بررسی اثر استون در کنترل حشرات انباري

علی اصغر پورمیرزا و مهدی ناجی‌خسش شیخان

چکیده

به دلیل اینکه فنومگانت جدید برای کنترل حشرات انباري، در سال 1379 اثر تولید استون بر حشرات انباري و بذر گندم در دانشگاه Oryzaephilus surinamensis (L.) در آزمایش‌های فضای بالا مقدار LC50 استون برای حشرات کامل به ترتیب چهارما 50/14 و 0/15 می‌کشد از آن‌ها موفقیت استون به داخل توده گندم، معلوم شد که فقط در استون می‌تواند از S. granarius (L.) و Tribolium confusum (Duv.) Callosobruchus maculatus (F.) باین‌رده‌های مقدار LC50 در آزمایش‌های فضای بالا موفقیت استون به داخل توده گندم، معلوم شد که فقط در استون از T. confusum و S. granarius مقدار LC50 برای حشرات انباری به علیه حشره S. granarius 140 میکروگرام بر لیتر در مدت هفت هفته 75 درصد تلفات در می‌گردد. استون در حشرات انباری، در بخش‌های جوان، نژاد و بذر گندم اثر سویی نشان نداد.

واژه‌های کلیدی: استون، فنومگانت، بذر گندم، حشرات انباری، سم‌یافت

مقدمه

از سال‌ها پیش برای کنترل حشرات فعلی در انبارها از فنومگانتهای مختلف استفاده کرده‌اند (2, 3, 6, 11, 14 و 17). برای حفظ کمیت و کیفیت نهاد غله انبار شده نیز کامک تری انتخاب جمعیت حشرات انباري ضروری است. برای تهیه به این هدف، مطالعه استن بر حشره‌ها گردید که نیاز به ساختن نیازهای تمامی آن‌ها و با این فنومگانت‌ها استفاده می‌کنند. (6, 17).

1. به ترتیب دانشیار حشره‌شناسی و زراعت، دانشکده کشاورزی، دانشگاه ارومیه

249
نظر گرفته شده است (3 و 4). ولی باید اذعان نمود که شمار حشره‌کش‌های تمامی کم خطر برای انسان و محبوبیت زیست بسیار محدود می‌باشد (2 و 14).

بررسی‌ها نشان می‌دهند که مهم‌ترین و پرمصرف‌ترین حشره‌کش تمامی برای حفظ گنبد در برای آلودگی با حشرات ارتباط مالائیون بوده است (2). ولی از سال 1999 کاربرد مالائیون در انبارها نیز مورد تأیید نمی‌باشد (4). تجربیات نشان می‌دهد که حشرات ارتباط در برای مرسوم حشره‌کش، از جمله مالائیون، از خود مقاتوم نشان داده‌اند و هم‌اکنون بر میزان این مواد مقصود شده است (2 و 3).

در کنترل حشرات ارتباطی، استفاده از فومیکاتها در مقایسه با مصرف سم‌شور حشره‌کش تامسی، از زیر علائم اگریپ‌ساده‌تر بوده و به علاوه مصرف کمتر کنترل زیادی مانند کنترل در عرض خطر قرار می‌گیرد (3). برخی از این توان انتظار داشته که در سال‌های آینده فومیکاتها از ارتباط‌ها اصلی مبارزه با حشرات در ارتباط باشند. بنابراین (3) گزارش نمود که یک فومیکات مقبول ضمن داشتن اثر حشره‌کشی زیاد باید کم‌ترین اثر سوژه جانی را نیز از خود نشان دهد. البته اگر فومیکاتی درصد زیادی از جمعیت حشرات را از بین ببرد باعث طولانی‌تر شدن زمان آلودگی مجدد غله توسط حشرات خواهد شد. در نتیجه، در طول دوره ارتباطی از تعداد عمل مستقیماً کاسته می‌شود و این خود منجر به تخمین (Fumigation) می‌شود و این به همراه به آلودگی کمتر با غله می‌گردد. ولی نتایج صفات مطقل در یک فومیکات جمع‌نموده، ای این ترکیبات ضمن داشتن خصوصیات مطقل دارای معنی‌نیز به‌ستند (1 و 5).

