قابلیت استفاده از فسفر و پروتئین در چوگوهای گوشتی نر تغذیه شده با واریته‌های مختلف گندم با و بدون مکمل فیتاز

چاود پورضا و هنری کلاسِن

چپکیده
تأثیر مکمل آنزیم فیتاز بر قابلیت استفاده سفارش و پروتئین در فیتاه و آزمایشگاه نیتریک گندم در چارچوب طرح کامل تصادفی به روش فاکتوریال ۲×۳ نقطه جهان پیک (شرکت‌های تجاری، به ۹۴ مورد چهار چوگوهای مختلف شده. هر یک از ۲۴ جزئی آزمایشی (هشت واریته گندم) در سه سطح آنزیم فیتاز (۱۰۰۰ و ۱۹۰۰ واحد در کیلوگرم) به قسمت تکرار و به مدت ۲۰ روز داده شد. در سن ۲۱ روزگی، چوگوهای هر تکرار توزین و به سه شکل در کنگردهای گردید و شده. محتوای ایننوم جمع‌آوری و برای تعیین فسفر، فیتاه، نیتریژن و پروتئین تجزیه شیمیایی گردید. استخوان ران چچ در چند زمان در هر چکرار جدا و به هم مخلوط و برای تعیین خاکستر استخوان مورد استفاده قرار گرفت. میان واریته‌های مختلف گندم از لحاظ بیزان فیتاه اختلاف معنی‌دار (P<0.05) دیده شد. اثر واریته گندم بر وزن بدن، ضریب تبدیل غذا و خاکستر استخوان معنی‌دار بود (P<0.05). فیتاز اضافه شده باعث بهبود معنی‌دار (P<0.05) وزن بدن، ضریب تبدیل غذا و خاکستر استخوان گردید. انرژی ۵۰۰ واحد فیتاز در کیلوگرم فیتاز نسبت به قلوپنیه غذا کاهش فیتاز و پروتئین بهبود معنی‌دار برخوردار بود. اختلف بین سطوح فیتاز (۱۰۰۰ و ۱۹۰۰ واحد) از لحاظ وزن بدن، ضریب تبدیل غذا و خاکستر استخوان معنی‌دار بود. به طور کلی، انرژی فیتاز به چهار چوگوهای مختلف بهبود عمده گردید. فیتاز نسبت به فیتاه و پروتئین از نظر نیتریژن و پروتئین فیتاه و چوگوهای مختلف مورد استفاده نمود.

واژه‌های کلیدی: فیتاز، فیتاه، پروتئین، فسفر، چوگوهای گوشتی

1. استاد علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استاد علوم دامی، دانشکده کشاورزی، دانشگاه ساسکان، کانادا
مقدمه

هرچیزی گذا مفهومی بنگش هرچیزی تولیدات دامی را تشكیل می‌دهد. کاربرد برنامه‌های غذایی مناسب به بهینه‌سازی استفاده از مواد غذایی از اهدا اولیه صنعت طیور است. غلات بخش عمده‌ای از جریه طیور را تشکیل می‌دهند و به عنوان منابع نشاسته‌ای و تأمین کننده ارزی مورد تنازع طیور به کار می‌روند. در این مقاله به عنوان فعالیت‌های مورد نیاز طیور به کار می‌روند. با کار این اهداف تغذیه‌ای هستند، که مصرف آنها را توسط طیور محور و ساده و باعث کاهش رشد، استفاده ضریب تبدیل غذا کاهش دارد، تخم گذاری و وزن تخم مسرع و کاهش اختلالات استخوانی و تلفات می‌گردد. و وجود پیاده‌برنامه‌های مختلف در انواع گیاهی از ارزش غذایی این منابع برای طیور می‌کاهد. منابع ضد تغذیه‌ای موجود در گیاهان متعدد، و از لحاظ حفاظتی یا اقتصادی بسیار مفایت هستند.

مواد و روش‌ها

Planty, K. Kyle, Glenlea, Genesis, Biggar از 9 واریتی گندم که در محوطه Laura, Katepaw, CDC Teal, Scepter منفعت در Seed Farm و Kernan Farm, Goodale Farm سال 1993 توسط مرکز توسعه غلات دانشگاه ساسکاچوان کاشته شده بود. استفاده گرددی می‌باشد. از هر نمونه مربوط به هر محلول دو نکار جمع آوری و در سردخانه نگهداری شده بود. با پایین، جمع‌آوری 54% استفاده و نرخی گرددی. نمونه‌ها با استفاده از آسیب‌های و تور در طوفان‌های نگهداری شد. استخراج اسید فیتایک از نمونه‌ها با استفاده از 150 میلی‌گرم از هر نمونه (دو نکار) صورت گرفت. نمونه‌ها تنظیم و در لوله‌های بلاستیکی مختصات قرار داده شد و به هر نمونه 150 میلی لیتر اسید کاربردیک/200 نرمال اضافه و محتوای الکل به خوبی مخلوط گردد.

