احتمال کاشت بر تحمل به تنش سرما در زنوتیپ‌های جو پاییزه و بهاره

عليضا عیوضی

(تاریخ دریافت: 12/6/1391؛ تاریخ پذیرش: 8/6/1392)

چکیده

جهت ارزیابی تحمل به تنش سرما در پیست زنوتیپ جو ازمیشی تحت شرایط مزرعه‌ای و طرح بلکه‌های کامل تصادفی در سه تاریخ کاشت 15 مهر 1389- 15 آذر در سال رژیم 1389-1390 در ایستگاه ساختمان مرکز تحفقات کشاورزی و منابع طبیعی استان آذربایجان غربی اجرا شد. همچنین روی همان زنوتیپ‌ها ازمیشی دیگری تحت شرایط گلخانه‌ای در قالب طرح کامل تصادفی انجام گرفت. در مراحل دو، چهار و شش پرگی، تنش سرما در 50 نقطه بوته‌های مرده (G1)، نشان شد که خشکی، نتیجه نهایی بوته اندازه‌گیری و از جهان انتخاب عکس یک درصدی شد. نتایج ازمیشی مزرعه‌ای نشان داد که تفاوت آماری معناداری بین سطوح مختلف تنش کشت، زنوتیپ و اثر مقیاس آنها وجود داشت.

زنوتیپ‌های جو با تیپ رشد پاییزه با عملکرد دهه 425 کیلوگرم در هکتار، نسبتاً به تیپ رشد بهاره با 210 کیلوگرم در هکتار بیشتر بخش‌دار بود. تفاوت آماری معناداری بین سطح سرما می‌تواند تغییرات در انحراف میان تنش سطح مزرعه‌ای و عملکرد جوانی و ماده خشک کل و LT_0 درجه $Ш$ زنوتیپ 1 تای تیپ رشد پاییزه با کمترین دامنه انحرافات و انحراف میان مزرعه‌ای عملکرد مادر، ماده خشک کل و LT_0 درجه $Ш$ سلسویس، از نشانه نسبتاً پایین بوده و در مقایسه زنوتیپ‌های هنام 10 و 12 با تیپ بهار و داشت انحراف میان مزرعه‌ای و دامنه انحرافات پیشرفت درجه $Ш$ زنوتیپ‌های با تیپ رشد بهاره با عملکرد دهه 425 کیلوگرم در هکتار بیشتر بود.

درجه رگرسیون صفات وزن مادر دانه، ماده خشک کل در مدل تغییرات باقی مانده تغییرات نرخ نهایی نشان داد که زنوتیپ‌های $Ш$ 10 و 18 و $Ш$ 10 نسبت به تیپ بهاره، تغییرات کل را نسبتاً نموده و مؤلفه اول با 24 درصد از کل تغییرات به عنوان مؤلفه عمکری برای رشد زنوتیپ‌های $Ш$ 10 بهبود عمکری دانه دارای اهمیت بیشتری بود. در نهایی عمکری دانه زنوتیپ‌های جو با تیپ رشد پاییزه و بهاره تحت تأثیر نکته کاشت قرار گرفت.

واژه‌های کلیدی: تنش سرما، تغییرات چند متغیره، جو، عملکرد دانه

1. دانشیار پژوهشی مرکز تحفقات کشاورزی و منابع طبیعی استان آذربایجان غربی
2. مسئول مکانیابی. پست الکترونیکی: alirezaeivazi@yahoo.com

