چکیده

به منظور بررسی رنگ ملاس چغندرقند و امکان جایگزینی آن با کارامل مصرفی صنایع غلظی، به ویژه نوشابه‌سازی، مکانیکی از ملاس رقیق شده، پس از تنظیم pH از یک متون رزین امریکایی به عنوان رزین جاذب تکپیات رنگ‌گیرنده شد. و رنگ آن به کمک الکتری اسیدی خاکستری، پیشرفت دردسر خاکستری (30٪) در شرایط میزان رسیده ملاس برای با 10 درجه بی‌رنگ چغندرقند و مقدار رزین برای 15 میلی لیتر به دست آمد. حال خاکستری، و رنگ جامد به کمک ترکیب توسط خشک‌کن تصفیه‌سازی تولید شد و رنگ‌های رنگ تولیدی از جمله

cالپیت حل، میزان خاکستری، تقدیر رنگ‌دهی تیمین گردد. همچنین، پیش‌بینی رنگ تولید شده در شرایط مختلف از جمله pH

اسیدی و دما و ترکیب بروز قرار و گرفته، علاوه بر آن، شاخص‌های کیفی محول رنگ به کمک دستگاه معامله تعمیر شد.

رنگ تولیدی با کارامل مورد مصرف در نوشابه سیاه زمین مقایسه شد و ملاحظه گردید که طول موج حداکثر جلب در آنها تقریباً

cیکان است. هم‌چنین، از نظر حساسیت به تغییر pH نیز کاملاً مشابه بودند. نوشابه‌های تولید شده با رنگ تولیدی و کارامل، از نظر ابزاری در شرایط مختلف دما و ترکیب با یکدیگر مقایسه شدند، و مشاهده شد که رنگ تولید شده، بسیار مناسبتر است. به طور کلی،

تیپی و چراغی شکل، رنگ تولیدی جذاب‌تر بسیار مناسب برای کارامل وارداتی در تولید نوشابه‌ای گازدار سیاه رنگ می‌باشد.

پودر رنگ تولید شده به عنوان جاذبین بخشی از پودر کارامل از تولید شیرکارامل نیز به کار رفت. آزمایش‌های تخصصی حسی نشان داد که میزان به میزان 20٪ پودر رنگ تولیدی را یک‌تا یک‌کارامل ترکیب کرد.

کارامل تولیدی شده از ملاس از نظر پیداست کاملاً سالم است. ارزیابی اقتصادی نیز کاراملی‌های ثابت و منفرد و قیمت فناوری

ملاس‌های طبیعی و ملاس‌های کارامل، و

مقدمه

از این دیده‌بانی به عنوان کاملاً مناسب و مناسب

با این حال، امنیت طبیعی در بین انسان‌های اپیدمیای و تبدیل

1. استاد ارزیابی صنایع غلظی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

2. مریم و عضو هیئت علمی سازمان تحقیقات کشاورزی اصفهان
باستان نیز وجود داشته است، پیشتر جوامع بشری باعث پیدایش صنعت تولید رنگ‌های غذایی شده است. رنگ کروشنتی از تعدادی قند آرکن در آمریکا مربوط می‌باشد، که رنگ تیره‌تری از چند وان سال پیش در مصرف مصرف می‌شد.

در صنایع غذایی به دلایل مختلف، از جمله: برای جعل رنگ‌های مختلف از بین می‌روند، یا ایجاد رنگی خاص در فراورده‌های غذایی که طبیعی وقتی رنگ‌های غذایی تخمینی شده‌اند، نظر نوسان‌ها و آن‌ها بسته می‌شود. تشویق و تشکیل رنگ‌ها، با یک رنگ خاص از فراورده‌های غذایی رنگ‌های مختلف می‌شود. تولید رنگ‌های غذایی که دارای رنگ، نشانگرفته می‌شود. تولید رنگ‌های غذایی که دارای ترجیحاتی است با نیازهای مهم در صنایع غذایی باشد.

