پیشینه میزان رشد ابعاد مختلف زیتون تلخ (Melia azedarach) و نوت زیتی (Morus alba) در فضاهای سبز شهری

زهرا کریمیان

(تاریخ دریافت: 1392/8/25؛ تاریخ پذیرش: 1392/9/6)

چکیده

تعیین میزان رشد و فاصله کشت درختان در فضاهای سبز شهری امروزه به صورت یکی از ضرورتهای برنامه‌ریزی‌های طراحی شهری و مدیریت فضای سبز در آمده است. به منظور تعیین میزان و سرعت رشد درخت زیتون تلخ و نوت زیتی در زمین‌های کشاورزی از ابعاد مختلف درخت شاخص ارتفاع کل، ارتفاع تاج و قطر نسبی درختان در سه منطقه خهشه، شاهد و در طی فصل رشد سیز آنها انجام شد. تجزیه رگرسیون این ابعاد به عنوان متغیر وابسته با سی به عنوان متغیر مستقل مدل‌های مختلفی را ایجاد کردند که می‌توانند برای تعیین میزان رشد ابعاد بالاترین گیاهی شده‌ای در یک گیاه ظرف زمان مورد استفاده قرار گیرند. نتایج تجزیه‌ها نشان داد که در بین مدل‌های بار شده، بالاترین ضرایب رگرسیون مربوط به ترتیب خطی، چند جمله‌ای و نمایشی است. اما نتایج لگاریتمی به عنوان قابل قبول‌ترین مدل برای تعیین ابعاد افتخارات گیاهی شده در سه منطقه خهشه، شاهد و در طی فصل رشد تابعی به سیستم‌های متفاوت شدند. همچنین در هر یک از گونه‌های پوششی سرعت رشد ابعاد افتخارات گیاهی شده هم‌مان با افزایش سن تا 15 سالگی در قطر نسبی بر رشد عرضی شاخه‌دار درختان دیده شد.

واژه‌های کلیدی: ابعاد رشد، نوت زیتی، زیتون تلخ، سرعت، رگرسیون

1. دانشجوی دکتری، دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه علوم باگبانی
2. دانشیار گروه علوم باگبانی، دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه علوم باگبانی
3. دانشیار گروه زراعت، دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه زراعت
4. استادیار گروه علوم باگبانی، دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه علوم باگبانی
5. zkarimianf@gmail.com

* مسئول مکاتبات، پست الکترونیکی:
مقدمه

زایای اصلی کشت درختان زینتی بیکی از مهم‌ترین مسائل در طراحی فضای سیب شهروی می‌باشد. در شهرسازی تونین برنامه‌ریزی فضاهای سیب شهروی به‌صورت فعالیت محیطی تخصصی در آنها که تاکنون به آن می‌تواند به کارگاه کارآیی فضاهای مذکور و افزایش بهبود اکوسیستم‌های منجر شود (17). غایتاً فضای کشت درختان در محیطهای شهری با محدودیت‌های مواجه است و درختان باید برای رضیدن به وضعیت مطلوب از نظر ارتفاع در هنگام بلوغ، گسترش شاخصی نداشته باشد. این شرایط درختان از این نظر برای رشد مناسب باشند مشکلات آتی ایجاد شده برای پایداری و جاده‌ها. ساختارهای، تالویه یا سیب شهروی (خوشه‌ای، علائم راه‌پردازی و رانندگی)، کلیه و رسید و تجهیزات داخل و بیرون از زمین کاهش یافته و یا حذف می‌شوند و نیاز به هر سر مراحل بعدی نخواهد بود (2). از طریق عدم رعایت فاصله کشت مناسب بین درختان از طریق ایجاد سایه‌دهی و رقابت بر سر منابع مختلف از ایجاد اختلاف در رشد آنها می‌شود (18). در معماری مظهر، کشت درختانی چه از نقطه نظر اکولوژیکی و چه از جنبه زیباگونه‌ای به آگاهی در مورد میزان ارتفاع و قطر تاج درخت و بسته ای، فضایی و موقعیت‌هایی درختان کشت شده را به دقت با ساختارهای شهروی به‌دست اطلاعات کافی از رشد درخت می‌است و می‌تواند طراحی کشت معمولی نظیر بهتر و واقعی‌تری فراهم کند (11). اطلاعات موجود بروز روابط بین ابعاد مختلف درختان در فضاهای سیب شهروی بر اساس مشاهدات فرسوده است و غایتاً بر اساس پیشینی صرفاً درک شده درختان به‌صورت کمی (رشد آنها) و مارکتی و مربوط به نیازهای محیطی و فنئی (سرعت بدست‌آورده و نیازی به استفاده از مقادیر کمی و رابطی توضیح داده می‌شود) (4) می‌باشد.

