قابلیت استفاده از فسفر و پروتئین در جوجه‌های گوشته‌ی تغذیه‌ی شده با واریته‌های مختلف گندم با و بدون مکمل گیاهی

چکیده
تأثیر مکمل آنتی‌ویتامین ب پاسکالیت استفاده از فسفر و پروتئین و تیز عملکرد جوجه‌های گوشته‌ی تغذیه‌ی شده با هشت واریته مختلف گندم ارزیابی شد. مقدار تیزات واریته‌های گندم در آزمایشگاه تغذیه‌ی گیاهی در سه روز پس از تکریر جوجه‌های گیاهی یک گروه به میزان 85 گرمی صورت دادند. خشکی از 17 جوجه آزمایشی (گانه واردات گندم) در سه سطح آنتی‌ویتامین ب (1000 و 100 و 500 واحد در کیلوگرم) به هر گروه تکرار و به مدت 21 روز داده شد. در سه تکرار توزین و به سلسله شکست مهره گردان شدند. محتوای ایلکلوم جمع‌آوری و برای تیزین فسفر، تیزات، نیترورژن و اکسید کرم تجزیه شیمیایی گردید. استخوان، ران، پیک و جوجه‌های به ترکیب و با هم مخلوط و برای تیزایی معمول استفاده شده‌اند.

میان واریته‌های مختلف گندم از احاظ میزان تیزات اختلاف معنی‌دار (P<0.03) دیده شد. اثر واریته‌گان با و بدون پاسکالیت میان در بیشتر بود. اثر تیزات‌های مختلف گیاهی با و بدون پاسکالیت میان در بیشتر بود. نتایج نشان داد که تیزی گیاهی معنی‌دار نبود. اندازه‌گیری این تیزات با جوجه‌های حاوی گیاه آزمایشی به همراه عملکرد کلی، تیزایی همگونی و تیزایی استفاده از فسفر تیزات در جوجه‌های گوشته‌ی شده با و بدون مکمل گیاهی می‌تواند افزایش یابد.

واژه‌های کلیدی: تیزیات، فسفر، تیزایی همگونی، جوجه‌های گوشته‌ی گیاهی

1. ابتدا علم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. ابتدا علم دامی، دانشکده کشاورزی، دانشگاه ساسکوبان، کانادا

213
مقدمه

هزینه غذا سهم‌های بخش هزینه تولیدات دامی را تشکیل می‌دهد. کاربردهای غذایی مناسب به بهینه‌سازی استفاده از مواد غذایی از اهداف اولیه وسط طیور است. غلات بخش عمده‌ای از جیب طوراً تثبیت می‌دهند و به عنوان منابع نشته‌کردن و تأمین کننده اجزای نوزاد، طیور به کار می‌روند. امروزه و در روزهای بازدارنده‌های مختلف در منابع گیاهی از جمله غلات این منابع برای طیور به کار می‌رود. منابع این منابع به دسترسی موجود در گیاهان مختلف، در انتخاب منابع به صورت متفاوت می‌باشد.

مواد و روش‌ها

در این بخش و در نیمی از گیاه‌ها که در سه محیط Laura و Katepawa و CDC Teal و Scepter متفاوت در Seed Farm و Kernan Farm و Goodale Farm سال 1993 توسط مرکز توزیع غلات دانشگاه ساسکاچوان کشت شده بود، استفاده گردید. از هر نوع غلظت (بوس) به محلول دو تکرار جمع‌آوری و در سردنده‌های تکراری شده بود. پایین‌ترین گیاهی از جمعاً 54 توزیع استفاده و تجزیه گردید. نمونه‌ها با استفاده از آسیب‌های همزمان ۵۰ میلی‌تری خرد و در ظرف‌های پلاستیکی گل‌برده شد. استخراج این غلظت‌ها با استفاده از ۱۵۰ میلی‌گرم از هر نمونه (در دو تکرار) صورت گرفت.

