قابلیت استفاده از فسفر و پروتئین در جوجه‌های گوشتخی نه با، با و بدون مکمل ویتامین

چکیده
تأثیر مکمل آنژیم گیاهی بر قابلیت استفاده یزی و پروتئین و تیز عملکرد جوجه‌های گوشتخی نه با، با و بدون مکمل ویتامین ارزیابی شد. رابطه میان ویتنام و گیاهی گند در آزمایشگاه، تعداد گروه یک کریتی العیین در آزمایش گروه یک کریتی العی

جواری پوردا و هنری کلامان

واژه‌های کلیدی: فیتات، فسفر، پروتئین، جوجه‌های گوشتخی

1. استاد علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
2. استاد علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

213
مقدمه

هزینه گذا مهندسی بخش هزینه تولیدات دامی را تشکیل می‌دهد. کاربرد برنامه‌های غذایی مناسب و بهینه‌سازی استفاده از مواد غذایی از اهداف اولیه صنعت طیور است. غلات، بخش عمده‌ای از جبری طیور را تشکیل می‌دهند و به عنوان منابع نشاسته‌ای و تأمین کننده ارزی مورد نیاز طیور به کار می‌روند. از سویی، بیشتر غلات و دیگر منابع گیاهی که در جبری طیور به کار می‌روند، دارای ویژگی‌های نفیسی هستند، که مصرف آنها را توسط طیور محدود می‌سازد و باعث کاهش رشد، افزایش ضربه تبیک غذا، کاهش درصد نخم قارچی و وزن نخ تمیز و کاهش اخلاق استخوانی و لنفوس می‌گردد. وجود بادارانته‌های مختلف در منابع گیاهی از ارزش غذایی این منابع براي طیور می‌کاهد. منابع ضد تغییرهای موجود در گیاهان متعادل و از لحاظ سالم‌گذاری و پیشگیری از مقاومت هستند.

مواد و روش‌ها

Planty ,Kyle ,Glenlea ,Genesis ,Biggar

از 9 واریته گندم که در سه محیط Laura كه Katepawa ,CDC Teal ,Scepter منفی‌ویژه Seed Farm و Kernan Farm و Goodale Farm سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کاشته شده بود، استفاده گردید. از هر نمونه مربوط به هر محله تکرار جمع آوری در سردرخته‌های متفاوت در سال 1993 توسط مرکز توزیع غل
مقدمه

به‌طور کلی، هر لوله آزمایش یک میلی‌لیتر کلروفورم افزوده شده باشد. خرید ماده محلول در بزرگی که در انتهای آزمایش اضافه می‌شود، داخل مختلف ایجاد می‌کند. حال و (Vortex) شده، سپس در سرتختی 3000 دور در دقیقه به سمت 10 دقیقه ساتزیتو گردید. قسمت محلول فوتیکه هر لوله به وسیله پیت‌های مخصوص به لوله‌های بلاستیکی مخصص انتقال داده شد و در سرتختی 14000 دور در دقیقه به سمت 10 دقیقه ساتزیتو گردید. پس از آن، بخش فوقانی هر لوله با استفاده از پیت‌های مخصوص به‌طور میکروکروبی‌بندی (دستگاه HPLC) داده شد. این تاریخ‌ها تا هنگام استفاده از دستگاه برای ادغام گیری میزان آسید فیتاتیک در سردخانه‌های نهنگداری گردید.

Beckman Instruments, 1945 Tristar Drive,) HPLC از Gold (Mississippi, Ontario, Canada, L5TLW5 مدل 17, بسته مدل 16 و نصب مدل 25 و Detector (Hamilton, Reno, NV, USA) Hamilton مجهر به سمت 20 میلی‌متر استفاده گردید. یک میکرو‌لیتر از هر نمونه (با استفاده از دستگاه نمونه‌گیری آتووماتیک) به سمت 20 دقیقه به وسیله محلول 8 با سرتختی 1/5 میلی‌لیتر در دقیقه نمونه‌گیری. و محلول پس سولو (با سرتختی 1/5 میلی‌لیتر در دقیقه به وسیله پسپس به سمت مدل Perlin (street, Vancouver, BC, Canada, V5K 4R1 مدل 350romatic Elmar میلی‌لیتر در دقیقه به وسیله پسپس به سمت 250 وارد دستگاه شد. جدید در 500 nm خروجی شد. حداکثر جدید به وسیله منحنی استاندارد مشخص و انتزاعی کردن (0 و 12). برای بررسی اثر واردات گندم بر عملکرد یوبله‌های گیاهی، هشت واردات (در CDC از واردات قبلی اتصاب و مورد استفاده قرار گرفت. میزان فیتات این نمونه‌ها به روش فوق Natuphos, 5000U/g, BASF Corp., 3000 Continental Drive, North Mount Olive, NJ به مقدار صفر 500 و 1000 واحد در کیلو‌گرم غذا با کار رفت. تعداد 38 فلوره جوجه نر یک در تحقیق (هوباردیتیسون) به 96 گروه جهور تک کرده شد. هر