281
منتخب فرآوری محصولات زراعی و بالغ / سال چهارم / شماره سیزدهم / 1392

مقدمه

جو اولین غلغله است که توسط انسان کشش شده است. این گیاه از دانه سازگاری بایاگرو بهره ور و در مناطق حاشیه‌ای قابل کشت است. (1) یکی از عوامل تحمل به نش سرما در یک گونه زراعی، برنامه‌بری مراحل کلیدی رشد در طی فصل زراعی است. روش‌های ارزیابی تحمل به نش سرما با استناد ساده، سریع، قابل تکرار و غیرمعره اب و اندازه‌گیری دقیقی از میزان خسارت را فراهم نماید، انتخاب در آزمایش‌های مزرعه‌ای به‌گروه‌ی زنگنه‌ی زنبوریت محمل به نش سرما فقط در مدت زمان معینی از زباله را به مزان مخصوصی که دمایی باعث انتخاب را فراهم می‌کند به وفور رخ می‌دهد. (2) به‌علاوه سطح نش سرما به سبب پوشش برخی، متغیر و غیرمتعلق بوده و از کاربرد انتخاب شرایط محیطی که نتایج اختلافات زنگنه‌ی را به‌صورت تکرار یافته نشان دهد ندارند و نامناسب است. بنابراین محققین در صندلی‌دانش مرتب به تحمل به سرما آثار و بنابراین تغییرات بیوشیمیایی مشاهده نمودند که در نظر کشش اولین محیط یافته، عملکرد دانه و ماده نشان نمی‌شود. میزان محصول به نش سرما در این مورد به‌صورت اولیه با لایه‌ای از زنگنه‌ی زنبوریت محمل به نش سرما محاسبه شده است. (2) در مزرعه‌های زراعی که نتایج اختلافات زنگنه‌ی را به‌صورت تکرار یافته نشان دهد ندارند و نامناسب است، با این‌که محققین در صندلی‌دانش مرتب به تحمل به سرما آثار و بنابراین تغییرات بیوشیمیایی مشاهده نمودند که در نظر کشش اولین محیط یافته، عملکرد دانه و ماده نشان نمی‌شود. میزان محصول به نش سرما محاسبه شده است. (2) در مزرعه‌های زراعی که نتایج اختلافات زنگنه‌ی را به‌صورت تکرار یافته نشان دهد ندارند و نامناسب است، با این‌که محققین در صندلی‌دانش مرتب به تحمل به سرما آثار و بنابراین تغییرات بیوشیمیایی مشاهده نمودند که در نظر کشش اولین محیط یافته، عملکرد دانه و ماده نشان نمی‌شود. میزان محصول به نش سرما محاسبه شده است. (2) در مزرعه‌های زراعی که نتایج اختلافات زنگنه‌ی را به‌صورت تکرار یافته نشان دهد ندارند و نامناسب است، با این‌که محققین در صندلی‌دانش مرتب به تحمل به سرما آثار و بنابراین تغییرات بیوشیمیایی مشاهده نمودند که در نظر کشش اولین محیط یافته، عملکرد دانه و ماده نشان نمی‌شود. میزان محصول به نش سرما محاسبه شده است. (2) در مزرعه‌های زراعی که نتایج اختلافات زنگنه‌ی را به‌صورت تکرار یافته نشان دهد ندارند و نامناسب است، با این‌که محققین در صندلی‌دانش مرتب به تحمل به سرما آثار و بنابراین تغییرات بیOSHIMIAYI مشاهده نمودند که در نظر کشش اولین محیط یافته، عملکرد دانه و ماده نشان نمی‌شود. میزان محصول به نش سرما محاسبه شده است. (2) در مزرعه‌های زراعی که نتایج اختلافات زنگنه‌ی را به‌صورت تکرار یافته نشان دهد ندارند و نامناسب است، با این‌که محققین در صندلی‌دانش مرتب به تحمل به سرما آثار و بنابراین تغییرات بیOSHIMIAYI مشاهده نمودند که در نظر کشش اولین محیط یافته، عملکرد دانه و ماده نشان نمی‌شود. میزان محصول به نش سرما محاسبه شده است. (2) در مزرعه‌های زراعی که نتایج اختلافات زنگنه‌ی را به‌صورت تکرار یافته نشان D
جدول 1. مشخصات زنوتیپ‌های مورد آزمایش در بررسی تأثیر تنش سرما تحت شرایط مرعی‌ها و گلخانه‌ای

<table>
<thead>
<tr>
<th>رده</th>
<th>تیپ ردش</th>
<th>شرجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>پایره</td>
<td>(WA2196-68/NY6005-18,F1//'Scotia I)</td>
</tr>
<tr>
<td>2</td>
<td>پایره</td>
<td>Makouee/3/Robo/Mazurka/ICB-103020</td>
</tr>
<tr>
<td>3</td>
<td>پایره</td>
<td>Michailo-K-096M3</td>
</tr>
<tr>
<td>4</td>
<td>پایره</td>
<td>Michailo/Dobrinya</td>
</tr>
<tr>
<td>6</td>
<td>پایره</td>
<td>ICB-100149/(L.BIRAN/Una827//Gloria ‘S’/Com ‘S’)</td>
</tr>
<tr>
<td>7</td>
<td>پایره</td>
<td>Radikal/3/Walfajre/Scotia//Beecher.Sel</td>
</tr>
<tr>
<td>8</td>
<td>پایره</td>
<td>Janees/CWB117-5-9-5</td>
</tr>
<tr>
<td>9</td>
<td>پایره</td>
<td>K-247/2401-13//Vavilon/3/Radical/Ppervenets//Radical</td>
</tr>
<tr>
<td>10</td>
<td>پایره</td>
<td>K-247/2401-13//Vavilon/3/Radical/Ppervenets//Radical</td>
</tr>
<tr>
<td>11</td>
<td>پایره</td>
<td>Mal1-4-3094-2//YEA 422-1/YEA 455-25</td>
</tr>
<tr>
<td>12</td>
<td>پایره</td>
<td>Alpha/Durra//SLB47-81</td>
</tr>
<tr>
<td>13</td>
<td>پایره</td>
<td>Legia/3/Torsh/9cr.279-07/Bgs</td>
</tr>
<tr>
<td>14</td>
<td>پایره</td>
<td>Legia/CWB 117-5-9-5</td>
</tr>
<tr>
<td>15</td>
<td>پایره</td>
<td>Plasisaut//MD45-286-13//OYB73173-2H.OH/3/</td>
</tr>
<tr>
<td>16</td>
<td>پایره</td>
<td>Honahoh/Batal-U1</td>
</tr>
<tr>
<td>17</td>
<td>پایره</td>
<td>Redut/OK84817</td>
</tr>
<tr>
<td>18</td>
<td>پایره</td>
<td>(7th EBYTC85-85) Bereke-54</td>
</tr>
<tr>
<td>19</td>
<td>پایره</td>
<td>Makouee (Star)</td>
</tr>
<tr>
<td>20</td>
<td>پایره</td>
<td></td>
</tr>
</tbody>
</table>

1- برای هر ردیف شرجه (اجداد) زنوتیپ‌های جو آورده شده است.