مواد و روش‌ها

اندازه‌گیری‌ها روی ۲ گونه درخت فضای سیب شهروی، زیتون‌نلنگ و توت زینتی در تابستان و پاییز سال ۱۳۹۰ در فضا

۱۰۰
شکل 1. ابعاد اندوزه‌گیری شده برای هر درخت: ارتفاع کل (الف)، ارتفاع تاج (ب) و قطر تاج (د).

سپس برای داشتن فردوسی مشهد انجام شد. ابعاد اندوزه‌گیری شده در این رو گونه شامل ارتفاع کل درخت (از سطح زمین تا تک بلندترین شاخه‌های عمودی)، ارتفاع تاج، درخت (از سطح زمین تا بالایی ترین برگ‌های تاج) و ارتفاع تاج و قطر تاج درخت بودند. ابعاد اندوزه‌گیری قطر تاج در دو جهت موازی و عمود بر تعیین درخت انجام شد و نهایاً میانگین این دو مقدار برای محاسبه قطر استفاده شدند (شکل 1).

اندازه‌گیری‌ها با استفاده از میل‌های مدرج بلند و متراژمانی (با نتیجه‌گیری 1 میلی‌متر) انجام شد. در درختان بلندتر ارتفاع با کمک سنج سنتو و با استفاده از روابط هندسی (رابطه فیثاغورث) محاسبه شدند. بدین ترتیب که با استفاده از سنج سنتو مقدار شیب از تک درخت ارتفاع اقدام به ۵ میلی‌متر بود. از تابع ۵ میلی‌متر، ارتفاع درخت با استفاده از فرمول زیر محاسبه شد.

\[
H = B (Tg_a - Tg_b) + d
\]

امکان افزایش تا حساب ۵ میلی‌متر. این داده‌ها مورد تأیید مسئولان تا کسب اطمینان در این نظریه‌ها مورد
گرفته شد تا سرعت رشد درختان در ابعاد و سنین مختلف محاسبه شود.

در مطالعات مختلف برای آنالیز رشد محیطی ساقه مدل‌های Lundqvist (۱۹۹) منحنی رشد متعددی مثل نمایی، نگاریمی (۱) و (۲) آزمایش شدند. در نهایت مدل‌های لگاریمی به عنوان بهترین مدل‌های برای محاسبه رشد محیط ساقه در رابطه داده‌های مربوط به سن درخت در نظر گرفته شد و بنابراین در پژوهش حاضر نیز برای تعیین سرعت رشد ابعاد مختلف ارتدادگیری شده در دو گونه زیتون لبخن و توت زیتونی از مدل‌های لگاریمی استفاده شد.

واکنش رشدی گونه‌ها بر اساس پارامترهای ابعاد درخت به‌وسیله میزان سرعت رشد سالانه آنالیز شدند (۸) در این رابطه:

\[\text{Growth Rate} = \frac{a-b}{t} \]

(۱) محاسبه به‌وسیله میانگین سرعت رشد سالانه (AGR) بر (Annual Growth Rate) از دست مقدار ضربین تیپ در ابعاد

\[\text{Growth Rate} = \frac{a-b}{t} \]

(۲) به‌وسیله آزمایش به‌وسیله کودک‌های با ابعاد درختان بزرگ‌ترین بعد درخت، وزن (mm) از بین ابعاد ارتفاع و قطر درخت، عدد بزرگ‌تر به عنوان جزئی ضربین تیپ در ارتفاع نه به عنوان متغیر وابسته و سن به عنوان متغیر مستقل پایین است (جدول ۱).

در نتیجه این ابعاد اندازه‌گیری شده ارتفاع کل درخت و قطر ناحیه به عنوان متغیر وابسته و سن از نظر اندازه، ضربین تیپ بالا و ضربین دارد در حالی که مقدار ضربین تیپ در ارتفاع نه به عنوان متغیر وابسته و سن به عنوان متغیر مستقل بالای است. جدول ۱.

