تصحیح ضرایب قابلیت هضم پروتئین در جویه‌های گوشته‌ی اندازه‌گیری میزان اسید اوریک کود، با روش‌های اسکتروفتوتومری و کروماتوگرافی مایع با کارایی زیاد

فرعیز خواجه‌علی، حسن نصری‌نکش، رونالد مارکوارت و محسن دانش‌مسگران

چکیده
میزان اسید اوریک موجود در کود جویه‌های گوشته‌ی اندازه‌گیری نتایجی تغییر نشده که با گوناگونی آلماپسی حاصل می‌شود، البته متفاوت می‌باشد. برای تعریف همه‌پوشانی این کود، روشهای اسکتروفتوتومری و کروماتوگرافی مایع با کارایی زیاد (HPLC) اندوزه‌گیری، و مس كلمه‌های حاصل از در روشهای مقابله‌ی HPLC و دیگری. روش‌های اسکتروفتوتومری و کروماتوگرافی مایع با کارایی زیاد HPLC و یک سنت فاز مکوسی به اندازه‌گیری HPLC. در این روش، مقدار بین ۲۰۵.۲ و ۲۵۰.۷ میلی‌متر در دقت تنظیم کرده‌اند. اسکتروفتوتومری در روش اسکتروفتوتومری فراوانی جزئی در ۲۰۵.۲ نمونه‌اندازه‌گیری شد. از وابستگی با حاصل از روش اسکتروفتوتومری برای تعریف ضرایب قابلیت هضم پروتئین در جویه‌های گوشته‌ی اندازه‌گیری گردید.

ضرایب همبستگی (r) بین در روش پلاس اندازه‌گیری میزان اسید اوریک در کود جویه‌های گوشته، ۰.۴۷۵ بود. مقادیر ضرایب همبستگی پروپتین‌پس از تصحیح بر اساس میزان نیتروژن اسید اوریک، به طور منفی‌داری (P<0.01) بیشتر از مقادیر تصحیح نشده به. ضراپب قابلیت هضم پروتئین‌پس از تصحیح بر اساس میزان نیتروژن اسید اوریک، قابل مقایسه با ضرایب به دست آمده از روش اندوزه‌گیری اسید اوریک آمیخته‌ی بود.

واژه‌های کلیدی: اسید اوریک، کود مربوط، اسکتروفتوتومری

HPLC

1. به‌ترین دانشجوی سابق دکتری، استاد و استادیار علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
2. استاد علوم دامی، دانشکده کشاورزی، دانشگاه میانه، کانادا

205
مواد و روش‌ها
این آزمایش با استفاده از 32 خط طوجه جووجه نر یک روزه آرین انجام گرفت. طوجه‌های تصادفی و یک جهتی آغازین معمولی تهیه شده، در روز هشتم پس از یک شب گسترشی به صورت افرادی وزن‌کشی شدند. در فولوچر جوجه به هر روز یک فکس منتقش شد. به گونه‌ای که میانگین وزن هر جوجه در تمامی فکس‌ها تقریباً مشابه بود.

تعداد پوزاش از آزمایشی (نیمبار) بر روی گردید. تیمار اول، جیره یا بدون مکمل متوین می‌گردید. این جیره از نظر میانگین کربوهیدرات داخلی نیاز سیستمی را تأمین می‌نمود (کربوهیدرات آمیزه گروکورد در جیره یا 27 درصد بود). تکثیر جیره یا بدون گردان 1 نشان داده است. با افزودن مکمل میانگین به جیره یا بدون جیره یا تیمارهای دوم و هچم تهیه شد. به طوری که به ترتیب 30، 50 و 100 درصد از مقدار کربوهیدرات اسیدهای گروکورد جیره یا بدون تیمار گردید. جیره آخر نیز آسیدهای آمیزه گروکورد توصیه شده توسط انجمان بر تحقیقات (14) را تأمین می‌نمود.

به هر یک از چهار تیمار چهار تکرار (جاگاه فقس) اختصاص یافت. جوجه‌ها به مدت در هفته (8 نا 21 روزگی) خوراکی از آزمایشی را دریافت نمودند. در 8 روز آخر دو مقدار و کل حاویت مواد نمی‌شود که تأمین آمیزه گروکورد کربوهیدرات یا گروکورد تیمارهای دوم و هچم تهیه شد. به طوری که به ترتیب 30، 50 و 100 درصد از مقدار کربوهیدرات اسیدهای گروکورد توصیه شده توسط انجمان بر تحقیقات (14) را تأمین می‌نمود.