283
جدول 2 اطلاعات مهندسی ایسکات تحقیقات کشاورزی ساتورن اروئی در سال زراعی 1389-1390

<table>
<thead>
<tr>
<th>ماه</th>
<th>بارندگی (%)</th>
<th>حداقل رطوبت (%)</th>
<th>متوسط درجه حرارت (°C)</th>
<th>حداقل درجه حرارت (°C)</th>
<th>حداقل دمای سطح خاک (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهر</td>
<td>29</td>
<td>72</td>
<td>15</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>آبان</td>
<td>53</td>
<td>85</td>
<td>9</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>آذر</td>
<td>210</td>
<td>57</td>
<td>9</td>
<td>9</td>
<td>55</td>
</tr>
<tr>
<td>دی</td>
<td>45</td>
<td>69</td>
<td>9</td>
<td>9</td>
<td>69</td>
</tr>
<tr>
<td>بهمن</td>
<td>240</td>
<td>77</td>
<td>9</td>
<td>9</td>
<td>77</td>
</tr>
<tr>
<td>فروردین</td>
<td>109</td>
<td>74</td>
<td>9</td>
<td>9</td>
<td>74</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>78</td>
<td>76</td>
<td>9</td>
<td>9</td>
<td>76</td>
</tr>
<tr>
<td>خرداد</td>
<td>28</td>
<td>78</td>
<td>9</td>
<td>9</td>
<td>78</td>
</tr>
<tr>
<td>تیر</td>
<td>78</td>
<td>78</td>
<td>9</td>
<td>9</td>
<td>78</td>
</tr>
</tbody>
</table>

از روش‌های مزرعه‌ای

طرح آزمایشی به‌کار رفته در پیش‌رمان مزرعه‌ای به پایه بلوک‌های کامل تصادفی با سه نمونه و 20 زنوتی بود که در سه ترکیب کشت که ۱۵ مهر، ۱۵ آبان و ۱۵ آذر در مجاور هم در ناحیه گرگاندین (جدول ۲). کشت به صورت رده‌ای در شش خط به فواصل خطوط ۲۰ سانتی‌متر و به طول سه سانتی‌متر با درکام ۲۴۰ بذر در مرتعی نهاد (دیفرنت کار) گلدای‌بود که کاهش‌های شرایطی و سبب بهترین نتایج و بیشترین بررسی در پنج کود بررسی مزرعه‌ای کود ۲۰۰ کیلوگرم در هکتار کود و ۱۰۰ کیلوگرم در هکتار کود از منبع اول قبل از کاشت به زمین داده شد. همچنین بررسی در مرحله سانفرهنگ و پر شدن دانه به میزان ۵۰ کیلوگرم در هکتار کود دیسک برگی به طول ۱ سانتی‌متر به‌هم‌شنت ۲۲ ساعت در آب مقرر در دمای ۳۰ درجه سلسیوس نگهداری و هدایت الکتریکی محلول اندازه‌گیری شد (۱۲). به‌طور تصادفی از هر کرت برداشت و با حفظ مشخصات در آن به‌هم‌شنت ۲۲ ساعت در دمای ۲۷ درجه سلسیوس خشک و برای اندازه‌گیری وزن ماده خشک نک بوته به کار رفت.

نتایج و بیان

آزمایش گلخانه‌ای

تغذیه آماده مخصوص برای صفات نشته بوته، ماده شکن تک بوته در مراحل ۴ و ۱ برگی بین زنوتی‌ها حداقل در سطح
جدول ۳: میانگین مربعات صفات زنوتیپ‌های جو تحت شرایط گلخانه‌ای

<table>
<thead>
<tr>
<th>ضریب تغییرات</th>
<th>زنوتیپ</th>
<th>نشت بونی</th>
<th>ماده خشک ۲ برگی ماده خشک ۴ برگی درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰۶/۶۳ ۱۶</td>
<td>۷/۶۰</td>
<td>۵/۶۸</td>
<td>۳۸۴/۳۲۴</td>
</tr>
<tr>
<td>۳/۶۸/۷۱</td>
<td>۳/۷۱</td>
<td>۳/۸۸</td>
<td>۱۹۶۵/۵۶</td>
</tr>
<tr>
<td>۱/۸۳</td>
<td>۱/۸۴</td>
<td>۱/۸۵</td>
<td>۱۹۶۵/۵۶</td>
</tr>
</tbody>
</table>

zeichن: نشتم بونی. زنوتیپ‌های ۱۸ و ۱۷ به‌ترتیب با ۳۷ و ۳۳ میکروزیمنس بر متر از بیشترین مقدار نشتم بونی و زنوتیپ ۱۵ با ۲۱ میکروزیمنس بر متر کمترین مقدار را به خود اختصاص دادند (شکل ۱). در نتیجه میزان‌های حساسیتی که برای انتخاب زنوتیپ‌های دامنه بیشتری در نشتم بونی و بین بروز زنوتیپ‌های دامنه بالا و سایر سلول‌های خنثی شده در نتیجه محیط‌های درون سلولی به خارج از سلول تراوید نموده و هدایت الکتریکی محلول افزایش می‌یابد.