جدول 1. ترکیب جهور آزمایشی

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>مقدار (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کندم</td>
<td>65/00</td>
</tr>
<tr>
<td>سوبیا</td>
<td>75/00</td>
</tr>
<tr>
<td>روغن کانولا</td>
<td>0/00</td>
</tr>
<tr>
<td>الکلیم سفید</td>
<td>0/25</td>
</tr>
<tr>
<td>صدف</td>
<td>0/10</td>
</tr>
<tr>
<td>نمک</td>
<td>0/27</td>
</tr>
<tr>
<td>مکمل املاح معدنی</td>
<td>0/25</td>
</tr>
<tr>
<td>مکمل ونیلایا</td>
<td>0/10</td>
</tr>
<tr>
<td>کولین کارا</td>
<td>0/27</td>
</tr>
<tr>
<td>ال - میتون</td>
<td>0/16</td>
</tr>
<tr>
<td>آنژین فیتاز</td>
<td>0/10</td>
</tr>
<tr>
<td>کوکسیدوسانت</td>
<td>0/05</td>
</tr>
<tr>
<td>محرک رشد</td>
<td>0/10</td>
</tr>
<tr>
<td>آنژین زایاکانون</td>
<td>0/10</td>
</tr>
<tr>
<td>اسید کرم</td>
<td>0/10</td>
</tr>
<tr>
<td>1979 جمع</td>
<td>0/10</td>
</tr>
</tbody>
</table>

ترکیب محاسبه شده: اندازه‌گیری سوخت ساز 300-کیلوکاری در کیلوگرم، پرتونتیان 2 درصد، کلسیم 0/95 درصد. فسفر قابل استفاده 3 درصد، کلسیم 0/3 درصد کمتر از توصیه NRC، میکروآنزیم 0/25 درصد. لاژن 0/15 درصد. میتون و همبستگی 0/1 درصد.

نکته، بالاترین آزمایش در هشت واردات گندم به‌کار گرفته شده است.

1. اندازه‌گیری میکروکالی به‌کار رفته.
2. در کلسیم فیتاب دارای 22 درصد کلسیم 187 درصد در سفر.
3. در میلوس گرم، 45 میلوس گرم روی، 80 میلوس گرم رز، 60 میلوس گرم منک، 10 میلوس گرم سن، 10 میلوس گرم بدن و 10 میلوس گرم شیمی در کیلوگرم.
4. واردات 1000 واحد بین المللی و بین‌آزمایی A. 200 واردات و بین‌آزمایی B. 20 واحد بین‌آزمایی E. 4 واردات و بین‌آزمایی K. 15/8 واردات و بین‌آزمایی N. 15/8 واردات و بین‌آزمایی.
5. میلی‌گرم 2000 واریانس، 4 میلی‌گرم پریدوکسی، 4 میلی‌گرم پریدوکسی، 2 میلی‌گرم اسید فیتات و 156 میلی‌گرم پروتین در کیلوگرم.
6. میزان صفر، 500 و 1000 واحد در کیلوگرم غذا.
نتایج و بحث
میزان فیتات موجود در ۹ واریته گندم در جدول ۲ ارائه شده است.

یک از ۲۴ جهش آزمایشی (جدول ۱) چهار گروه (کنترل) و در مدت ۲۱ روز داده شد. در طول دوره آزمایش جویه‌ها به آب و غذا تصرف شدند و در قفس‌های دسترسی به شرایط آب و غذا تصرف شدند.

dere آزمایشی دسته‌گردی می‌گردید.

جهش‌های آزمایشی بدون پرورش حیوانی بودند و به نحوی تنظیم شدند که فضای قابل استفاده آنها ۳۰ درصد کمتر از توصیه NRC (۹) برای گروه‌های گونه‌ای بود. ترکیب جهش‌ها یکسان و از لحاظ آنزیمی یکسان بود و فقط نوع گندم در آنها فرق می‌کرد. مقدار پروپنتین جهش‌های بین ۲۱ تا ۲۴ درصد بود.