اشرز بیولوژیک منابع پروتئینی به دلیل مخلوط بودن ادرار و مصرف پیچیده است. عموماً فرض می‌شود که تأمین آمیزه گروکورد کربوهیدرات یا گروکورد تیمارهای دوم و هچم تهیه شد. به طوری که به ترتیب 30، 50 و 100 درصد از مقدار کربوهیدرات اسیدهای گروکورد توصیه شده توسط انجمان بر تحقیقات (14) را تأمین می‌نمود.

روش‌های مختلف برای ارزیابی آزادگیری آسید اوریک در کود پرندهان پیشنهاد شده است. از جمله می‌توان به روش‌های تغلبی (5)، رئینومتری (1) و ویتابرومبتری (9) اشاره کرد. روشهای آزمایشی (17)، (19)، گرچه ناتوان برای ارزیابی آسید اوریک در کود پرندهان به کار نرفته‌اند ولی بی توجهی به این روشهایی هنوز تأثیر اختیاراتی تکثیرات ناشاکتی موجود در نمونه‌های تولید آن‌ها است.

اداره‌گیری میزان آسید اوریک دفعه به عنوان روشی برای تعیین کیفیت منابع پروتئینی در جوجه‌های استفاده شده است (6)، (7) و (20). در پرندهان، اداره‌گیری قابلیت هضم پروتئین و تعیین ارزش بیولوژیک منابع پروتئینی به دلیل مخلوط بودن ادرار و مصرف پیچیده است. عموماً فرض می‌شود که تأمین آسید اوریک موجود در کود از ادرار منشا گردد. از این رو، نباید به جداسازی ادرار از مقدار ادرار نیست (19).

روش‌های مختلف برای ارزیابی آسید اوریک در کود پرندهان پیشنهاد شده است. از جمله می‌توان به روش‌های تغلبی (5)، رئینومتری (1) و ویتابرومبتری (9) اشاره کرد. روشهای آزمایشی (17)، (19)، گرچه ناتوان برای ارزیابی آسید اوریک در کود پرندهان به کار نرفته‌اند ولی بی توجهی به این روشهایی هنوز تأثیر اختیاراتی تکثیرات ناشاکتی موجود در نمونه‌های تولید آن‌ها است.

مقدمه
اسید اوریک مهم‌ترین فراورده هنیه سوخت و ساز پروتئین در بدن پرندهان است (21). این تکثیر 20 درصد از کل نیتروژن ادرار پرندهان را شامل می‌شود (11). گزارش‌های دیگر نشان می‌ده که نیتروژن آسید اوریک 88 درصد از کل نیتروژن ادرار جوجه‌های گوش‌دار و دیگر حشرات و گیاهان از پرکلریک 25 درصد به جای 5 درصد و ساتریلیز نمودن HPLC نمونه‌ها در 0.150 میلی‌گرم از 1000 میلی‌گرم پرکلریک در روش HPLC تیتر 80 درصد برای این پروتئین انجام گرفت.

206
جدول 1. ترکیب خوراک آزمایشی یافته و مواد غذایی محاسبه شده و تجزیه شده آن

<table>
<thead>
<tr>
<th>مواد غذایی</th>
<th>درصد (7/7/پروتئین)</th>
<th>کنتانه سویا (8/8/پروتئین)</th>
<th>روش سویا</th>
<th>دی کلسیم سفاهات</th>
<th>سدک اهک</th>
<th>مکمل ویتامین</th>
<th>مکمل مواد معده</th>
<th>درصد محاسبه شده (درصد هوا خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>57/15</td>
<td>87</td>
<td>2</td>
<td>17</td>
<td>42</td>
<td>0</td>
<td>25</td>
<td>0/25</td>
</tr>
<tr>
<td></td>
<td>20/85</td>
<td>84</td>
<td>1/10</td>
<td>0/8</td>
<td>8/8</td>
<td>1/38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29/11</td>
<td>86</td>
<td>19/85</td>
<td>0/35</td>
<td>0/58</td>
<td>0/92</td>
<td>0/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19/35</td>
<td>87</td>
<td>0/35</td>
<td>0/58</td>
<td>0/92</td>
<td>0/8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. تعبیر به دست در ازمایشگاه
2. هر گیلگرم مکمل حاوی روزانه 8,000 واحد پیتامین B, 7,000 واحد پیتامین C, 1,000 پیتامین D, 1,200 پیتامین E, 1,500 میلی گرم، پروتئین 2000، کولر کراید 440 کرم می‌باشد.
3. هر گیلگرم مکمل حاوی مقدار 1/18 کرم روی 33/8 کرم، آهن 100 کرم، مس 8 کرم، بد 140 میلی گرم، کالت 190 میلی گرم و سلنیم 8 گرم است.