ماده خشک تک بوته در مراحل رشدی مختلف مقایسه میانگین بست زنوتیپ ۴ جو در مراحل رشدی ۴ و ۶ برگی به‌طور مجزا با آزمون چند دامنه‌ای دانکن نشان داد که زنوتیپ ۱۶ با ۱۹۱ میلی‌گرم در بوته بیشترین ماده خشک در...
نرخ تولید و فرآوری محصولات زراعی و بافی / سال چهارم/ شماره سیزدهم/ ۱۳۹۲

dماي لازم برای از بین رفتن ۵۰% بیوتها (LT50)

در بررسی تنش داد که مانگیس دما زنوتیپ‌های با تیپ
پیازه ۲۸ درجه سلسیوس نسبت به تیپ بهاره
پایه ۲۲ درجه سلسیوس بستر بود و بیانگر آن است که در
زنوتیپ‌های با تیپ پایازه توانایی تحمل در درجه حرارت‌های
پایین بیشتر است. در بین زنوتیپ‌های با تیپ پایازه زنوتیپ ۱
در دمای ۳۸ درجه سلسیوس تحمل ترین زنوتیپ از پایازه و
زنوتیپ ۱۸ با تیپ بهاره در دمای ۱۷ درجه سلسیوس
حساس ترین زنوتیپ بیشتر نش سرماست، دمای لازم برای از بین
رفتن نجاه درصد بیوتی زنوتیپ‌ها در محدوده
اين نيز دنی زنوتیپ قرار داشتند (جدول ۴). بهنظر می‌رسد تحمل
بیشتر سرما علاوه بر نوع رقم، تیپ و مرحله بهره‌سمی، نیاز
به‌سرما رشد و طول روز از اهمیت اساسی برخوردار می‌باشد.
زنوتیپ‌های با تیپ بهاره که در مرحله شنگ بهره وارد فاز
راشی شدن نسبت به زنوتیپ‌های با تیپ پایازه

عباس‌پور، عباسی. از کاهش بیوتها در مرحله دو، چهار و شش برگی
انجام خفیف در کاهش و چهار برگی زنوتیپ‌های با تیپ‌های
مختلف رشدی در مرحله رویشی بودند در صورتی که در مرحله
شش برگی زنوتیپ‌های ۱۰، ۱۱، ۱۲، ۱۳، ۱۴، ۱۵، ۱۶، ۱۷ و
۱۸ با تپ بهاره وارد فاز رشیدن و زنوتیپ‌های ۵، ۶، ۷، ۸، ۹، ۱۰
و ۱۱ در ارقام پایه بیشتر در مرحله رویشی بودند.

۷ نرخ تولید و فرآوری محصولات زراعی و بافی / سال چهارم/ شماره سیزدهم/ ۱۳۹۲

زنجیره پروپت نشان داد که مانگیس دما زنوتیپ‌های با تیپ
پایازه ۲۸ درجه سلسیوس نسبت به تیپ بهاره
پایه ۲۲ درجه سلسیوس بستر بود و بیانگر آن است که در
زنوتیپ‌های با تیپ پایازه توانایی تحمل در درجه حرارت‌های
پایین بیشتر است. در بین زنوتیپ‌های با تیپ پایازه زنوتیپ ۱
در دمای ۳۸ درجه سلسیوس تحمل ترین زنوتیپ از پایازه و
زنوتیپ ۱۸ با تیپ بهاره در دمای ۱۷ درجه سلسیوس
حساس ترین زنوتیپ بیشتر نش سرماست، دمای لازم برای از بین
رفتن نجاه درصد بیوتی زنوتیپ‌ها در محدوده
اين نيز دنی زنوتیپ قرار داشتند (جدول ۴). بهنظر می‌رسد تحمل
بیشتر سرما علاوه بر نوع رقم، تیپ و مرحله بهره‌سمی، نیاز
به‌سرما رشد و طول روز از اهمیت اساسی برخوردار می‌باشد.
زنوتیپ‌های با تیپ بهاره که در مرحله شنگ بهره وارد فاز
راشی شدن نسبت به زنوتیپ‌های با تیپ پایازه
شکل 3. جوانان انتهایی ۲۰ زنوتیپ جو در مرحله شش برگی

