی از طریق کاهش پیشرفت و ضدعفوني آنها بدون تأثیر سوء مورد استفاده قرار گرفته است. این تأثیر مربوط به هدف یا کاهش میکروگانیسم‌های بیماری‌زا، حشرات و پارازیت‌های مختلف می‌باشد. در این تحقیق، تأثیر پتروتیا با اشعه گاما بر باز میکروبی گیاهان دارویی نعنا فلگلی مختلف نمونه با درصد هدف (Mentha piperita) (Satureja), (Mentha piperita) (Satureja) (Melissa officinalis) (Zataria multiflora) (Javorus) کامل تصادفی با سه گروه کنترل است. استفاده گیاهان با چهار کیلوگرمی کالر با غلظت 400 Mgیا دوره‌ی 30 و 15 کیلوگرمی پتروتیا شده سپس از آن‌ها رشته کردن کل میکروگانیسم‌ها با کاهش کل میکروگانیسم‌ها و کاهش مخمر بررسی شد. نتایج نشان داد که پترو گاما باعث کاهش باز میکروبی نمونه‌های گیاهی مورد بررسی شده‌بود. در این تحقیق دوز 15 کیلوگرمی بیشترین کاهش باز میکروبی را داشت و بیشترین باز میکروبی مربوط به تیمار شاهد بود. همچنین نتایج نشان داد که نعنا فلگلی و آویشن شیرازی بهترین بیشترین کاهش باز میکروبی را داشتند. نتایج حاصل از این بررسی نشان می‌دهد که پترو گاما به عنوان یک روش ضدعفونی مهم جهت کاهش باز میکروبی گیاهان دارویی می‌تواند مورد استفاده قرار گیرد.

واژه‌های کلیدی: پترو گاما، باز میکروبی، ضدعفونی، گیاهان دارویی

1. دانشگاه علوم پزشکی، دانشگاه علوم پزشکی بهشتی
2. مهندسی‌های کشاورزی، دانشگاه علوم پزشکی بهشتی
3. مهندسی‌های کشاورزی، دانشگاه علوم پزشکی بهشتی

rvaliasill84@gmail.com

Drafted from jcpp.iut.ac.ir at 7:13 IRDT on Sunday May 19th 2019
مقدمه
مواد گیاهی به سبب محیط‌کننده در آن رشد می‌کنند. قابلیت پذیرش سطح بازیابی از آلودگی میکرو‌واکنش‌ها و ردیابی و درمان عوامل رایجی مثل برداشت، دست وردی، ابراز و فراری این آلودگی‌ها شکسته می‌تواند به محیط محیط‌کننده و مصرف کندی که به خطر افتاده، هنین اضافه شدن این مواد میکرو‌واکنشی به مواد غذایی باعث فساد آنها می‌شود (15). گیاهان دارویی و ادویه‌ای در مناطق مختلف جهان تولید می‌شوند که این امر سبب اختلاف در شرایط تولید و شکست، باعث ایجاد مشکلات مختلفی جعله افزایش آلودگی و کاهش مدد نگهداری آنها می‌شود که در واقع می‌تواند به کنیت این محصولات تأثیر نامطلوبی بگذارد (5).

جمع آوری و چاپ جاجی که گیاهان دارویی همیشه در شرایط بهداشتی نامی که به این امر می‌تواند سبب وارد شدن عوامل زیادی از میکرو‌واکنش‌ها و در نتیجه باعث افزایش خسارت شود (17). بنابراین ارزیابی کیفیت بهداشتی گیاهان دارویی هم‌اکنون سایر محصولات کشاورزی به منظور نلاشی در راستای سلامت محیط‌کننده و بهبود میزان صحت آنها در درمان بیماری‌ها و استاندارد نمونه آنها از اهمیت زیادی برخوردار است. خریدجول کردن میکرو‌واکنش‌ها در گیاهان دارویی و ادویه‌ای معمولاً با چنین روش‌های ضدعفونی هم مشابه و ضد عفونی یا نگهداری، افزایش توانایی و توانایی برخورداری با اشعه گاهی با کننده فیتوکشور و از انجام می‌یا (16). استفاده از الیتک اکسید و میبل بروماپید به‌دلیل آزاد کردن ترکیبات سخت باکتری‌ها و آتار مخرب که برای محیط زیست و کارگرانت که عملیات ضدعفونی را انجام می‌دهند و همچنین تغییر حواص اتاق‌پارکی (ظرف و تمیز) گیاهان دارویی محدود و حث در کشورهای اروپایی ممنوع شده‌است. از طرف دیگر تیمار حرارتی باعث نگهداری می‌شود و تغییر مواد مخرب گیاهان دارویی می‌شود. بنابراین انتخاب روش مناسب برای ضدعفونی گیاهان دارویی بسیار مهم می‌باشد. امروزه پرتو گاما به عنوان
جدول 1. نتایج تجربه واریانس تاثیر پرتو گاما بر بار میکروبی مزرعه