برای تهیه استاندارد به روش استاندارد ایلیکر/فیسیک/کاتی، با حل نمونه اورات سدیم در آب مفطر غیر پیونیزه، یک محلول استاندارد پایه با غلظت یک میلی مول تهیه شد. سپس با رقیق نمونه این محلول محلولی با غلظت 1/10 در 200 و 40 میکرومول در میلی لیتر تهیه گردید. بیش از اندازه‌گیری میزان جذب این محلولها با چهار حجم اسید پرکاریک 25/0/40 رقیق شد. جذب محلولها در 285 نانومتر اندازه‌گیری و منحنی استاندارد به ترکیب به ستون انجام گرفت. اسید اوریک ک (MW=178/1) و سدیم اورات (MW=191/4) از شرکت Sigma و اسید پرکاریک از شرکت Fisher Scientific تهیه گردیدند. در روش استاندارد فاز معکوس با ستون HPLC استفاده شد. این سیستم به مجهز به Nova Pack 50*4.15/5/1nm یک ستون محلاف بود و سرعت جریان متحرک آب مفطر غیر پیونیزه یک میلی لیتر در دقیقه تنشیم گردید.

207
دست آمد (شکل 1). برای تهیه استاندارد به روش کروماتوگرافی مایع با کارایی زیاد، با حل نمونه اسید اوریک در آب متوسط چرب فیبرینه، یک محلول استاندارد با به غلظت 100 میکروگرم در میلی لیتر تهیه شد. برای تهیه محلول 20 میکروگرم از محلول به سرعت تزریق گردید. جذب نوری 285 نانومتر اندازه‌گیری و سطح زیر منحنی تغییر داشت (شکل 2).

برای تهیه نمونه‌های مقدار 50 میلی‌گرم از نمونه کود کمک آلیاژ شده ورن فلز‌سازی میلی لیتری متغیر شد. مسی 50 میلی لیتر با فشار گلاسین در محلول حاصل به مدت یک ساعت در دمای 40 درجه سانتی‌گراد گرفت. عصاره به دست آمد در pH 5.00 به مدت 15 دقیقه سانتریفوژ و سپس باعث محلول فوتانی جدا و با هنگام تجزیه در دمای چهار درجه سانتی‌گراد نگهداری شد.

پروتئین‌های نمونه‌های علیه نکات بر روی کلدال اندازه‌گیری شد (3). ترکیب اسیدهای آمینه نمونه‌ها به کمک کرومتوگرافی تعیین گردید (4). روش اکسیداسیون با اسید پروپانیک، برای تعیین میزان متابولیت و سبزینه جریه‌ها به کار رفت (13). قابلیت هضم ظاهری پروتئین به سه روش زیر محاسبه گردید:

روش اول:

\[ 	ext{میزان پروتئین دفعی} - 	ext{میزان پروتئین مصرفی} \times \frac{100}{	ext{میزان پروتئین مصرفی}} \]

روش دوم:

\[ \text{قابلیت هضم پروتئین} = \frac{\text{میزان پروتئین اسید اوریک}}{	ext{میزان پروتئین دفعی} - 	ext{میزان پروتئین مصرفی}} \]

روش سوم:

\[ \text{میزان قابلیت هضم مجموعه اسیدهای آمینه} = \frac{\text{قابلیت هضم پروتئین}}{	ext{میزان پروتئین}} \]

تغییر آماری داده‌ها در سه مرحله انجام گرفت. در مرحله اول مقدار اسید اوریک نمونه‌های کود جریه‌های تغییر شده با سه مشبک مختلف متابولیت، که به روش اسیدکروماتوگرافی
## تصحیح ضرایب قابلیت هضم پروتئین در جوجه‌های گوشتی با اندازه‌گیری میزان اسید اوریک

![شکل 1: کروماتوگرام استاندارد اسید اوریک](image1.png)

### جدول 1: کروماتوگرام استاندارد اسید اوریک

<table>
<thead>
<tr>
<th>اسید اوریک دفعی</th>
<th>اسید اوریک دفعی</th>
<th>سهم‌بندی</th>
<th>اسید اوریک دفعی (گرم به گرم از هر کیلوگرم وزن بدن در روز)</th>
<th>مقدار (میلی‌گرم در هر گرم دفعی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>**</td>
<td></td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>50/5</td>
<td>3/5</td>
<td>1/16</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>51/5</td>
<td>3/2</td>
<td>1</td>
<td>102/6</td>
<td></td>
</tr>
<tr>
<td>53/1</td>
<td>1/2</td>
<td>1</td>
<td>104/4</td>
<td></td>
</tr>
<tr>
<td>51/6</td>
<td>1/8</td>
<td>0/6</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>0/0</td>
<td>0/4</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>7/52</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

خطای استاندارد

سطح احتمال

* و ** به ترتیب معنی‌دار در سطح 5 و 1 درصد.