در پایان دوره آزمایش (روز ۲۱) جهش‌های هر تکرار به طور گروه‌های مختلف به‌سیله جا به جا در گونه‌های کنترل، شنیده، و محیط‌های اقیانوسی تأمین گروه‌های هر تکرار جمع‌آوری، مخلوط و برای آزمایش‌های بعدی در ۲۰ درجه سانتی‌گراد نگهداری شد. استخوان ران چپ در جوجه‌های ۲۹ تکرار جمع‌آوری مخلوط و برای تغییر خاکستر استخوان استفاده گردید. برای تغییر قابلیت هضم، اکسید کروم به میزان ۰/۵ درصد به کار رفت. محیط‌های اقیانوسی برای تغییر نیتروژن با روش AOAC (۱) فسفر به روش اسپیروکسومات و اکسید کروم به روش فنوت و فنوتون (۵) مورد استفاده قرار گرفت.

چرپی استخوان‌ها به سیله دستگاه سوسک‌ها و با استفاده از اثری به مدت ۱۸ ساعت جدایی شد. میان در ۱۱۰ درجه سانتی‌گراد حذف، و خاکستر آنها در کوره ۲۰۰ درجه سانتی‌گراد به مدت ۲۴ ساعت تغییر گردید. آزمایش و روزه روز، غذای صنفی و ضریب تبدیل غذا و تغییر در طبیعت دوره آزمایش انتزاعی گرفته شد.

آزمایش در چارچوب طرح کاملاً تصادفی و به روش _بکس_ولی _انجام_شد، و داده‌ها به وسیله برنامه کامپیوتری SAS (۱۲) تجزیه و تحلیل گردید. میانگین‌ها به روش دانکن (۱۲) مورد مقایسه قرار گرفتند.
جدول 3. اثر واریته و محیط کشت بر فیتات گندم

<table>
<thead>
<tr>
<th>فیتات (درصد)</th>
<th>محیط کشت</th>
<th>نمونه‌های دوم</th>
<th>نمونه‌های اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16<sup>a</sup></td>
<td>1</td>
<td>0/3<sup>b</sup></td>
<td>0/97<sup>b</sup></td>
</tr>
<tr>
<td>1/64<sup>b</sup></td>
<td>2</td>
<td>0/77<sup>b</sup></td>
<td>1/02<sup>ab</sup></td>
</tr>
<tr>
<td>1/256<sup>c</sup></td>
<td>3</td>
<td>0/78<sup>ab</sup></td>
<td>0/95<sup>b</sup></td>
</tr>
<tr>
<td>میانگین ± احتمال معیار</td>
<td>1/64±5/2012</td>
<td>0/87<sup>ab</sup></td>
<td>1/02<sup>a</sup></td>
</tr>
</tbody>
</table>

میانگین ± انحراف معیار

<table>
<thead>
<tr>
<th>احتمال منحنی نوع</th>
<th>احتمال منحنی نوع</th>
<th>محیط کشت</th>
<th>احتمال منحنی نوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<0/05</td>
<td>P>0/05</td>
<td>P<0/001</td>
<td>P>0/009</td>
</tr>
</tbody>
</table>

در هر سه طبقه میانگین‌هایی که حروف غیر مشابه دارند اختلاف معنی‌دار است (P<0/05).

جدول 4. اثر واریته و گندم بر فراورده وزن. مصرف غذا. ضریب تبدیل غذا. خاکستر استخوان و قابلیت هضم پروتئین در جوجه‌های گوشته