<table>
<thead>
<tr>
<th>مجموع معبرات</th>
<th>درجه آزادی</th>
<th>بار میکروبی</th>
<th>شماره کلی کیک و مخمرکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلوگرم</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/39</td>
<td>3/23</td>
<td>0/06</td>
<td>0/01</td>
</tr>
<tr>
<td>0/38</td>
<td>3/24</td>
<td>0/06</td>
<td>0/01</td>
</tr>
<tr>
<td>0/42</td>
<td>3/22</td>
<td>0/06</td>
<td>0/01</td>
</tr>
</tbody>
</table>

جدول 2. مقایسه میانگین بار میکروبی مزرعه تحت تأثیر پرتو گاما (براساس واحد کلنی شکل یا (log cfu/g))

<table>
<thead>
<tr>
<th>نوع تیمار</th>
<th>کیلوگرم</th>
<th>شماره کلی کیک و مخمرکل</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 کیلوگرم</td>
<td>7/13</td>
<td>0/07</td>
<td>0/09</td>
</tr>
<tr>
<td>10 کیلوگرم</td>
<td>6/28</td>
<td>0/09</td>
<td>0/09</td>
</tr>
<tr>
<td>پرتو گاما</td>
<td>3/21</td>
<td>0/06</td>
<td>0/01</td>
</tr>
</tbody>
</table>

حرف مشابه در هر ستون بیانگر عدم وجود اختلاف معنی‌دار براساس آزمون LSD در P=0.05

آویشن شیرازی تحت تأثیر قرار داد (جدول 3). کیلوگری پرتو گاما شدن اختلاف معنی‌داری با سایر دوره‌های به کار رفته داشتند. آلودگی در نمونه‌های گیاه مزرعه که با دور 10 کیلوگری پرتو گاما شدن نسبت به سایر شاهد کمتر بود. تعداد باکتری‌های کولیفرمی در نمونه‌های که با دوره‌های 3 و 10 کیلوگری پرتو گاما شدن اختلاف معنی‌داری نداشتند ولی کمترین آلودگی کولیفرمی در دور 15 کیلوگری داشتند که به سایر نمونه‌ها و شاهد با پاتریک نیز کولیفرمی در نمونه‌های که با دوره‌های 3 و 10 کیلوگری پرتو گاما شده بودند کمترین نسبت به شاهد و سایر دوره‌های مورد بررسی داشتند.

نتایج حاصل از جدول تجربه واریانس تاثیر پرتو گاما آویشن شیرازی با دوره‌های مختلف اشعه گاما بر بار میکروبی آویشن شیرازی نشان داد که پرتو گاما بر بار میکروبی نمونه‌های

264
جدول ۳. نتایج تجزیه وریانس تأثیر پرتو کاما بر پار میکروویو آویشن شیرازی (log cfu/g)

<table>
<thead>
<tr>
<th>مجموع تغییرات</th>
<th>درجه آزادی</th>
<th>شماره کل شمارش کل</th>
<th>کیک و محمرک</th>
<th>پرتو کاما</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۸۴</td>
<td>۱۰</td>
<td>۴/۷۶</td>
<td>۰/۳۱</td>
<td>۰/۲۳</td>
<td>۰/۱۸۴</td>
</tr>
<tr>
<td>۰/۲۴۳</td>
<td>۱۰</td>
<td>۱/۵۳</td>
<td>۳/۸۵</td>
<td>۴/۳۱</td>
<td>۰/۲۴۳</td>
</tr>
<tr>
<td>۰/۲۶۳</td>
<td>۱۵</td>
<td>۲/۹۱</td>
<td>۱/۵۳</td>
<td>۳/۸۵</td>
<td>۰/۲۶۳</td>
</tr>
<tr>
<td>۰/۲۶۳</td>
<td>۱۵</td>
<td>۲/۹۱</td>
<td>۱/۵۳</td>
<td>۳/۸۵</td>
<td>۰/۲۶۳</td>
</tr>
</tbody>
</table>