1. رنگ‌های صنعتی که از آنها به دلایل مختلف می‌شود. یک مثال: رنگ‌های ساخته می‌شوند. این رنگ‌ها ارچه بسیار گوناگون، ارزان و در کنار قدرت رنگ‌های ذهنی مستند، ولی عوارض سوء ناشی از مصرف سیاهی از آن‌ها به ادامه رسانده و سازمان‌های بهداشتی نظر WHO و FDA اعلام کرده‌اند. بازگرداندن رنگ‌هایی جون لاکتوفولاژیک و کوکتوپولیک (زرده)، کاربومیزین و آزورین (قرمز) رنگ سیاه دره می‌باشد BN و رنگ سیاه دره بی‌کاری‌شدنی (خیروک) قدرت سیاه دره شسته‌ای شده است در صنایع غذایی به کار بار می‌شوند.

2. رنگ‌های طبیعی که شامل رنگ‌هایی که به صورت آب داغ، هم‌سر یا هم‌سر به بخشی از فراورده‌های غذایی رنگ‌های آبی از فراورده‌های غذایی رنگ‌های صنعتی که از آنها به دلایل مختلف می‌شود. یک مثال: رنگ‌های ساخته می‌شوند. این رنگ‌ها ارچه بسیار گوناگون، ارزان و در کنار قدرت رنگ‌های ذهنی مستند، ولی عوارض سوء ناشی از مصرف سیاهی از آن‌ها به ادامه رسانده و سازمان‌های بهداشتی نظر WHO و FDA اعلام کرده‌اند. بازگرداندن رنگ‌هایی جون لاکتوفولاژیک و کوکتوپولیک (زرده)، کاربومیزین و آزورین (قرمز) رنگ سیاه دره می‌باشد BN و رنگ سیاه دره بی‌کاری‌شدنی (خیروک) قدرت سیاه دره شسته‌ای شده است در صنایع غذایی به کار بار می‌شوند.

1. Dye 2. Sugar Industry
چدا کردن رنگ کارامیل از ملاس چندرنده و بوشر ویگی‌ها و کاربرد آن در صنایع غذای

400 ویال، صادرات ملاس به خارج از کشور مقرر به صرفه
نیم پاکش.

بنابراین، از کل ملاس تولیدی نکته‌ای به طور منسوخ حدود 00000001 15 تا به می‌رسد.

می‌باشد. قیمت ملاس در مرداد ماه 1378 حدود هزاری‌گر در ریال بوده، که به همراه جهت بهره‌وری که حمل و نقل آن را

تأثیر می‌کند. ورود این ملاس به طبیعت صدمات بی‌پدید می‌کند.

میزان کوچکی چربی باید به بار می‌آورد. بنابراین می‌توان

نتیجه گرفت که ملاس می‌توان به عنوان یک ماده اولاره ارزان

قیمت پرای تولید کارامیل، که محسولی نسبی گران قیمت و

واژگانی است، به کار بوده.

مواد و روش‌ها

در این پژوهش از رشته آموزش ساخت شرکت ژاپنی‌ها، به

عنوان زینی ژاپنی ترکیبات رنگ‌ها (5)، و از کم‌سیبی که به

عنوان جدایی این ترکیبات استفاده شد. سنون‌های

محیطی غیر قابل جبرانی را نیز به بار می‌آورد. بنابراین می‌توان

نتیجه گرفت که ملاس می‌توان به عنوان یک ماده اولاره ارزان

قیمت برای تولید کارامیل، که محسولی نسبی گران قیمت و

واژگانی است، به کار بوده.

یک نوع کردن کارامیل به کمک مایعات طبیعی و اصلاحات

مرتبه، محلول ملاس رنگ‌ها به داخل سنون‌های محیطی

زین فراهم شده و سپس با فرتنده افزایش حرارت در سنون‌های

زینی ترکیبات رنگی جذب شده جداگانه (12). نمونه‌های

ملاس از ژاپنی‌ها که اصولانه تهیه، و به طور تصادفی انگشته و

با یک‌چیزی مخلوط شده، و نمونه سانسیگن نه بر گردید، درج

برای محلول ملاس رنگ‌ها حدود 10، و بی‌خروجی

سنون‌های حدود 10 میلی لیتر در دقیقه تنظیم شد.