نمونه‌ها به مدت ساعت و با سرعت 200 دور در دقیقه و درجه حرارت محیطی در 10000 سرعت گرفته شدند. پس از این مدت، نمونه‌ها با استفاده از دستگاه سانتریفوژ با سرعت 10000 دور در دقیقه سانتریفوژ شدند. پس از انجام این مرحله، قسمت محلول لوله‌ها با لوله‌های آزمایش انتقال داده می‌گردید.

امید فیتایک به طور طبیعی در اغلب انواع گیاهی وجود دارد، با ایجاد کمک‌پاس با پروتئین دو و سه طرفین مانند کلمیم، روی، آهن و فیتایک استرسی‌اند را برای طیور کاهش می‌دهد. این صورت اسید فیتایک مکان استفاده استفاده از بیشترین تغذیه طیور را کاهش داده. نتایج این آزمایش توان داده است که امید فیتایک بین فعالیت آزمایشی گوارش پیشین و نرخی نمایندگی می‌شود، با این که با پروتئین‌ها ترکیب شده و فراهم‌سازی آمیما برای طیور کاهش می‌دهد (100 و 14).

حدود 70 درصد فسفر موجود در منابع گیاهی به صورت اسید فیتایک بکار می‌رود. اسید فیتایک بکار رفته استفاده نیست، زیرا دستگاه گوارش طیور آزمایش فیتایک برای امید فیتایک است. به همین دلیل برای تأمین فسفر مؤثر نیاز حیوانات تکمیل ۲۱۴
قبلیت استفاده از فسفر و پروتئین در جوجه‌های گوشتخانه نتیجه‌گیری شده با ...

جدول 1. ترکیب جه‌های آزمایش

<table>
<thead>
<tr>
<th>اجزای مشکل‌های (درصد)</th>
<th>گدام 1</th>
<th>سوپا با 48% پروتئین</th>
<th>روش کاتالا</th>
<th>۱/۲۵</th>
<th>صرف ۷/۲۷</th>
<th>نمک ۵/۷۵</th>
<th>مکمل اصلاح مادات ۳/۸۵</th>
<th>مکمل ویتامین‌ها ۵/۸۵</th>
<th>کولین کاراکتر ۷/۱۵</th>
<th>دی‌ال-متیونین ۴/۲۵</th>
<th>ال- لزین ۱/۰۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر ۷/۲۷ و ۲۰۰۲/۲</td>
<td></td>
</tr>
</tbody>
</table>

متن اصلی:

شکر به هر لوله آزمایش یک میلی‌لیتر کلروفورم افزوده شد تا چربی و مواد محلول در چربی را که در انتقال گیری اسید ف‌ایکی بوسیله دستگاه HPLC اختلاف ایجاد می‌کند. حلال (Vortex) خارج ساز. مخلوط‌های هر لوله به خوبی مخلوط شده, سپس در سرعت ۲۰۰۰ دور در دقیقه به صورت ۱۰ دقیقه سانتریفوژ گردید. سپس مخلوط فوقانی هر لوله به وسیله پیپت‌های مخصوص به لوله‌های بلاستیکی مخصوص انقلال داده شد و در سرعت ۱۴۰۰۰ دور در دقیقه به صورت ۱۰ دقیقه سانتریفوژ گردید. پس از آن, بخش فوقانی هر لوله با استفاده از پیپت‌های مخصوص به ظرف (دستگاه HPLC) انقلال (Vial) کنار گذاشت. دستگاه HPLC باری این ظرف را هنگام استفاده از دستگاه برای ادغام‌گری میزان اسید فی‌ایکی در سردخدانه نگهداری گردید.