نمونه‌ها توزیع و در لوله‌های پلاستیکی مخصوص قرار داده شد، و به هر نمونه ۱۵۰ میلی‌لیتر اسید کاربناییتی بسیار ترسیم شده و اضافه و محتوای اوله به خوبی مخلوط گردید. نمونه‌ها به مدت سه ساعت به صورت Shaker و در دو تکرار محیط در قرار گرفتند. پس از این مدت، نمونه‌ها با استفاده از دستگاه سانتریفزو با سرعت ۱۰۰۰۰ دور به مدت ۱۵ دقیقه سانتریفزو، شناور بود. پس از انجام این مرحله، قسمت محلول لوله‌ها به لوله‌های آزمایشی انتقال داده شد.
Tabla 1. ترکیب جریه آزمایشی

<table>
<thead>
<tr>
<th>اجزاء مشکله</th>
<th>تعداد (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کندم 1</td>
<td>6/0</td>
</tr>
<tr>
<td>سوبا با 182/0 پروتئین</td>
<td>7/0</td>
</tr>
<tr>
<td>روغن کانولا</td>
<td>0/0</td>
</tr>
<tr>
<td>دی کلسترم فسفات</td>
<td>2/0</td>
</tr>
<tr>
<td>صدف</td>
<td>1/0</td>
</tr>
<tr>
<td>نمک</td>
<td>0/0</td>
</tr>
<tr>
<td>مکمل املاح معدنی</td>
<td>0/0</td>
</tr>
<tr>
<td>مکمل ونیتامین ها</td>
<td>0/0</td>
</tr>
<tr>
<td>کولین کاراید</td>
<td>0/0</td>
</tr>
<tr>
<td>ال - لیزین</td>
<td>0/0</td>
</tr>
<tr>
<td>جمع</td>
<td>100/0</td>
</tr>
</tbody>
</table>

طرفین سر نمودن (با استفاده از سنجش نمونه، گردید) به صورت 20 درصد کل استفاده و توزیع می‌شود.

1. برای بررسی اثر واریتی گندم بر عملکرد جریه‌های کوئشتی، هشته وارتین (غیر از) از 9 واریتی قابل انتخاب و منجر استفاده قرار گرفت. میزان فیتات این نمونه‌ها به روش فوق Natuphos, 5000U/g, BASF (Corporation, 3000 Continental Drive, North Mount Olive, New Jersey) به مقدار صرف 500 و 1000 واحد در کیلوگرم غذا به کار رفت.

2. Caledon, 1945 Tristar Drive, HPLC از Gold (Mississauga, Ontario, Canada, L5TLW5 مدل 176, پسند از مدل 126 و المتمیز مدل 250 و Detector (Hamiton, Reno, NV, USA) Hamilton مجربه به سونو 20 برای انعقاد استفاده از HPLC سنجش قطعه به سیستم میلی متر می‌گردد.

3. 1350 Kootenay (Elmar Perlin (street, Vancouver, BC, Canada, V5K 4R1

4. 250 وارد دستگاه شد. جدید در 500 تا 5000 nm خودشان شد. حداقل 12.

5. جدید به صورت مثابه استفاده مشخص و اندازهگیری گردید (8و 12).
نتایج و بحث

میزان فیتات موجود در 9 واریتی گندم، که در سه محل (محیط کشت) متفاوت کشت شده بودند، در حاصل 2 آرا شده است. بین واریتی‌های گندم از لحاظ میزان فیتات اختلاف معنی‌دار Laura و Plantly کمترین (P<0.03) داشتند. در واریتی Bigger به نواحی نگهداری شدند. میزان سالان در دانه دلایل محیط شده در طول دوره آزمایش تغییر گردید.

جهت‌های آزمایشی بدون پروتئین حیوانی بودند و به نحوی تنظیم شدند که فیس‌فیل استفاده 20 درصد کمتر از این مقادیر تغییر می‌کند. میزان برای آزمایشی بعدی در 20 درجه سانتی‌گراد تغییر می‌کند. استخوان ران چپ در قسمت میزان روزنگاری در متغیر استخوان نکننده شد. استخوان این چپ در قسمت میزان نکننده کمتر است. میزان کرده‌های استخوان موجود در نمونه‌های گندم که مورد آزمایش پیلولزیک قرار گرفتند در حاصل 2 آرا شده است. نتایج این آزمایش موثر بافت‌های فیتات فرقی نشان داد. در حاصل مقاله، میزان فیتات که با واریته‌های گندم از لحاظ فیتات و میزان استخوان استفاده به دست آمده در این واریته‌ها در حاصل نمونه‌های مورد استفاده در آزمایش اول بود. این نتایج نشان می‌دهد که انداجه‌گیری میزان فیتات در منابع مختلف غذایی، حتی اگر واریتی یکسان داشته و در منابع مختلف کشت شده باشد، از استفاده از جبهر لازم است. زیرا می‌توان در افرودون، مبارز فعل معدنی که به دست‌یابی دارد، باید خواهد کرد.