جدید در طول زمان ادامه داشته و در حال حاضر برای تخفیف در بیشتر مواد از دی‌فومیکات میلی بر پروامید (CH₂Br) و فسفید آلومینیم (AIP) استفاده می‌شود (17 و 18). مثلاً برپائید (CH₂Br) در اغلب نقاط جهان برای کنترل محسوس حشرات ای، به ویژه غلات در سطح کشورهای که می‌روند. برای استفاده از این فومیکات به تخصص و سوژه جانی نیاز است. فومیکات

باجگیری‌های قابل قدری با فومیکات‌های
استون از متانول‌های بدین انسان و شیمیایی از پستانداران بوده و در خون و ادران آنها وجود دارد. این ترکیب شیمیایی از راه دستگاه گوارش انسان جذب شده و در تمام بدن توزیع می‌گردد. در صورتی که ۳۰۰ میلی‌لیتر از استون خالص وارد بدن شود فقط بعث رخوختی در دستگاه اصابت مکری می‌گردد. در حدود ۹۰ روز یا استون دچار شده، در مدت چهار ساعت به متانول‌های بدین یک خطر به‌گونه‌ای آب‌برداری می‌کند که تبدیل می‌شود (۸۹٪). می‌تواند مقدار مسموم کننده استون خاص ۴۰۰ میلی‌لیتر است (۹۴). ناباری‌این، احتمال مسمومیت از مصرف توده انسان بارش پس از عمل تدخین با استون بسیار غیر محتمل و نزدیک به صفر می‌باشد. استون در دمای انتقال به سرعت بخیر شده و آنتی‌گیمی و لی در حالی که دیلی غلتخت خیلی کم احتمال آتش‌سوزی پیش‌تر نیازی به می‌باشد.

مواد و روش‌ها

استون با فرمول شیمیایی CH₃COOH ساده‌ترین کتون خطی با جرم مولکولی ۶۸ دانن و چگالی ۰.۷۹ گرم بر هر میلی‌لیتر می‌باشد. این ترکیب مایع برق‌خوری زلال، با بوی نازک و معطر بوده و در دمای معمولی انتقال به سرعت بخیر می‌شود. از استون در صنعت پزشکی و داروسازی استفاده زیادی می‌گردد و میرک استوانه‌ای توزیع می‌شود در حدود ۹۰ روز یا استون مصرف کننده است (۹۰/۹). این ترکیب ریزش انسان با درجه خلوص ۹۰ درصد بوده و می‌تواند مسماه را از آن در محیط کار گزارش نشده است (۱۲) و (۱۹). این ترکیب شیمیایی از طریق دستگاه گوارش و پوست انسان جذب شده و در تمام آب داخل بدن توزیع می‌شود. استون به سرعت در بدن مستقیماً به شده و ۹۰ روز یا استون آن بر طریق بدن، ۳۰ درصد از طریق ادرار و تبدیل می‌شود (۹). در راه پوست دفع در هر ۹ روز یا استون از این ترکیب علی‌حزب حشرات در به‌بینی انجام شده در مرحله S. granarius تخم‌های بدین بر علی‌حساب کامل در فضای T. confusum و C. maculatus O. surinamensis خالی استفاده شد. در مرحله دوم اثر استون در عمق نیم متری و

۲۳۱
شرايط پروپرتش نگهداري گردنده. در بررسی اثر فومیگاتها بر حشرات، در مواردي ديده شده است که از اعمال فومیگاتها و در نتیجه بهبود خ صحت و تاکید خاص با حشرات از حالت ی بطور می‌باشد. جزئی از تأثیر این نوع استجوابات اقتصادی و اطمنان از حشرات های تخریبی، شمارش تلفات پس از 78 ساعت انجام یافت. آزمایش دو بار دیگر و در روز مختلف نتایج گردید.