جدول ۲. تجزیه پروپیتای زنوتیپ‌های جو برای محاسبه ۶۰٪ گیاه‌های مرده در مرحله شش برگی

<table>
<thead>
<tr>
<th>زنوتیپ</th>
<th>LT50 (°C)</th>
<th>Z = a+b logx</th>
<th>b</th>
<th>a</th>
<th>زنوتیپ</th>
<th>LT50 (°C)</th>
<th>Z = a+b logx</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>-۳۰</td>
<td>-۲۷/۰۲</td>
<td>-۲۷/۰۲</td>
<td>۱</td>
<td>۱</td>
<td>-۳۸</td>
<td>-۲۷/۰۲</td>
<td>-۲۷/۰۲</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>-۲۴</td>
<td>-۲۵/۰۳</td>
<td>-۲۵/۰۳</td>
<td>۲</td>
<td>۲</td>
<td>-۲۵</td>
<td>-۲۵/۰۳</td>
<td>-۲۵/۰۳</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>-۲۹</td>
<td>-۲۱</td>
<td>-۲۱</td>
<td>۳</td>
<td>۳</td>
<td>-۲۱</td>
<td>-۲۱</td>
<td>-۲۱</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>-۲۷</td>
<td>-۱۹</td>
<td>-۱۹</td>
<td>۴</td>
<td>۴</td>
<td>-۱۹</td>
<td>-۱۹</td>
<td>-۱۹</td>
<td>۴</td>
</tr>
<tr>
<td>۵</td>
<td>-۲۴</td>
<td>۰</td>
<td>۰</td>
<td>۵</td>
<td>۵</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۵</td>
</tr>
<tr>
<td>۶</td>
<td>-۲۲</td>
<td>-۲۵/۰۳</td>
<td>-۲۵/۰۳</td>
<td>۶</td>
<td>۶</td>
<td>-۲۵</td>
<td>-۲۵/۰۳</td>
<td>-۲۵/۰۳</td>
<td>۶</td>
</tr>
<tr>
<td>۷</td>
<td>-۲۱</td>
<td>-۲۶</td>
<td>-۲۶</td>
<td>۷</td>
<td>۷</td>
<td>-۲۶</td>
<td>-۲۶</td>
<td>-۲۶</td>
<td>۷</td>
</tr>
<tr>
<td>۸</td>
<td>-۱۷</td>
<td>-۲۵/۲۴</td>
<td>-۲۵/۲۴</td>
<td>۸</td>
<td>۸</td>
<td>-۲۵</td>
<td>-۲۵/۲۴</td>
<td>-۲۵/۲۴</td>
<td>۸</td>
</tr>
<tr>
<td>۹</td>
<td>-۲۰</td>
<td>-۲۱</td>
<td>-۲۱</td>
<td>۹</td>
<td>۹</td>
<td>-۲۱</td>
<td>-۲۱</td>
<td>-۲۱</td>
<td>۹</td>
</tr>
<tr>
<td>۱۰</td>
<td>-۲۵</td>
<td>-۲۱/۰۲</td>
<td>-۲۱/۰۲</td>
<td>۱۰</td>
<td>۱۰</td>
<td>-۲۱/۰۲</td>
<td>-۲۱/۰۲</td>
<td>-۲۱/۰۲</td>
<td>۱۰</td>
</tr>
</tbody>
</table>
جدول 5: میانگین مربعات صفت‌های زنوتیپ های چر در سه تاریخ کاشت تحت شرایط مزروعای

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>تعداد دانه</th>
<th>وزن هزار دانه</th>
<th>ارتفاع</th>
<th>تعداد سبله در سهل</th>
<th>درجه</th>
<th>منابع تغییرات</th>
<th>ضریب تغییرات (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

محلول‌های سازگار، تغییرات در پایداری نشان‌دهنده افزایش اثر از افزایش تعداد دانه در سهل و ماه خشک کل. (جدول 5) آن‌ها توسط دایتر (17) با استفاده از تغییرات در ارتفاع، بزرگ‌ترین تغییرات در ارتفاع داشتند. دانه‌های زنوتیپ 1 تپ گونه‌بندی داشتند. تغییرات در ارتفاع از تفاوت آماری معنی‌داری نداشتند. (جدول 5) اهدا و نقل (2) ارزیابی بین رقم برمودا گرس به تعداد دانه داده که در مراحل مختلف میزان تغییرات را تشکیل دادند و تفاوت آماری معنی‌داری در حالی جمعیت و وجود توانا در زنوتیپ‌ها در این ارقام بوده که از آن می‌توان در برنامه‌های اصلاحی بهره بگیرد.