اثر واریتی گندم به یک فراوری وزن، ضریب تبدیل غذا و نکننده استخوان مبنای دار بود (P<0.05) (جدول 3). همچنین، بین واریتی‌های گندم از لحاظ قابلیت فضم پروتئین جهش اختلاف معنی‌دار (P<0.01) وجود داشت. افزودن مکمل نیشاز باعث بهبود معنی‌دار (P<0.05) (وزن بد، معصر غذا، ضریب تبدیل غذا و نکننده استخوان شد. میزان سالان در اثر افزودن نیشاز به طور معنی‌داری (P<0.05) بهبود یافت (جدول 4). اختلاف بین سطح فیتات (500 و 1000 واحد در کیلوگرم) از 24 جبه آزمایشی (جدول 1) به چهار گروه (تکرار)، به مدت 21 روز داده شد. در طول دوره آزمایش جهش‌ها به آب و غذا دسترسی آزاد داشتند و در فرآیند دست‌یافتن تکه‌ها، داده‌های دنیا داشتند. میانگین‌ها به روش دانکن (SAS) تجزیه و تحلیل گردید. میانگین‌ها به روش دانکن (SAS) مورد مقایسه قرار گرفتند.
جدول ۲. اثر واریته و محیط کشت بر فیتات گندم

فیتات (درصد)	محیط کشت	نمونه‌های دوم	نمونه‌های اول	واریته	احتمال
"					
1/16a	1	1/30b	0/97b	1	
1/16b	2	0/77b	1/30b	2	P<0.005
1/16c	3	0/78b	0/97b	3	P<0.005
1/16	4	0/80b	0/97b	4	P<0.005
1/16	5	1/30b	1/30b	5	P<0.005
1/16	6	0/78b	0/97b	6	P<0.005
1/16	7	0/80b	0/97b	7	P<0.005
1/16	8	1/30b	1/30b	8	P<0.005
1/16	9	0/78b	0/97b	9	P<0.005
1/16	10	1/30b	1/30b	10	P<0.005
میانگین ± احراز معيار	232/296/0±2/73	101/216/0±2/73	0/97b	0/97b	

1. 1=Genesis, 2=Glenlea, 3=Biggar, 4=Scepter, 5=Plantly, 6=Kyle, 7=Laura, 8=Katepawa, 9=CDT Teal
2. 1=Goodale, 3=Kernan, 3=Seed farm

در هر سن میانگین‌هایی که حروف غیر مشابه دارند اختلاف معنی‌دار است (P<0.05).

جدول ۳. اثر واریته گندم بر افزایش وزن مصرف غذا، ضریب تبدیل غذا، فاکتور استخوان و قابلیت هضم پروتئین در جوجه‌های گوشتی

<table>
<thead>
<tr>
<th>قابلیت هضم</th>
<th>ضریب تبدیل غذا</th>
<th>مصرف غذا (گرم در روز)</th>
<th>افزایش وزن (گرم)</th>
<th>افزایش گندم (درصد)</th>
<th>فاکتور استخوان (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بروتئین 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸۸/۵۳</td>
<td>۳۸/۲۹</td>
<td>۱/۶۰۱b</td>
<td>۷۷/۵۰</td>
<td>۹۱/۵۰b</td>
<td>۱</td>
</tr>
<tr>
<td>۸۰/۷</td>
<td>۳۷/۸۶</td>
<td>۱/۷۵۳b</td>
<td>۷۵/۷۶</td>
<td>۹۵/۳۳b</td>
<td>۲</td>
</tr>
<tr>
<td>۸۳/۵۳</td>
<td>۳۸/۱۹</td>
<td>۱/۵۰۲b</td>
<td>۷۴/۳۶</td>
<td>۸۴/۷۸b</td>
<td>۳</td>
</tr>
<tr>
<td>۸۷/۸۶</td>
<td>۳۷/۳۱</td>
<td>۱/۵۰۲b</td>
<td>۷۴/۳۶</td>
<td>۸۴/۷۸b</td>
<td>۳</td>
</tr>
<tr>
<td>۸۰/۴۹b</td>
<td>۳۷/۳۱</td>
<td>۱/۵۰۲b</td>
<td>۷۴/۳۶</td>
<td>۸۴/۷۸b</td>
<td>۳</td>
</tr>
<tr>
<td>۸۲/۳۱</td>
<td>۳۸/۴۸</td>
<td>۱/۵۰۲b</td>
<td>۷۴/۳۶</td>
<td>۸۴/۷۸b</td>
<td>۳</td>
</tr>
<tr>
<td>۸۱/۳۱</td>
<td>۳۸/۴۸</td>
<td>۱/۵۰۲b</td>
<td>۷۴/۳۶</td>
<td>۸۴/۷۸b</td>
<td>۳</td>
</tr>
<tr>
<td>میانگین ± احراز معیار</td>
<td>۴۹۷/۵۴±۲/۶۹</td>
<td>۱۰۲/۵۰±۲/۳۴</td>
<td>۷۴/۵۰±۲/۱۳۲</td>
<td>۴۹۷/۵۴±۲/۶۹</td>
<td></td>
</tr>
</tbody>
</table>