در هر دو گونه بهبوزه توت زیتون کمترین میزان ضربین رگرسیونی این ابعاد درخت و سن مربوط به ارتفاع نه درختن است. هرس کردن بهبوزه دفع شاخه‌ها با ضربی تیپ ناحیه درختن یکی از عملیات نگهداری درختنی پیش به‌منظور زیبا سازی آنها و یا اکشن رشد شاخه‌ها جهت جلوگیری از مراحت احتمالی برای رشد و آماده و یا تجویز شهری است. از این رو ارتفاع نه درختن علاوه بر رشد در مورد آنها، تابعی از عملیات داشت نگهداری درختن نیز می‌باشد (۱۱ و ۱۶).

در هر دو گونه بهبوزه توت زیتون کمترین میزان ضربین رگرسیونی این ابعاد درخت و سن مربوط به ارتفاع نه درختن است. هرس کردن بهبوزه دفع شاخه‌ها با ضربی تیپ ناحیه درختن یکی از عملیات نگهداری درختنی پیش به‌منظور زیبا سازی آنها و یا اکشن رشد شاخه‌ها جهت جلوگیری از مراحت احتمالی برای رشد و آماده و یا تجویز شهری است. از این رو ارتفاع نه درختن علاوه بر رشد در مورد آنها، تابعی از عملیات داشت نگهداری درختن نیز می‌باشد (۱۱ و ۱۶).

نتایج و بحث

معادلات رگرسیونی، ضربین تیپین (R) و میانگین خط‌های استاندارد (MSE) برای دو گونه زیتون ناه و توت زیتونی به‌ترتیب در جدول ۱ و ۲ آراش شده‌اند. در گونه زیتون ناه بالاترین ضربین رگرسیونی این ابعاد درخت و سن درختن روابط جدی جمله‌ای (۹/۶% = R²) و تونی (۷/۴%) (R² = 0/9) و بین ارتفاع، نه و سن درخت در روابط جدی جمله‌ای (۹/۶% = R²) (Lundqvist (۱۹۹))، نگاریمی (۱) و (۲) آزمایش شدند.
جدول ۱. مدل، MSE و R^2 حاصل از توابع رگرسیون بين سن (متغیر مستقل: x) و پارامترهای: ارتقاء کل ارتفاع ته و قطر تاج (متغیر وابسته: y) در زیتون لخ و توت زیتون

<table>
<thead>
<tr>
<th>R^2</th>
<th>MSE</th>
<th>b</th>
<th>a</th>
<th>نوع معادله</th>
<th>مدل معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۹۶</td>
<td>۰.۸۷</td>
<td>۰.۹۴</td>
<td>۰.۸۸</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۰.۵۲۸۹x + ۱۱۹/۸۹۲$</td>
</tr>
<tr>
<td>۰.۸۷</td>
<td>۰.۸۲</td>
<td>۰.۹۴</td>
<td>۰.۸۸</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۰.۹۳۴۹x + ۲۱۸/۵۹۳$</td>
</tr>
<tr>
<td>۰.۹۶</td>
<td>۰.۹۴</td>
<td>۰.۹۴</td>
<td>۰.۹۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۳۵/۵۸x + ۲۹/۸۲۳$</td>
</tr>
<tr>
<td>۰.۸۷</td>
<td>۰.۸۲</td>
<td>۰.۹۴</td>
<td>۰.۹۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۱/۸۷x + ۱۱۹/۸۹۲$</td>
</tr>
<tr>
<td>۰.۹۶</td>
<td>۰.۹۴</td>
<td>۰.۹۴</td>
<td>۰.۹۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۰.۹۳۴۹x + ۲۱۸/۵۹۳$</td>
</tr>
<tr>
<td>۰.۸۷</td>
<td>۰.۸۲</td>
<td>۰.۹۴</td>
<td>۰.۹۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۳۵/۵۸x + ۲۹/۸۲۳$</td>
</tr>
<tr>
<td>۰.۹۶</td>
<td>۰.۹۴</td>
<td>۰.۹۴</td>
<td>۰.۹۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۰.۹۳۴۹x + ۲۱۸/۵۹۳$</td>
</tr>
<tr>
<td>۰.۸۷</td>
<td>۰.۸۲</td>
<td>۰.۹۴</td>
<td>۰.۹۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۳۵/۵۸x + ۲۹/۸۲۳$</td>
</tr>
<tr>
<td>۰.۹۶</td>
<td>۰.۹۴</td>
<td>۰.۹۴</td>
<td>۰.۹۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۰.۹۳۴۹x + ۲۱۸/۵۹۳$</td>
</tr>
<tr>
<td>۰.۸۷</td>
<td>۰.۸۲</td>
<td>۰.۹۴</td>
<td>۰.۹۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۳۵/۵۸x + ۲۹/۸۲۳$</td>
</tr>
</tbody>
</table>