نفوذ بخار استون به داخل توده گندم
در این بررسی ها برای هر یک از غلافه‌های استون از دو قسم یک مورد استفاده به T. confusum و دو قسم دارای S. granarius عمل آمد. در هر قسم حداکثر 100 حشره مورد بررسی گذشت. نتایج نشان داد که برای این نوع گرزنگ از هر یک از حشرات فرق به طور افقی در فک طرف کاذب و به وسیله روش مورد استفاده آزمایش‌هایی فضای خالی بود. جز این این که استون بیشتری در مقیاس این آزمایش‌ها تیلی مصرف شد. در نتیجه نمایش مراحل‌آزمایش مشاهده نمایانگر موارد انجام شد. در مورد نتایج 97.2 و 120 ساعت داشت. سپس حشرات به طبیعت عرضه شدند. فردی در شرایط پروپرتش نگهداری شدند. شمارش تلفات پس از 48 ساعت انجام یافت. این آزمایش دو بار دیگر و در روز مختلف برای هر یک از طول مدت زمان تکرار گردید.

نفوذ بخار استون به داخل گندم
دند از S. granarius در هر 100 میلی‌لتری نگهداری صد گرم گندم آلوه به بسته. نوزادان به طور هر یک از آزمایش‌های سه قسمه مورد بررسی قرار گرفتند. این موارد به طور معمول دو بار دیگر و در روز مختلف به هر یک از طول مدت زمان تکرار گردید.

استفاده از استون در فضای خالی
C. maculatus, O. surinamensis S. granarius حشرات کامل به مدت 72 ساعت به طور جداگانه، و در داخل ظروف فلزی تحت تأثیر بخار استون قرار گرفتند. حشرات در داخل فضه‌های ساخته شده از توری محبوس گردیدند. در داخل هر قسم حداکثر 40 حشره از هر نوع از گونه‌ها مورد آزمایش قرار داده شد. در هر ظرف فلزی یک قسم حاصل حشرات به وسیله رشته سبز فلفل نازک به طول 50 سانتی‌متر از سرورها کوزی به قطر 5 میلی‌متر با وسط در ظرف به دلیل آن آبیاری گردید. نواری از کاغذ خشک بکه ابعاد 815 سانتی‌متر و سری رنگ نور چسب به قسمت داخلی در هر ظرف چسبانده شد. در هر ظرف قارچی به وسیله نمونه برداری یک‌کیک از دوزه‌های 0.5, 0.20 و 0.30 و (Sampler) مکروله‌کری بری، از سرورها در فلزی رنگ نوار کاغذ خشک کن قرار گرفت و به دنبال نگهداری به وسیله نوار چسب کاغذی کاملاً بسته شد. در مورد تبلیغانه، عمليات مشابه به‌طور غیر از استفاده از استون انجام یافت.

پس از 72 ساعت تکرار، فقره‌ها از ظروف فلزی خارج شده و حشرات به تفکیک تیمار به طبیعت شدهای تمیز به‌طور هر یک از A. ساروخا می‌باشد. نتایج 150 میلی‌لیتر حاوی مواد غذایی مناسب منتقل، و در

322
شمارش، در دو نکردن که به طور تصادفی انتخاب شده بودند، از هر فتر پن و بذر جوانه زده تیلم با اندازه و مستند. هشت روز در ظرفی جدایی‌گونه بر زرین‌پوش زنگ‌هایی شد و پس از این مدت، طول ساق، طول ریشه، وزن نر و وزن خشک آنها مورد ارزیابی قرار گرفت.

نتایج

استفاده از استاندارد و فضای خالی درصد نرمال، مقدار و حدود اطیماتی 95 درصد حاصل در T. confusum و کمک‌های T. confusum و S. granarius (جدول 1 و 2) نشان می‌دهد که استونت برای این جماعات بهبود است. بر اساس مقایسه و حساسیت T. confusum و S. granarius، مقاومتی و حساسیت تر آنها به است. مقایسه مقایسه T. confusum و S. granarius، میزان میزان این دو جماع از لحاظ حساسیت با هم تفاوت معنی‌داری از نظر آماری دارند (P<0.05). ولی با اطیماتی 95 درصد حساسیت S. granarius کناره است. C. maculatus متفاوت بوده است (P<0.05).