<table>
<thead>
<tr>
<th>قابلیت هضم</th>
<th>خاکستر استخوان</th>
<th>ضریب تبدیل غذا</th>
<th>مصرف غذا (گرم در روز)</th>
<th>افزایش وزن (گرم)</th>
<th>دارایی هضم گندم</th>
<th>قابلیت هضم گندم (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80/5<sup>a</sup></td>
<td>38/2<sup>a</sup></td>
<td>1/50<sup>b</sup></td>
<td>720/0</td>
<td>491/5<sup>b</sup></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>80/7<sup>a</sup></td>
<td>37/8<sup>a</sup></td>
<td>1/48<sup>b</sup></td>
<td>709/0</td>
<td>533/4<sup>a</sup></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>80/9<sup>a</sup></td>
<td>39/8<sup>a</sup></td>
<td>1/52<sup>b</sup></td>
<td>743/8</td>
<td>478/4<sup>b</sup></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>80/0<sup>a</sup></td>
<td>32/3<sup>a</sup></td>
<td>1/53<sup>b</sup></td>
<td>737/0</td>
<td>480/4<sup>a</sup></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>78/4<sup>b</sup></td>
<td>37/4<sup>b</sup></td>
<td>1/55<sup>b</sup></td>
<td>764/0</td>
<td>478/4<sup>b</sup></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>78/5<sup>b</sup></td>
<td>39/8<sup>a</sup></td>
<td>1/48<sup>b</sup></td>
<td>739/0</td>
<td>480/4<sup>a</sup></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>78/9<sup>b</sup></td>
<td>37/8<sup>a</sup></td>
<td>1/52<sup>b</sup></td>
<td>743/8</td>
<td>478/4<sup>b</sup></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>80/5<sup>a</sup></td>
<td>38/2<sup>a</sup></td>
<td>1/50<sup>b</sup></td>
<td>720/0</td>
<td>491/5<sup>b</sup></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>81/2±0/497</td>
<td>37/5±0/49</td>
<td>1/50±0/497</td>
<td>740/0±13/2</td>
<td>495±9/7</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

میانگین ± انحراف معیار

1. به زیرنویس جدول 2 مراجعه شود.
2. میانگین‌هایی که حروف غیر مشابه دارند اختلاف معنی‌دار در سطح پیچ درصد می‌باشند.
3. میانگین‌هایی که حروف غیر مشابه دارند اختلاف معنی‌دار در سطح پیچ درصد می‌باشند.

217
جدول 4. اثر مکمل فیتیاس بر افزایش وزن، مصرف غذا، ضریب تبدیل غذا، خاکستر استخوان و قابلیت هضم پروتئین در جوجه‌های گوشتی

<table>
<thead>
<tr>
<th>مقدار فیتیاس (واحد در کیلوگرم)</th>
<th>افزایش وزن (گرم در روز)</th>
<th>ضریب تبدیل غذا</th>
<th>قابلیت هضم پروتئین (درصد)</th>
<th>خاکستر استخوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>451/0</td>
<td>1/05</td>
<td>35/0</td>
<td>79/4</td>
</tr>
<tr>
<td>500</td>
<td>504/0</td>
<td>1/05</td>
<td>38/5</td>
<td>81/7</td>
</tr>
<tr>
<td>1000</td>
<td>497/0</td>
<td>1/05</td>
<td>38/8</td>
<td>81/7</td>
</tr>
<tr>
<td>افزایش 5/6</td>
<td>74/0</td>
<td>1/05</td>
<td>37/4</td>
<td>80/8±0/56</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌هایی که حرف‌های یکی هستند از هم برابری ندارند (P<0.05).

فیتیات آنها دارد. گندم به طور میانگین 50 درصد، فیتیات دارد. واریته‌های مختلف گندم تأثیر متفاوتی بر عملکرد طیور دارند. تأثیر واریته‌های مختلف گندم بر خاکستر استخوان و قابلیت هضم پروتئین متفاوت است. نمونه‌هایی که فیتیات کمتری دارند استخوان‌های آنها کاهش می‌یابد. قابلیت هضم پروتئین آنها بهتر است.

از لحاظ معیارهای فوق، غیر از افزایش وزن روزانه، معنی‌دار نبود. این تحقیق با ایجاد تفاوت‌های روان‌داران و همکاران (16 و 11)، منبی بر تأثیر بهبود ضریب تبدیل غذا، قابلیت هضم پروتئین و انرژی همواری دارد.

واریته‌های گندمی که فیتیات کمتری داشتند، باعث افزایش درصد خاکستر استخوان و قابلیت هضم پروتئین گردیدند. و با افزایش فیتیات، خاکستر استخوان و قابلیت هضم پروتئین کاهش نشان داد. چنین نتایجی توسط زوره‌دهنگان دیگر (10 و 11) نیز گزارش شده است.

اثر مکمل فیتیاس بر افزایش ضریب تبدیل غذا، خاکستر استخوان و قابلیت هضم پروتئین نشان دهنده آزمایشات قابلیت استفاده از فیتیات‌های طیور، نیترزون و افزایش وزن روزانه است. این محصول‌ها و دیگر مواد غذایی مهم مصرف شده است.

سپاسگزاری

از سمتین محرمان دانشگاه صنعتی اصفهان به خاطر تأمین هزینه‌های مربوطه، و نیز پرستش طیور طوطی افراد ردیف دار بهبود کلی قابلیت استفاده از فیتیات‌های گوشتی سپاسگزاری می‌گردد.

منابع مورد استفاده