جدول ۲. مدل، MSE و R^2 حاصل از توابع رگرسیون بين سن (متغیر مستقل: x) و پارامترهای: ارتقاء کل ارتفاع ته و قطر تاج (متغیر وابسته: y) در توت زیتون

<table>
<thead>
<tr>
<th>R^2</th>
<th>MSE</th>
<th>b</th>
<th>a</th>
<th>نوع معادله</th>
<th>مدل معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۷۸</td>
<td>۰.۷۰</td>
<td>۰.۷۲</td>
<td>۰.۷۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۶/۳۸x + ۳۸/۸۵$</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۰.۷۰</td>
<td>۰.۷۲</td>
<td>۰.۷۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۶/۳۸x + ۳۸/۸۵$</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۰.۷۰</td>
<td>۰.۷۲</td>
<td>۰.۷۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۶/۳۸x + ۳۸/۸۵$</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۰.۷۰</td>
<td>۰.۷۲</td>
<td>۰.۷۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۶/۳۸x + ۳۸/۸۵$</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۰.۷۰</td>
<td>۰.۷۲</td>
<td>۰.۷۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۶/۳۸x + ۳۸/۸۵$</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۰.۷۰</td>
<td>۰.۷۲</td>
<td>۰.۷۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۶/۳۸x + ۳۸/۸۵$</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۰.۷۰</td>
<td>۰.۷۲</td>
<td>۰.۷۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۶/۳۸x + ۳۸/۸۵$</td>
</tr>
<tr>
<td>۰.۷۰</td>
<td>۰.۷۰</td>
<td>۰.۷۲</td>
<td>۰.۷۵</td>
<td>نقطه‌ی خنثی</td>
<td>$y = ۲۶/۳۸x + ۳۸/۸۵$</td>
</tr>
</tbody>
</table>
شکل 1. نمودار تابع رگرسیون لگاریتمی بین ارتقاع و سن درخت در زیتون نخل.

\[y = 264.37 \ln(x) - 105.98 \]

\[R^2 = 0.8664 \]

\[0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \quad 800 \quad 900 \]

\[0 \quad 200 \quad 400 \quad 600 \quad 800 \quad 1000 \]

شکل 2. نمودار تابع رگرسیون لگاریتمی بین ارتقاع و سن درخت در زیتون نخل.

\[y = 80.185 \ln(x) - 1.9574 \]

\[R^2 = 0.6682 \]

\[0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \quad 800 \quad 900 \]

\[0 \quad 200 \quad 400 \quad 600 \quad 800 \quad 1000 \]

به طوری که این مدلها با افزایش سن درختان به‌ویژه در سنین بالا (حدود 25 سال و بالاتر) پیش‌بینی‌های بالایی از ابعاد درخت داشته که عمدتاً در شرایط (Overestimate) طبیعی درختانی با چنین ابعاد در آن سن وجود ندارد و این مدلها و تابع جهت پیش‌بینی ابعاد رشدی این درختان به لحاظ علمی قابل قبول نیستند (17). از طرفی نماینده.
نتایج نشان دهنده ارتفاع تا سال‌های مختلف زیتون نخل و سرعت درخت در نخل زیتون در دو شکل زیر نشان داده شده است.

شکل ۲. نمودار نتایج رگرسیونی لگاریتمی بین قطر تاج و سن درخت در نخل زیتون

شکل ۳. نمودار نتایج رگرسیونی لگاریتمی بین ارتفاع و سن درخت در نخل زیتون

 électrique

c

d

\[y = 352.96 \ln(x) - 204.45 \]

\[R^2 = 0.8008 \]

\[y = 157.61 \ln(x) + 14.326 \]

\[R^2 = 0.6027 \]

c

d
جدول 3. پیش بینی ارتفاع کل، ارتفاع نه و قطر ناحیه در سال‌های 15 و 30 سال در زیتون تلخ و توت زینتی بر اساس مدل پراش شده لگاریتمی