نفوذ بخار استونت به داخل توهه‌گندم

مقدار کمک‌های خطوط رگرسیون، عرض از مبدأ و حدود اطیماتی مرتب به حشرات در T. confusum و S. granarius جدول 3 نشان می‌دهد که استونت به داخل توهه‌گندم نفوذ کرده و حشرات سالمه این آزمایش‌ها با مقایسه T. confusum و S. granarius است. در مقایسه مقایسه این آزمایش‌ها با مقایسه T. confusum و S. granarius، کمک‌های خشکتکن قرار گرفت و بی‌بهری در شرایط برخور دهانه و بی‌بهری در شرایط برخور دهانه تماشایی در چارچوب طرح آزمایشی کاملاً تصادفی با هفت تیمار و سه کنار اجرا گردید. در هر نکردن هفت بطری شده به حجم 150 میلی لیتر انتخاب و در داخل هر یک 100 دانه سالم بوده تریم و استونت قرار داده شد. مستقیماً آزمایش‌های قبلی، از سواد در بطری‌هایی که غلظت‌های صفر (شده)، 240، 160، 80، 40 و 20 میکروآنتی‌زا در لیتر استونت با مقایسه دو کاملاً مختلف بدر بر (استا). در دو روز 20 درجه سانتی‌گراد و در درون زرین‌پوش زنگ‌هایی به مدت 10 روز بررسی گردید. با شمارش نهایی جوانه‌های عادی، درصد قابلیت جوانه‌زنی بدن‌ها مشخص شد. همچنان با نخستین

بررسی اثر استونت در کنترل حشرات نواری

گردید و پس از چسباندن کاغذ خشک کشک‌کنی به ابعاد 1/36

سانتی‌متر روی سطح داخلی در بطری، یک‌یک از غلظت‌های 40، 80، 120 و 160 میکروآنتی‌زا در هر لیتر استونت با مقایسه بر روی کاغذ خشک کشک‌کن قرار داده شد. برای پخش کردن استونت در میان برده‌های گندم، به طوری به مدت بند پنچ قرار گرفت، و سپس شد کلیه بذرده‌های گندم در مجاری کاغذ خشک کشک‌کن و استونت واقع شود. در طریق‌های تجارب شاهد نیز عملیات مشابه انجام یافت. چون این که از استونت استفاده نگردید. پس از چرخش بطری‌ها در شرایط برخور دهانه‌زی بدن، به طوری که 32 ساعت قرار گرفت. بعد از این مدت، محتوای بطری به طور خاص تیمار دیگری منتقل و دهانی بطری با تهیه مورد گردید، و کلیه بطری‌ها به مدت مورد در شرایط برنمکشی تغییر دادند. در هر تعداد حشرات کاملاً ظاهر شده‌اند در سطح در چارچوب طرح بلوک‌های کاملاً تصادفی با نمی‌توان چهار (چهار غلظت مختلف استونت و یک شاهد) و چهار نکردن انجام یافت.

اثر بخار استونت بر قابلیت جوانه‌زنی و بند فذر گندم

آزمایشی در چارچوب طرح آزمایشی کاملاً تصادفی با هفت تیمار و همه نکردن‌ها گردید. در هر نکردن هفت بطری شده به حجم 150 میلی لیتر انتخاب و در داخل هر یک 100 دانه سالم بوده تریم و استونت قرار داده شد. مستقیماً آزمایش‌های قبلی، از سواد در بطری‌هایی که غلظت‌های صفر (شده)، 240، 160، 80، 40 و 20 میکروآنتی‌زا در لیتر استونت با مقایسه دو کاملاً مختلف بدر بر (استا). در دو روز 20 درجه سانتی‌گراد و در درون زرین‌پوش زنگ‌هایی به مدت 10 روز بررسی گردید. با شمارش نهایی جوانه‌های عادی، درصد قابلیت جوانه‌زنی بدن‌ها مشخص شد. همچنان با نخستین

۲۳۳
جدول 1. درصد تلفات حشرات اپاری در اثر استون. پس از 72 ساعت گازدهشی در فضای خالی