Beckman Instruments, 1945 Tristar Drive, HPLC Gold (Mississauga, Ontario, Canada, L5TLW5 مدل ۱۷, به مدل ۱۲۶ و اساس ۲۵۰ و Detector (Hamilton, Reno, NV, USA) Hamilton مجهر به سرنو ۱۳۵۰ Kootenay (Elmar مدل ۱۷/۵۰ میلی‌متر استفاده گردید. بکس میکروتیپر از هر نمونه (با استفاده از دستگاه نمونه‌گیری آتومنیک) به صورت ۲۰ دقیقه به وسیله محلول ۸/۵ میلی‌لیتر در دقیقه نمونه کرده و محلول پس سرنو (Post column) با سرعت ۱/۵ میلی‌لیتر در دقیقه به وسیله پس سرنو مدل Perlin (street, Vancouver, BC, Canada, V5K ۴RI ۲۵۰ وارد دستگاه شد. جدید ۵۰۰ nm خوادانه شد. ماکسیر جدید به وسیله میتیو استاندارد مشخص و اندازه گیری گردید (۱/۱۲). برای بررسی اثر واریتی گندبر عامل جوجه‌های گوشتخانه هشت واریتی (غیر از CDC و ۹ واریتی بالی انتخاب و مورد استفاده قرار گرفت. میزان فیتات این نمونه‌ها به روش فوق Natuphos, 5000U/g, BASF Corp., 3000 Continental Drive, North Mount Olive, NJ به مقدار صفر ۰/۷۸۲۸, USA و ۳۸۵ قطعه جوجه نر یک‌روزه (هپاردپنترون) به ۹۶ گروه جهانی چهار جوجه تقسیم شد. هر...
نتایج و بحث
میزان فیتات موجود در 9 واریتی گندم، که در هوای محل (محيط‌کشت) متفاوت کشت شده بودند، در جدول 2 آراش شده است. بین واریتهای گندم از لحاظ میزان فیتات اختلافات معنی‌دار Laura و Plantly Bigger در NRC است. همچنین، میزان کشت بر میزان فیتات واریتهای گندم اثر معنی‌دار (P<0.01) داشت. اثر متقابل واریته و محیط کشت نیز معنادار بود. نتایج به دست آمده در این آزمایش گزارش‌های دیگر (11) را مبنای بر وجود اختلافات زنبوریک و محیط گندم بر میزان اسپید فایکتیک، تأیید می‌کند. اختلاف در اسپید فایکتیک به دلیل محیط کشت، به خاطر نوع و میزان کودهای است. میزان فیتات موجود در نمونه‌های گندمی که مورد آزمایش بیولوژیک قرار گرفتند در جدول 2 نشان داده شده است. نتایج این آزمایش مؤثری پاک‌سازی خوک است، نشان داد که واریته گندم از لحاظ فیتات به بهبود اختلافات دارد. مقدار فیتات به دست آمده در این واریته در حدود میزان مورد استفاده در آزمایش اول بود. این نتایج نشان می‌دهد که اندام‌گیری میزان فیتات در منابع مختلف غذایی حتی اگر واریته یکسان داشته ولی در منابع مختلف کشت شده باند است. یک پیش از استفاده در بهترین نوع لازم است. زیرا می‌توان در افزودن منابع محتویاتی که به بهبود زیادی دارد، باید برای خواهد کرد او واریته گندم به افزایش وزن، ضریب تبدیل غذا و خاکستر استخوان معنی‌دار بود (P<0.05) (جدول 3). همچنین بین واریته‌های گندم از لحاظ قابل‌توجه پرتویین جیره اختلاف معنی‌دار (P<0.01) وجود داشت. افزودن مکمل فیتاز باعث بهبود معنی‌دار (P<0.05) وزن بدن، مصرف غذا، ضریب تبدیل غذا و خاکستر استخوان شد. قابلیت هضم پرتویین در افزودن فیتاز به طور معنی‌دار (P<0.05 بهبود یافت (جدول 4). اختلاف بین سطح فیتاز (500 و 1000 واحد در کیلوگرم) یک از 24 جیره آزمایشی (جدول 1) به صورت جدا (تکرار) و به مدت 21 روز داده شد. در طول دوره آزمایش جوی‌ها به آب و غذا دسترسی آزاد داشتند و در فقره‌های دست‌جمعی نگهداری شدند. مایه‌های دانش در دانه‌های دو متری توصیه شده در طول دوره آزمایش نظم‌گردد.

جیره‌های آزمایشی بدون پروتئین چربی‌پرنده به نحوی تنظیم شدند که فسفر قابل استفاده آنها 30 درصد کمتر از توصیه NRC (9) برای جیره‌های کوچنی بود. ترکیب جیره‌ها یکسان و از لحاظ سطح پروتئین بود، فقط نوع گندم در آنها فرق می‌کرد. مقدار پروتئین جیره‌ها بین 27 تا 24 درصد بود.