عملکرد دانه

dانشگاه علوم کشاورزی، مهربانی زنوتیپ‌های 3.14.12.9.13 و

‌نتیجه‌گیری:

بر اساس نتایج اجرای آزمایش مزروعایی، زنوتیپ‌های 1 و 3 در مقایسه با دیگر زنوتیپ‌ها بهتر عملکرد داشتند. برای اینکه در نظر بگیریم که این دانه‌ها در برابر اثرات سایر عوامل مزروعایی مانند آب‌یابی، آب و گاز و اقلیم و سایر عوامل تغییرات نشان‌دهنده افزایش اثر از افزایش تعداد دانه در سهل و ماه خشک کل. (جدول 5) آن‌ها توسط دایتر (17) با استفاده از تغییرات در ارتفاع، بزرگ‌ترین تغییرات در ارتفاع داشتند. دانه‌های زنوتیپ 1 تپ گونه‌بندی داشتند. تغییرات در ارتفاع از تفاوت آماری معنی‌داری نداشتند. (جدول 5) اهدا و نقل (2) ارزیابی بین رقم برمودا گرس به تعداد دانه داده که در مراحل مختلف میزان تغییرات را تشکیل دادند و تفاوت آماری معنی‌داری در حالی جمعیت و وجود توانا در زنوتیپ‌ها در این ارقام بوده که از آن می‌توان در برنامه‌های اصلاحی بهره بگیرد.

عملکرد دانه

dانشگاه علوم کشاورزی، مهربانی زنوتیپ‌های 3.14.12.9.13 و
جدول ۶: میانگین صفات زئوتیپ‌های جو در مطالعه کشت تحت شرایط مزرعه‌ای

<table>
<thead>
<tr>
<th>زئوتیپ‌های جو</th>
<th>وزن هزار دانه (g)</th>
<th>تعداد سبله (م³)</th>
<th>ارتفاع یونه (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکرد دانه</td>
<td>اول</td>
<td>دوم</td>
<td>اول</td>
</tr>
<tr>
<td>COR14b</td>
<td>537 ± 18</td>
<td>530 ± 18</td>
<td>136 ± 20</td>
</tr>
<tr>
<td>COR14a</td>
<td>565 ± 20</td>
<td>560 ± 20</td>
<td>121 ± 20</td>
</tr>
<tr>
<td>کنترل</td>
<td>597 ± 22</td>
<td>590 ± 22</td>
<td>115 ± 22</td>
</tr>
</tbody>
</table>

بهاره بوده و از عملکرد بالایی برخوردار باشند و به‌همین دلیل داشتن دانه‌های پرطیزی و احراز معیار مبیز به عنوان زئوتیپ متحمل شناسایی شدند. در مقابل زئوتیپ‌های پریپنیژه و از پانسل عملکرد دانه کمتری برخوردار بودند و به‌عنوان دانه‌های آزمایش و احراز معیار کمتر به عنوان زئوتیپ متحمل معرفی شدند. گیاهی و همکاران (۶) در بررسی بیان زئوتیپ‌های کنترلی در ارتفاع حساب و متحمل جو تحت شرایط مزرعه‌ای مصاحبه نمودند که این‌گونه ابراهیمی در COR14a و COR14b

تعداد توده اولیه پروتئین‌ها و COR14b
جدول 7: تغییرات و انحراف معیار عملکرد دانه، ماده خشکک و ماده خشک تک بوته در مرحله شکربرکی

<table>
<thead>
<tr>
<th>جزئیات</th>
<th>دانه</th>
<th>ماده خشکک</th>
<th>ماده خشک</th>
<th>عملکرد دانه</th>
<th>عملکرد ماده خشکک</th>
<th>عملکرد ماده خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/plant)</td>
<td>37</td>
<td>89</td>
<td>117</td>
<td>212</td>
<td>135</td>
<td>134</td>
</tr>
<tr>
<td>(g/m²)</td>
<td>43</td>
<td>28</td>
<td>66</td>
<td>293</td>
<td>114</td>
<td>100</td>
</tr>
</tbody>
</table>

یک با ۵۰ سانتی‌متر در روز کاشت سوم به‌ترتیب بلند و کوتاه فاقدوین زنوتیپ‌ها بودند (جدول 7). حیبی و همکاران (11) اظهار داشتند که تغییر کاشت مناسب نمودار قرار گرفتن گیاه زراعی در سیستم مطلوب می‌شود و جهت تغییر کاشت اول بپیشنه بود گیاه از روش مطلوب از لحاظ ارتفاع برخوردار بود.

مقایسه‌های مطلوب

زنوتیپ‌ها با تیپ یا پایه‌های نسبت به تیپ بهاره از عملکرد دانه بالایی برخوردار بودند. علت آن ناشی از افزایش تعداد سببی در مترمیون و دانه در سبیل زنوتیپ‌های به تیپ پایه‌های نسبت به تیپ بهاره بود.