<table>
<thead>
<tr>
<th>حشرات کامل</th>
<th>S. granarius</th>
<th>O. surinamensis</th>
<th>C. maculatus</th>
<th>T. confusum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/25±0/5</td>
<td>0/9±0/9/7</td>
<td>0/8±0/7/7</td>
<td>1/5±0/7/7</td>
<td>5</td>
</tr>
<tr>
<td>6/5/1/91</td>
<td>1/5±0/7/17</td>
<td>1/6±0/8/29</td>
<td>1/5±0/5/4</td>
<td>10</td>
</tr>
<tr>
<td>33/64±0/3</td>
<td>1/2±0/2±7/19</td>
<td>2/3±0/2±7/82</td>
<td>2/7±0/2±7/42</td>
<td>2</td>
</tr>
<tr>
<td>7/3±1/5±0/7</td>
<td>8/9±0/5±0/3</td>
<td>7±0/4±1/3/61</td>
<td>9/1±0/5/47</td>
<td>25</td>
</tr>
<tr>
<td>6/9±2/9±1/7</td>
<td>7/9±0/9±0/5</td>
<td>9/5±0/3±0/3</td>
<td>9/3±0/1/0/7</td>
<td>30</td>
</tr>
<tr>
<td>2/8±1/3±0/7</td>
<td>1/0±0/2±0/8</td>
<td>2/9±0/1/7/9</td>
<td>1/0±0/8/6</td>
<td>شاهد</td>
</tr>
</tbody>
</table>

1. درصد تلفات (میانگین ± انحراف استاندارد)

جدول 2. مقادیر LC50 بر حسب میکروویو بر لیتر استون در چهار گونه از حشرات اپاری، پس از 72 ساعت گازدهشی در فضای خالی

<table>
<thead>
<tr>
<th>حشرات کامل</th>
<th>مقادیر</th>
<th>سمیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. granarius</td>
<td>18/27 b</td>
<td>18/27 b</td>
</tr>
<tr>
<td>O. surinamensis</td>
<td>15/4 b</td>
<td>15/4 b</td>
</tr>
<tr>
<td>C. maculatus</td>
<td>10/51 b</td>
<td>10/51 b</td>
</tr>
<tr>
<td>T. confusum</td>
<td>17/55 b</td>
<td>17/55 b</td>
</tr>
</tbody>
</table>

1. هدیه ای که دارای حروف مشترک یا متفاوت از نظر آماری در سطح احتمال پنج درصد با هم اختلاف معنی‌داری ندارند.

چادسق است. با وجود این که نتایج نشان می‌دهد که در حالت کلی، با افزایش طول زمان گازدهش بر تنفسات حشرات افزوده می‌شود، ولی حدود اطمینان مقادیر LC50 مشخص می‌شود که از نظر ایجاد تلفات بین 96 و 120 ساعت گازدهش نیست و عرض از مبدأ ± SE

مغز و نیروی موجود در داده‌های LC50

نفوذ بخار استون به داخل گندم

تجهیزات و روش‌های مختلفی برای ظهور حشرات کامل در مراحل مختلفی از هم‌اکنون S. granarius گزینه‌های نیازمند استوری در مراحل مختلفی از هم‌اکنون

حشره ایست. میانگین مرغوب تغییر در بر مبنای طرح
جدول 3 مقدار LC_{50} بر حسب میکروژنر بر یک استون در دو گونه از حشرات آبیاری در دو عمق مختلف نورد، گندم. پس از زمان بر حسب ساعت

<table>
<thead>
<tr>
<th>حشرات کامل</th>
<th>S. granarius</th>
<th>T. confusum</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق بر حسب متر</td>
<td>0/5</td>
<td>1</td>
</tr>
<tr>
<td>زمان بر حسب ساعت</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>LC_{50} در ترکیبات</td>
<td>12/7/10</td>
<td>11/6/3</td>
</tr>
<tr>
<td>حد بالای حدود اطمینان: 95%</td>
<td>12/7/10</td>
<td>11/6/3</td>
</tr>
<tr>
<td>حد پایین حدود اطمینان: 95%</td>
<td>12/7/10</td>
<td>11/6/3</td>
</tr>
</tbody>
</table>