در پایان دوره آزمایش (روز 21) جوی‌ها هر تکرار به طور گروهی وزن و به سرعتی چاپ جهانی اعلام کردند. و در نهایت به دو گروه آزمایشی و نهکار نیز تکرار جمع آوری، مخلوط و باعث استخوان اضافه شده در 40 هزار سانتی‌گراد نهکاری شد استخوان ران چپ به دو جوری از هر تکرار جمع آوری مخلوط و برای تعیین خاکستر استخوان استفاده گردید. برای تعیین قابلیت هضم، اکسید کرم به میزان 2/5 درصد به گردن، محتویات ایلیوم برای تعیین نیتروژن با روش AOAC (1) فسفلره بر روی اسپیکروفاونیتری و اکسید کرم به روش فرنون و فنون (5) مورد استفاده قرار گرفت.

چربی استخوان‌ها وبسیله دستگاه سوکولسی و با استفاده از آنت تا مدت 18 ساعت جدا شد و سپس در حرارت 110 درجه سانتی‌گراد خشک کرد و با استفاده از کوره 200 درجه سانتی‌گراد به مدت 24 ساعت تعیین گردید. افزایش وزن روزانه، غذای مصرفی و ضریب تبدیل غذا به شرایط کنار در طی دوره آزمایش اندازه‌گیری شد. آزمایش در چهارچوب طرح کاملاً تصادفی و به روش فاکوریل 83 انجام شد و داده‌ها به وسیله پردازه‌گیری SAS (12) تجزیه و تحلیل گردید. میانگین‌ها به روش دانکن (13) مورد مقایسه قرار گرفتند.
Voltage, Current, and Efficiency Data for the Solar Panel System

<table>
<thead>
<tr>
<th>Model</th>
<th>Maximum Power (W)</th>
<th>Maximum Efficiency (%)</th>
<th>Current (A)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A</td>
<td>300</td>
<td>15</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Model B</td>
<td>500</td>
<td>18</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Model C</td>
<td>700</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Notes:
1. Maximum power and efficiency values are measured under standard test conditions.
2. Current and voltage values are recorded at maximum power output.
3. The system is designed to operate efficiently within a range of 15-30% efficiency.
جدول 4: اثر مکمل فیتازن بر افزایش وزن، مصرف غذا، ضریب تبدیل غذا، خاکستر استخوان و قابلیت هضم پروتئین در جوجه‌های گوشتخوار

<table>
<thead>
<tr>
<th>فیتات هضم</th>
<th>ضریب تبدیل غذا</th>
<th>مصرف غذا</th>
<th>افزایش وزن</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین (درصد)</td>
<td>غذا به رشد</td>
<td>کرم در روز</td>
<td>(واید در کیلوگرم)</td>
</tr>
<tr>
<td>79/4</td>
<td>9/50</td>
<td>295/3</td>
<td>451/0</td>
</tr>
<tr>
<td>81/7</td>
<td>5/05</td>
<td>753/5</td>
<td>504/5</td>
</tr>
<tr>
<td>81/4</td>
<td>1/45</td>
<td>772/5</td>
<td>528/5</td>
</tr>
<tr>
<td>80/3±0/5</td>
<td>1/05±0/5</td>
<td>74/0</td>
<td>497/5</td>
</tr>
</tbody>
</table>

میانگین ± انحراف معیار

در هر ستون میانگین‌هایی که حروف غیر مشابه دارند اختلاف معنی‌دار است (P<0/05).

فیتات آنها دارد. گندم به طور مینیمیم کن درصد فیتات دارد. واریته‌های مختلف گندم تأثیر متفاوت بر عملکرد طیور دارد. تأثیر واریته‌های مختلف گندم بر خاکستر استخوان و قابلیت هضم پروتئین متفاوت است. و نمونه‌هایی که فیتات کمتری دارند استخوان‌های بی‌خاکستر بیشتر تولید می‌کنند، و نیز قابلیت هضم پروتئین آنها بیشتر است.

به نظر می‌رسد میزان 500 واحد فیتات در کیلوگرم برای بهبود عملکرد جوجه‌های گوشتخوار و افزایش خاکستر استخوان و قابلیت هضم پروتئین کافی است. مکمل فیتازن افزایش قابلیت استفاده از فسفر فیتاتی و نیتروژن را افزایش می‌دهد.

سیاست‌گزاري

از نظر مجموعه دانشگاه صنعتی اصفهان بی‌خاکستری حیزه‌های مربوطه و نیز بررسی گروه پژوهش علوم طیور دانشکده کشاورزی دانشگاه ساسکچوان کانادا سیاست‌گزاري انجام می‌شود.

منابع مورد استفاده