<table>
<thead>
<tr>
<th>سال (سال)</th>
<th>ارتفاع کل (متر)</th>
<th>ارتفاع نه (متر)</th>
<th>قطر ناحیه (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/07</td>
<td>7/93</td>
<td>2/15</td>
</tr>
<tr>
<td>3</td>
<td>7/71</td>
<td>1/83</td>
<td>6/13</td>
</tr>
<tr>
<td>5</td>
<td>9/44</td>
<td>4/1</td>
<td>5/92</td>
</tr>
<tr>
<td>10</td>
<td>4/1</td>
<td>1/53</td>
<td>2/76</td>
</tr>
<tr>
<td>15</td>
<td>3/67</td>
<td>5/50</td>
<td>7/64</td>
</tr>
<tr>
<td>30</td>
<td>2/12</td>
<td>3/32</td>
<td>1/18</td>
</tr>
</tbody>
</table>

شکل 5. نمودار تابع رگرسیون لگاریتمی بین قطر ناحیه و سن درخت در توت زینتی

جدول 2. میانگین سرعت رشد سالانه ارتفاع کل، ارتفاع نه و قطر ناحیه محسوب شده هر 2 سال یکبار در درخت زیتون تلخ

<table>
<thead>
<tr>
<th>سن (سال)</th>
<th>قطر ناحیه (نُک)</th>
<th>ارتفاع نه (نُک)</th>
<th>ارتفاع کل (نُک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>400</td>
<td>305</td>
<td>540</td>
</tr>
<tr>
<td>2-4</td>
<td>1092</td>
<td>150</td>
<td>750</td>
</tr>
<tr>
<td>4-6</td>
<td>1005</td>
<td>350</td>
<td>615</td>
</tr>
<tr>
<td>6-8</td>
<td>965</td>
<td>440</td>
<td>515</td>
</tr>
<tr>
<td>8-10</td>
<td>905</td>
<td>450</td>
<td>620</td>
</tr>
<tr>
<td>10-12</td>
<td>765</td>
<td>500</td>
<td>582</td>
</tr>
<tr>
<td>12-14</td>
<td>841</td>
<td>575</td>
<td>675</td>
</tr>
</tbody>
</table>

186.91 Ln(x) - 40.284
$R^2 = 0.6472$
جدول 5. میانگین سرعت رشد سالانه ارتفاع کل، ارتفاع طن و قطر ناحیه روی هر 2 سال یکبار در درخت رشد زیتون

<table>
<thead>
<tr>
<th>سن</th>
<th>ارتفاع کل (mm)</th>
<th>ارتفاع طن (mm)</th>
<th>قطر ناحیه (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>225</td>
<td>200</td>
<td>370</td>
</tr>
<tr>
<td>2-4</td>
<td>215</td>
<td>246</td>
<td>565</td>
</tr>
<tr>
<td>4-6</td>
<td>240</td>
<td>150</td>
<td>930</td>
</tr>
<tr>
<td>6-8</td>
<td>117</td>
<td>255</td>
<td>1350</td>
</tr>
<tr>
<td>8-10</td>
<td>175</td>
<td>580</td>
<td>1550</td>
</tr>
<tr>
<td>10-12</td>
<td>1765</td>
<td>545</td>
<td>1925</td>
</tr>
<tr>
<td>12-14</td>
<td>800</td>
<td>490</td>
<td>1980</td>
</tr>
</tbody>
</table>

آنچه از نتایج و جداول مشخص است این است که در هر جدول زیتون رشد و توت زیتون سرعت رشد نسبتا بالایی به ویژه از نظر کسترش و توسعه ناحیه تا سنین 10-12 سالگی دارد که ظهور و بروز آن در قصول رشد سیب یعنی بیشتر و ناگفته شخصیت است و به طورکلی جزو درکننده سیب پر رشد در فضای سبز به حساب می‌آید. استفاده از مدله‌ها و توابع ریاضی و به بیانی دیگر کمی کردن انگیز رشد در درختن زیتون به طراحان مدیران فضای سبز این امکان را می‌دهد که سرعت رشد ابعاد مختلف درخت را در سنین مختلف به پیشنهاد کند و تصویر صحیح تر و واقعی تری از فضای سبز طراحی شده در آنچه داشته بایسته این مدل ها و توابع قابل استفاده در نرم افزارهای فضای سبز مثل CAD (Computer Aided Design software) را دارند و به این ترتیب تغییر رشد درخت در سنین مختلف به صورت دیجیتالی می‌تواند مورد استفاده