SE ± عرض از میانگین رشد

IC_{50} هایی که دارای حدود اطمینان 95% بوده اند. در سطح احتمال پنج درصد نهایی دارای اختلاف معنی‌داری نبود.
جدول ۴. خلاصه تجزیه واریانس اثر بخار استون به داخل بذر گندم

<table>
<thead>
<tr>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>میانگین مجموع مربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>19</td>
<td>263/13</td>
</tr>
<tr>
<td>تیمار</td>
<td>3</td>
<td>137/100</td>
</tr>
<tr>
<td>استحکام</td>
<td>4</td>
<td>124/94</td>
</tr>
</tbody>
</table>

جهانی‌خوانی از دیدگاه پشتیبانی می‌شود که تغییرات در پاتریوتیس و سیستم‌های مخاطی اثر بخار نموده.

S. granarius می‌دانم سیستم‌های حشرات کامل در اثر بخار استون به داخل بذر گندم (M. graminis) یکی از میانگین‌های نموده.

چاپ گیاه، میانگین حشرات کامل

<table>
<thead>
<tr>
<th>حشرات کامل</th>
<th>بررسی میکروپریون</th>
<th>(شامل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میکروپریون</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اکثر پاتریوتیس به میانگین‌های نموده در اثر بخار استون به داخل بذر گندم اثر بخار استون به داخل بذر گندم

نتایج تجزیه واریانس داده‌ها و جدول اطلاعات خروطی و گریمی به نشان می‌دهد که از تأثیر اثر بخار استون به داخل بذر گندم، بین فاصله‌های مختلف استون با تیمار شاهد نمایش می‌دهد. این دلتهای برای نشان دادن تفاوت معنی‌داری وجود ندارد.

بله یکی از معاینه‌های آزمون $$L_{50}$$ برای شده در مورد حشرات.

<table>
<thead>
<tr>
<th>مقایسه میانگین</th>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>میانگین مجموع مربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>برآورده شده در مورد حشرات</td>
<td>کل</td>
<td>19</td>
<td>263/13</td>
</tr>
<tr>
<td></td>
<td>تیمار</td>
<td>3</td>
<td>137/100</td>
</tr>
<tr>
<td></td>
<td>استحکام</td>
<td>4</td>
<td>124/94</td>
</tr>
</tbody>
</table>
جردول ۷ اثر غلظت‌های مختلف استون بر سرعت جوانه‌زنی بذرهاي گندم

<table>
<thead>
<tr>
<th>غلظت استون بر حسب میکروئتر بر لتر</th>
<th>سرعت جوانه‌زنی به بذر</th>
<th>بر حسب روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰</td>
<td>۱/۳۷</td>
<td>۵/۸۴</td>
</tr>
<tr>
<td>۳۰</td>
<td>۲/۳۷</td>
<td>۶/۸۴</td>
</tr>
<tr>
<td>۴۰</td>
<td>۳/۳۷</td>
<td>۷/۸۴</td>
</tr>
<tr>
<td>۵۰</td>
<td>۴/۳۷</td>
<td>۸/۸۴</td>
</tr>
<tr>
<td>۶۰</td>
<td>۵/۳۷</td>
<td>۹/۸۴</td>
</tr>
</tbody>
</table>

جدول ۸ خلاصه تجزیه واریانس تأثیر بخار استون در به بذر گندم

<table>
<thead>
<tr>
<th>میانگین مجموع مربعات</th>
<th>درجه آزادی</th>
<th>معنی تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک</td>
<td></td>
<td>کل</td>
</tr>
<tr>
<td>طول ساقه</td>
<td></td>
<td>۱۳۹</td>
</tr>
<tr>
<td>طول ریشه</td>
<td></td>
<td>۱۹/۱۵ ß</td>
</tr>
<tr>
<td>(گرم)</td>
<td></td>
<td>۰/۰۰۲ ß</td>
</tr>
<tr>
<td>(سانتی متر)</td>
<td></td>
<td>۸۸/۸۵ ß</td>
</tr>
<tr>
<td>(سانتی متر)</td>
<td></td>
<td>۰/۰۰۱ ß</td>
</tr>
<tr>
<td>کل</td>
<td></td>
<td>۱۳۳</td>
</tr>
<tr>
<td>تیمار</td>
<td></td>
<td>۶</td>
</tr>
<tr>
<td>اشباه</td>
<td></td>
<td>۱۳۳</td>
</tr>
</tbody>
</table>