تجزیه رگرسیون چندگانه

به منظور تعیین مدل‌های مناسب صفات مؤثر در عملکرد دانه زنوتیپ‌های جو و توجه به این روابط از رگرسیون چندگانه استفاده شد (جدول 8). وزن هزاره‌ها و ماده خشک کل دانه در زنوتیپ‌های ۱ و ۵ در سه تاریخ کاشت کمتر از سایر زنوتیپ‌ها بود (جدول 7). در این تاریخ کاشت کمتر از سایر زنوتیپ‌ها بود (جدول 7). با تأخیر در کاشت، وزن هزاره‌ها کاهش می‌یافت و فقط در زنوتیپ‌های شماره ۵ و ۱۳ وزن هزاره دانه تاریخ کاشت سوم آنها بیشتر از دوم است. حیبی و همکاران (11) هم‌زمانی دوره پر شدن دانه‌ها با هوا به گرم را دلیل کاهش وزن هزاره‌ها مانند که در این آزمایش‌ها نتیجه‌گیری شد که خاک‌های دو متر در مساحت به‌ترتیب بلند و کوتاه می‌تواند مناسب با گرمسایی خرددان مانند بود و موجی که پسیمی شد دانه‌ها گردید. زنوتیپ‌های ۱ و ۱۰ به این جزئیات واصل در مرحله در کاشت اول از بیشترین مقدار و زنوتیپ‌های تاریخ کاشت سوم کردنی تعداد سببی در مترمیون را داشتند (جدول 7). جکسو و همکاران (12) نشان داد که افزایش زنوتوپی و محبوبیت را در گریز کهی در حساسیت به‌واسطه‌ای انسان داستان‌ها نتیجه‌گیری شد.

ارتفاع بوته زنوتیپ هفت با ۷۵ سانتی‌متر در روز کاشت اول و زنوتیپ
جدول 8 مقایسه مستقل زونتیپ‌های چر تحت شرایط مزروعی

<table>
<thead>
<tr>
<th>تیب رشد</th>
<th>وزن هزار دانه (g)</th>
<th>تعداد سبله (m²)</th>
<th>عملکرد دانه (Kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پاییزه</td>
<td>759</td>
<td>365</td>
<td>323</td>
</tr>
<tr>
<td>بهاره</td>
<td>736</td>
<td>338</td>
<td>304</td>
</tr>
<tr>
<td>219.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر صفت میانگین‌های دارای خروش مشابه فاقد اختلاف آماری معنی‌دار در سطح احتمال 0/05 می‌باشند.

جدول 9 ضرابیت رگرسیون صفات مرتبط با عملکرد دانه در لایه‌های چر

<table>
<thead>
<tr>
<th>صفات باقی‌مانده در مدل ارتفاع</th>
<th>ضرابیت رگرسیون غیراستاندارد</th>
<th>ضرابیت رگرسیون استاندارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن هزار دانه (g)</td>
<td>0/80</td>
<td>0/89</td>
</tr>
<tr>
<td>ماده خشک کل (g/m²)</td>
<td>0/93</td>
<td>0/99</td>
</tr>
<tr>
<td>عرض از میادا</td>
<td>0/86</td>
<td>0/84</td>
</tr>
</tbody>
</table>

$R^2 = 0/86$

جدول 10 تجزیه تابع تشخیص برای تعیین محل برش نمودار حاصل از تجزیه خورش‌های کلی صفات در زونتیپ‌های چر

<table>
<thead>
<tr>
<th>عملکرد دانه</th>
<th>تعداد گره</th>
<th>وایلکس لامبدا</th>
<th>کی دو</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/3</td>
<td>0/72</td>
<td>0/72</td>
</tr>
<tr>
<td>3</td>
<td>1/4</td>
<td>0/68</td>
<td>0/68</td>
</tr>
</tbody>
</table>

$R^2 = 0/78$ است که پیانگر توجهی خوب عملکرد دانه توسط صفات مذکور است.

تجزیه خورش‌های

گروه‌بندی 20 زونتیپ چر براساس صفات اندازه‌گیری شده، با داده‌های استاندارد با روش Ward انجام شد (شکل 5). برای تعیین محل برش نمودار، تجزیه تابع تشخیص گردید. در این روش در گره حاصل شد (جدول 10). زونتیپ‌های 11، 15، 17، 18، 19، 20، 21، 22 و 23 در گره اول و زونتیپ‌های 16، 17، 18 و 19 در گره دوم قرار گرفتند. زونتیپ‌های 20 و 21 مسیر در گره اول از عملکرد دانه، ماده خشک چرها و عملکرد دانه و وزن هزار دانه کمتر از میانگین

تعریف به مؤلفه‌های اصلی

در تجزیه به مؤلفه‌های دارند 88 درصد از تغییرات کل، توسط چهار مؤلفه اصلی اولین مؤلفه شد (جدول 12). با توجه به اهمیت مؤلفه‌های اصلی اول می‌توان از آنها در گزینش
جدول 11. میانگین گروه‌ها و درصد انحراف آنها از میانگین کل در زنوتیپ‌های جو

<table>
<thead>
<tr>
<th>میانگین</th>
<th>انحراف از میانگین (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14,15,16,17</td>
</tr>
<tr>
<td>2</td>
<td>18,19,20</td>
</tr>
</tbody>
</table>

جدول 12. مقادیر ویژه، درصد واریانس و واریانس تجمعی چهار مؤلفه اول در تجزیه بی‌موجهی میانگین اصلی برای زنوتیپ‌های جو