1. به زیرنویس جدول ۲ مراجعه شود.
2. میانگین‌هایی که حروف غیر مشابه دارند اختلاف معنی‌دار در سطح پنج درصد می‌باشند.
3. میانگین‌هایی که حروف غیر مشابه دارند اختلاف معنی‌دار در سطح پنج درصد می‌باشند.
جدول ۴. اثر مکمل فیتاز بر افزایش وزن مصرف غذا. ضریب تبدیل غذا. خاکستر استخوان و قابلیت هضم پروتئین در جوجه‌های گوشتخوار

<table>
<thead>
<tr>
<th>مقدار فیتاز (واده در کیلوگرم)</th>
<th>افزایش وزن (گرم در روز)</th>
<th>ضریب تبدیل غذا</th>
<th>قابلیت هضم پروتئین (درصد)</th>
<th>خاکستر استخوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۹/۴۹</td>
<td>۳۵/۱۰۰</td>
<td>۱/۰۵۰</td>
<td>۹۶۵/۳</td>
<td>۴۵۱/۰</td>
</tr>
<tr>
<td>۸۲/۷۶</td>
<td>۴۰/۵۰۰</td>
<td>۲/۰۵۰</td>
<td>۸۷۳/۵</td>
<td>۴۵۰/۰</td>
</tr>
<tr>
<td>۸۰/۷۳</td>
<td>۴۰/۵۰۰</td>
<td>۲/۰۵۰</td>
<td>۸۷۳/۵</td>
<td>۴۵۰/۰</td>
</tr>
<tr>
<td>۸۰/۷۳±۰/۰۶</td>
<td>۴۰/۵۰۰</td>
<td>۲/۰۵۰</td>
<td>۸۷۳/۵</td>
<td>۴۵۰/۰</td>
</tr>
</tbody>
</table>

دانشیار

از لحاظ معیارهای فوق. قیل از افزایش وزن روی زنها، معنی‌دار نبود. این نتیجه با پاتش‌های راووتی ور و همکاران (۲۰۱۴) و (۲۰۱۱) مبنی بر تأثیر سطح کمتر فیتاز در بهبود قابلیت هضم نیتروژن و انرژی محوطه‌دار بود.

و انتظاری گذشته که فیتاز کمتری داشتن باعث افزایش درصد خاستگی استخوان و قابلیت هضم پروتئین گردیده و با افزایش فیتاز. خاکستر استخوان و قابلیت هضم پروتئین کاهش نشان داد. چنین نتایجی توسط پژوهشگران دیگر (۱۰۰ و ۱۱) نیز گزارش شده است.

اثر مکمل فیتاز بر افزایش ضریب تبدیل غذا. خاکستر استخوان و قابلیت هضم پروتئین نشان داده افزایش قابلیت استفاده از فسفر فیتات و نیتروژن را افزایش می‌دهد.

سپاسگزاری

از منابع محرز دانشگاه صنعتی اصفهان به خاطر تأیید وزن‌های مربوطه و نیز بررسی گروه پژوهش علوم طیور دانشکده کشاورزی دانشگاه ساسکان جوان، دانشگاه صنعتی اصفهان، کتابهای سپاسگزاری می‌باشد.

منابع مورد استفاده