## جدول 2: مقایسه قابلیت هضم پروتئین جیره‌های حاوی مقدار مختلف میتوین به سه روش

<table>
<thead>
<tr>
<th>روش III</th>
<th>مقدار جیره‌های حاوی M. 5%</th>
<th>جیره باهی</th>
<th>جیره باهی + M. 5%</th>
<th>جیره باهی + M. 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>77/6</td>
<td>78/9</td>
<td>51/41</td>
<td>52/9</td>
<td>53/9</td>
</tr>
<tr>
<td>77/8</td>
<td>77/1</td>
<td>52/9bc</td>
<td>53/9</td>
<td>53/9ab</td>
</tr>
<tr>
<td>78/8</td>
<td>78/4</td>
<td>55/1a</td>
<td>55/1a</td>
<td>55/1a</td>
</tr>
<tr>
<td>77/4</td>
<td>78/3</td>
<td>55/1a</td>
<td>55/1a</td>
<td>55/1a</td>
</tr>
<tr>
<td>1/34</td>
<td>1/72</td>
<td>54/15</td>
<td>54/15</td>
<td>54/15</td>
</tr>
</tbody>
</table>

خطای استاندارد

1. قابلیت هضم پروتئین بدون تصحیح بر اساس تیتر اسید اوریک
2. قابلیت هضم پروتئین پس از تصحیح بر اساس تیتر اسید اوریک
3. قابلیت هضم پروتئین به روش ميانگین قابلیت هضم مجموع استاندارد آمیه
محاسبه قابلیت هضم در جدول 3 نشان داده شده است. این جدول نشان می‌دهد که در روش اول، مقادیر قابلیت هضم پروتئین تفاوت معنی‌داری دردسر به گونه‌ای مختلف در این گروه از متخصصان مقدار متوسط، قابلیت هضم پروتئین‌های یافتن مقادیر متوسط را انجام داده و بر اساس میزان پروتئین اسید اوریک تصحیح گردید. نشان داد همین طور که در جدول 2 مشخص است، مقادیر قابلیت هضم پروتئین‌های با استفاده از روش دوم به دست آمد.

در توجه این نتایج می‌توان گفت جریان‌هایی که با کمبود میزان دارو به هر وسیله، مهم بیشتری از تیترآژ را به شکل اسید اوریک دو می‌کنند (جدول 2). این بدان خاطر است که کمبود میزان ترکیب به آنزیم‌های اسیدهای آمیا شده و تیترآژ به شکل اسید اوریک از دنیا می‌شود. مقادیر قابلیت هضم پروتئین‌ها در یک روش اول، تصحیح برای پروتئین اسید اوریک گمراه کننده این است. در حقيقة، اسید اوریک ممکن است در این روش دو تراکم عمده‌ای از این به آلدهامی این پروتئین‌هایی که در یک روش دیگر در این روش از یک تغییر در شکل آنها باعث شده است، مقادیر قابلیت هضم پروتئین‌ها و باعث شده است.

مقدار قابلیت هضم پروتئین‌ها و درگذشته می‌گردد.

مقدار قابلیت هضم پروتئین‌ها و پس از تصحیح برق اسید اوریک نزدیک و قابل مقایسه با مقادیر حاصل از اندازه‌گیری استفاده‌های آمیا بود (جدول 3).

از آن جا که اندام‌های اسیدهای آمیا به پره‌پذیری و زمان‌بری می‌پردازد، اندازه‌گیری اسید اوریک می‌تواند روشنایی روش‌های مناسب و سریع برای پراوروردی خاص پروتئین و ارزش‌پذیر می‌باشد.

می‌تواند از این نتایج، اقدامات بیشتر و سیستم‌های پایدار گروه در روش دوم به طور معنی‌داری (P<0.01) مشخص است.

در یک روش دیگر، مشاهده گردیده است که در روش دوم، گروه با این فرمول بیشتر از گروه شاهد و در روش دوم 2/37 در یک روز گرم به ازار هر کیلوگرم وزن متابولیکی بیشتر از گروه شاهد است (P<0.01) (جدول 2).

از داده‌های مربوط به علت اسید اوریک که به روش اسید اوریک داده شده است، در روش دوم 976/740 هم چنین اثر مقابل تیمار و روش آمایشی معنی‌دار نبود.

به استناد اسید اوریک، می‌توانست به روش‌هایی که به روش‌های بهتری آماده‌اند. در این روش، نشان داد که روش تصحیح قابلیت هضم پروتئین این کاملاً معنی‌داری بر مقادیر قابلیت هضم پروتئین خواهانه آمایشی‌هایی داشته، و یک نمونه قابلیت هضم پروتئین خواهانه آمایشی، برای سه روش مختلف
منابع مورد استفاده