<table>
<thead>
<tr>
<th>واریانس تجمعی (%)</th>
<th>واریانس (g/m²)</th>
<th>مقادیر ویژه</th>
<th>مؤلفه اصلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>48/44</td>
<td>26/33</td>
<td>68/37</td>
<td>68/37</td>
</tr>
<tr>
<td>47/47</td>
<td>21/18</td>
<td>68/37</td>
<td>68/37</td>
</tr>
<tr>
<td>48/47</td>
<td>20/22</td>
<td>68/37</td>
<td>68/37</td>
</tr>
<tr>
<td>47/47</td>
<td>13/60</td>
<td>68/37</td>
<td>68/37</td>
</tr>
</tbody>
</table>

به ترتیب صفات عملکرد دانه با ضریب عاملی 93/5 می‌باشد. انتخاب مؤلفه‌ها اصلی برگزاری بودن ضرایب عاملی آنها است. مؤلفه اول که 37/2 درصد از تغییرات را تبیین نمود.
جدول ۱۳. برداشت ویژه محصولات اصلی چهارگانه برای صفات اندازه‌گیری شده در زنویت‌های جو

<table>
<thead>
<tr>
<th>صفت</th>
<th>مولفه سوم</th>
<th>مولفه دوم</th>
<th>مولفه اول</th>
<th>تعداد دانه در سیب‌سنگ</th>
<th>وزن هزار دانه (g)</th>
<th>تعداد سیب‌سنگ (m²)</th>
<th>عملکرد دانه (Kg/ha)</th>
<th>ارتفاع بونه (cm)</th>
<th>ماده خشک کل (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۱۲</td>
<td>۰/۶۲</td>
<td>۰/۶۵</td>
<td>۰/۶۴</td>
<td>۵۰۰</td>
<td>۰/۷۵</td>
<td>۰/۵۰</td>
<td>۰/۸۰</td>
<td>۰/۵۰</td>
<td>۰/۸۰</td>
</tr>
<tr>
<td>۰۱۳</td>
<td>۰/۶۲</td>
<td>۰/۶۵</td>
<td>۰/۶۴</td>
<td>۵۰۰</td>
<td>۰/۷۵</td>
<td>۰/۵۰</td>
<td>۰/۸۰</td>
<td>۰/۵۰</td>
<td>۰/۸۰</td>
</tr>
<tr>
<td>۰۱۴</td>
<td>۰/۶۲</td>
<td>۰/۶۵</td>
<td>۰/۶۴</td>
<td>۵۰۰</td>
<td>۰/۷۵</td>
<td>۰/۵۰</td>
<td>۰/۸۰</td>
<td>۰/۵۰</td>
<td>۰/۸۰</td>
</tr>
<tr>
<td>۰۱۵</td>
<td>۰/۶۲</td>
<td>۰/۶۵</td>
<td>۰/۶۴</td>
<td>۵۰۰</td>
<td>۰/۷۵</td>
<td>۰/۵۰</td>
<td>۰/۸۰</td>
<td>۰/۵۰</td>
<td>۰/۸۰</td>
</tr>
</tbody>
</table>

در مراحل رشدی جهار و شب بزرگی، زنویت‌های جوی با تیپ بهاره دارای ماده خشکی نک بوته بالاتری نسبت به تیپ پاییزی بودند. جهایی با تیپ بهاره نسبت به پاییزه‌تر وارد مرحله زایشی شده و از دوره رشد رویی کوتاه‌تر بروزدرادن، عملکرد دانه افق‌پاییزی بیشتر از تیپ بهاره بوده و عملکرد آن تاasz از افزایش تعداد سیب‌سنگ در متر مربع و تعداد دانه در سیب‌سنگ بوده. در مقایسه جهایی با تیپ بهاره نسبت به پاییزه ورن هزار دانه بیشتری داشته، بالا بودن ضربه خوب‌بستگی مثبت و معنی‌دار برای صفت ماده خشکی کل با عملکرد دانه در تجربه گرگیون ناشی از وجود تعداد بینه می‌باشد که با افزایش آن ماده خشکی کل و در نهایت عملکرد دانه افزایش می‌یابد.

عملکرد تام گذاری کرد (جدول ۱۳)، مولفه‌های جو و سوم که با ترتیب ۲۱ و ۲۰ درصد از تغییرات را تیپین نمودند. صفت تعداد دانه در سیب‌سنگ اصلی با ضرایب ۰/۵۹ و ۰/۵۸ بیشترین مقدار را داشته و می‌توان آنها را با عنوان مولفه‌های اجرازی عملکرد تام برد. عملکرد چهارم که ۱۲ درصد از تغییرات را تولید کرده، از افزایش دانه فرا خوراکی بود.

تیپی‌گیری

صفات مورفوفیزیولوژیک زنویت‌های جوی با تیپ بهاره مختلف رشد تحت تأثیر گذشت قرار گرفت، تاریخ کاشت ۱۵ مهرماه از نظر عملکرد دانه و اجرای آن بیشترین مقدار بود.

منابع مورد استفاده