جدول ۴. مقایسه میانگین پار میکروویو آویشن شیرازی تحت تأثیر پرتو کاما (log cfu/g)

<table>
<thead>
<tr>
<th>نوع تیمار</th>
<th>کیلولوگری</th>
<th>شماره کل</th>
<th>کیک و محمرک</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۸۴</td>
<td>۴/۷۶</td>
<td>۰/۳۱</td>
<td>۰/۲۳</td>
<td>۰/۱۸۴</td>
</tr>
<tr>
<td>۰/۲۴۳</td>
<td>۱/۵۳</td>
<td>۳/۸۵</td>
<td>۴/۳۱</td>
<td>۰/۲۴۳</td>
</tr>
<tr>
<td>۰/۲۶۳</td>
<td>۲/۹۱</td>
<td>۱/۵۳</td>
<td>۳/۸۵</td>
<td>۰/۲۶۳</td>
</tr>
<tr>
<td>۰/۲۶۳</td>
<td>۲/۹۱</td>
<td>۱/۵۳</td>
<td>۳/۸۵</td>
<td>۰/۲۶۳</td>
</tr>
</tbody>
</table>

توجه: مکانیابی داده‌ها در سطح احتمال ۱ درصد معمدوار در دراسه آزمون LSD در P<0.05.

دووزهای ۷ و ۱۵ کیلولوگری پیش‌ترین تأثیر را در کاهش کیک و محمر داشتند. نتایج به‌دست آمده از این تحقیق نشان داد که باکتری‌های کولی‌پری در شاهد و دوزهای پیشرفت به غیر از دور ۱۵ کیلولوگری مشاهده نشدند. بطورکلی نتایج حاصل از بررسی تأثیر پرتو ویا نمونه‌های گیاه آویشن شیرازی نشان داد که اشعه‌گاما به‌طور معنی‌داری شمارش کل و کیک و محمر مورد بررسی را کاهش داد و پیش‌ترین تأثیر در بین دوره‌های به کار رفته بهره‌برداری این گیاه مربوط به دور ۱۵ کیلولوگری بود.

نتایج به‌دست آمده از جدول تجزیه وریانس (جدول ۳) نشان داد که پرتو ویا نمونه‌های نداشتن نرم دارد در میزان شمارش کل و کیک و محمر تناوب، و فقط بر میزان کولی‌پری تأثیر معنی‌داری داشت.

جدول ۶ نتایج حاصل از مقایسه میانگین پرتو کاما بر کولی‌پری نمونه‌های نداشتن نرم صورت گرفت. مطابق نتایج
جدول ۵. نتایج تجزیه واریانس تأثیر پرتون گاما بر پیکروپی نعنا فلئی (log cfu/g)

<table>
<thead>
<tr>
<th>مجموع مربوطات</th>
<th>درجه آزادی</th>
<th>شمارش کل</th>
<th>کیک و مخمر کل</th>
<th>پرتون گاما</th>
<th>۴</th>
<th>۳۵</th>
<th>۳۴</th>
<th>۴۵</th>
<th>نخواسته</th>
<th>ضریب تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلولوم</td>
<td>۲/۵۵</td>
<td>۰/۹۳</td>
<td>۴</td>
<td>۳/۲۴</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنی‌دار و عدم معنی‌دار در سطح احتمال ۱ درصد

جدول ۶. مقایسه میانگین بر پیکروپی نعنا فلئی تحت تأثیر پرتون گاما (log cfu/g)