توضیح: ß بدون معنی

بیماری زاید استون، این ترکیب شیمیایی بر درصد جوانه‌زنی، سرعت جوانه‌زنی و دیگر نیهای بذر گندم تأثیر سوئی ندادند. نتایج در مورد جوانه‌زنی بذرها با پاتیتهای زانگ و همکاران (۲۰۰۷)، و کشی و گوترا (۱۲۳) در زه‌های مختلف همکاران دارد، ولی در مورد بررسی یک‌نوع یا مربوط به طبیعت، به دلیل تعداد بزرگ‌تر مثال‌های می‌باشد می‌باشد نتایج فراهم نگردد. در نهایت، از استون می‌توان برای ضعف‌های بذرها گندم، به دو کاهش درصد جوانه‌زنی، سرعت جوانه‌زنی و بهبود استفاده تندیم.

نام برد: پژوهش حاضر نشان داد که به رغم مصرف غلظت‌های بسیار زاید استون، این ترکیب شیمیایی بر درصد جوانه‌زنی، سرعت جوانه‌زنی و دیگر نیهای بذر گندم تأثیر سوئی ندادند. نتایج در مورد جوانه‌زنی بذرها با پاتیتهای زانگ و همکاران (۲۰۰۷)، و کشی و گوترا (۱۲۳) در بذرهای مختلف همکاران دارد، ولی در مورد بررسی یک‌نوع یا مربوط به طبیعت به دلیل تعداد بزرگ‌تر مثال‌های می‌باشد می‌باشد نتایج فراهم نگردد. در نهایت، از استون می‌توان برای ضعف‌های بذرها گندم به دو کاهش درصد جوانه‌زنی، سرعت جوانه‌زنی و بهبود استفاده تندیم.

توضیح: ß بدون معنی

بیماری زاید استون، این ترکیب شیمیایی بر درصد جوانه‌زنی، سرعت جوانه‌زنی و دیگر نیهای بذر گندم تأثیر سوئی ندادند. نتایج در مورد جوانه‌زنی بذرها با پاتیتهای زانگ و همکاران (۲۰۰۷)، و کشی و گوترا (۱۲۳) در زه‌های مختلف همکاران دارد، ولی در مورد بررسی یک‌نوع یا مربوط به طبیعت، به دلیل تعداد بزرگ‌تر مثال‌های می‌باشد می‌باشد نتایج فراهم نگردد. در نهایت، از استون می‌توان برای ضعف‌های بذرها گندم به دو کاهش درصد جوانه‌زنی، سرعت جوانه‌زنی و بهبود استفاده تندیم.

توضیح: ß بدون معنی

بیماری زاید استون، این ترکیب شیمیایی بر درصد جوانه‌زنی، سرعت جوانه‌زنی و دیگر نیهای بذر گندم تأثیر سوئی ندادند. نتایج در مورد جوانه‌زنی بذرها با پاتیتهای زانگ و همکاران (۲۰۰۷)، و کشی و گوترا (۱۲۳) در زه‌های مختلف همکاران دارد، ولی در مورد بررسی یک‌نوع یا مربوط به طبیعت، به دلیل تعداد بزرگ‌تر مثال‌های می‌باشد می‌باشد نتایج فراهم نگردد. در نهایت، از استون می‌توان برای ضعف‌های بذرها گندم به دو کاهش درصد جوانه‌زنی، سرعت جوانه‌زنی و بهبود استفاده تندیم.

توضیح: ß بدون معنی
سیاسگزاري
را دارد که به عنوان یک فرومنگان یافته مورد توجه قرار گیرد،
و لازم است که در مورد شروع، کشیآن در استفاده توأم با
دیگر گازها به ویژه گاز کربنیک، و تأثیر بر گونه‌های مقاوم
حشرات ابزاری پزوهش بیشتری انجام شود.

مراجع