<table>
<thead>
<tr>
<th>نوع تیمار</th>
<th>کیلولوم</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳ کیلولوم</td>
<td>۳/۸۴۴</td>
<td>۳/۸۴۴</td>
</tr>
<tr>
<td>۲ کیلولوم</td>
<td>۳/۴۴</td>
<td>۳/۴۴</td>
</tr>
<tr>
<td>پرتون گاما</td>
<td>۳/۲۵</td>
<td>۳/۲۵</td>
</tr>
<tr>
<td>۱۵ کیلولوم</td>
<td>۳/۴۵</td>
<td>۳/۴۵</td>
</tr>
<tr>
<td>۱۰ کیلولوم</td>
<td>۳/۸۹</td>
<td>۳/۸۹</td>
</tr>
</tbody>
</table>
| حروف مشابه در هر ستون بیانگر عدم وجود اختلاف معنی‌دار برای استاندارد آزمون LSD در P<۰/۰۵

جدول ۷. نتایج تجزیه واریانس تأثیر پرتون گاما بر پیکروپی بادرنجبهه (log cfu/g)

<table>
<thead>
<tr>
<th>مجموع مربوطات</th>
<th>درجه آزادی</th>
<th>شمارش کل</th>
<th>کیک و مخمر کل</th>
<th>پرتون گاما</th>
<th>۴</th>
<th>۳۵</th>
<th>۳۴</th>
<th>۴۵</th>
<th>نخواسته</th>
<th>ضریب تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیلولوم</td>
<td>۲/۵۵</td>
<td>۰/۹۳</td>
<td>۴</td>
<td>۳/۲۴</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
</tr>
</tbody>
</table>

** و *** به ترتیب معنی‌دار و عدم معنی‌دار در سطح احتمال ۱ درصد

شد، این در حالت است که پیشترین شمارش کلی مشاهده شده در دوره‌های ۳ و ۷ کیلولومی است و تیمار شاهد و دور ۱۰ کیلولومی از نظر شمارش کلی تفاوت معنی‌داری نشان دادند. و شمارش کلی آنها در یک سطح بود، این تابعی نشان داد که در نمونه‌های گیاه بادرنجبهه که با دوره ۱۵ کیلولومی اشعه گاما پرتو شده تأثیری بهتری در کاهش شمارش کلی داشت.

تأثیر اشعه گاما بر تعداد کیک و مخمر مشخص کرد که تیمار
جدول 8 مقایسه میانگین بار میکروبی بادنجبوعی تحت تأثیر پرتگاز (log cfu/g)

<table>
<thead>
<tr>
<th>نوع تیمار</th>
<th>شماره کل</th>
<th>کیک و منجمد کل</th>
<th>کولیفرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>4/00</td>
<td>4/00</td>
<td>4/00</td>
</tr>
<tr>
<td>پرتگاز</td>
<td>4/22</td>
<td>4/22</td>
<td>4/22</td>
</tr>
<tr>
<td>15 کیلوگری</td>
<td>4/29</td>
<td>4/29</td>
<td>4/29</td>
</tr>
<tr>
<td>10 کیلوگری</td>
<td>4/06</td>
<td>4/06</td>
<td>4/06</td>
</tr>
<tr>
<td>7 کیلوگری</td>
<td>4/04</td>
<td>4/04</td>
<td>4/04</td>
</tr>
<tr>
<td>3 کیلوگری</td>
<td>4/27</td>
<td>4/27</td>
<td>4/27</td>
</tr>
<tr>
<td>0/85 کیلوگری</td>
<td>4/02</td>
<td>4/02</td>
<td>4/02</td>
</tr>
<tr>
<td>0/57 کیلوگری</td>
<td>4/00</td>
<td>4/00</td>
<td>4/00</td>
</tr>
</tbody>
</table>

بحث

به‌طور کلی نتایج تأثیر دوره خوراکی نشان داد که پرتونتیا باعث کاهش میکروبی همیشه بیماریها را در میکروبی گیاهان نتاوی می‌کند. نتایج آزمایش نشان داد که نسبت بار میکروبی بادنجبوعی در پرتونتیا نسبت به اثرات شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نشان داد که نسبت شناختی و مرزه کاهشی در کاهش بار میکروبی بادنجبوعی را در رفتار کاهش میکروبی بادنجبوعی در پرتونتیا نش