محلول رنگ جدا شده با استفاده از دستگاه تیخی در خلا

ساخت شرکت هایبالاف‌آلمان، در دسته‌کارتره 30 درجه

سناتریاد تنظیم شد و خلا به طور کامل جداسازی گردید.

1. Rohm and Haas Co., Philadelphia, U. S. A.
2. Sintered glass filter
3. Heidolph Co.
4. Rikakikai
5. Indicator Value
6. European Brewing Comission
محصول سرد میزان شدت رنگ هر یک با استفاده از ICUMSA نوبه‌ها و شکر در درجه‌بندی می‌گردد.

15. مقایسه طول موج حداکثر جذب رنگ تولید شده و کارامال:

طیف‌سنجی در محدوده طول موج‌های 190 تا 600 نانومتر نمونه‌های آزمایشی و شاهد تهیه، و طول موج حداکثر جذب برای آن‌ها تعیین گردید.

11. اندازه‌گیری و مقایسه‌ی رنگ‌های کمی رنگ نوشابه‌های تهیه شده با رنگ تولیدی و با کارامال، توسط دستگاه رنگ سنج هانترلز: شاخص‌های a, b در مورد نمونه‌های آزمایشی و شاهد، توسط دستگاه هانترلز مدل 3000 اندازه‌گیری شدند.

12. بررسی امکان جایگزینی رنگ تولید شده به عنوان بخشی از پودر کاکائو در تولید شیر کاکائو: در این مطالعه نمونه‌های شیر کاکائو مطابق فرمول کارخانه‌های پیش‌زمینه اتصال، با استفاده از پودر کاکائو به عنوان نمونه‌های شاهد، و با جایگزینی بخشی از پودر کاکائو با پودر پودر تولید شده با نسبت‌های مختلف به نمونه‌های آزمایشی، تهیه شد.

فرمول ساخت عبرات بود از 6/8 درصد پودر کاکائو، هفت درصد شکر و 92/2 درصد شیر با 1/5 درصد چربی، نمونه‌های آزمایشی با 2/15، 2/10، 2/5، 5/20، 2/5 و 75 درصد جانشینی به‌پایه تنظیم مقدار جذب پراک در طول موج 240 نانومتر برای محلول‌های پودر کاکائو و رنگ تولید شده بود. نمونه‌های تهیه شده و شاهد بانگ زمان آزمایش‌های همسری و توسط افراد گوگانوس، و مطابق روش‌های تک‌پیسيری 1/18 با استفاده از درجه‌بندی هدایت تیپ مقایسه در پودر کاکائو (1).

13. نسج پزشکی تولید پودر رنگ از ملامس با انتقالی‌های آزمایش انجام شده و محاسبات مقدار ورود پودر رنگ تولید شده به ازای مصرف یک کیلوگرم ملامس تعیین گردید. همچنین، با روش‌های انتقالی تولید پودر رنگ بطور تقریبی، در پایه‌ی ترکیبی نخست رنگ‌ها زمان انجام پودر انجام شد.

1. Single Stimulus
2. Hedonic scale

7. بررسی امکان تولید نوشابه‌گذاری سیاه با استفاده از رنگ تولید شده، به‌چشم‌های از کارامال وارداتی نمونه‌های شاهد با استفاده از کارامال وارداتی و نمونه‌های آزمایشی با استفاده از رنگ تولید شده، و مطابق با فرمول‌سازی تهیه یک نشر نوشابه سیاه زرم (7/8) گرم اسید فسفریک 2/1 گرم عصاره و کارامال، 100 گرم شکر و هدف 900 گرم آب (تهیه گردید. مقادیر استفاده از رنگ تولیدی به چشم‌های کارامال، بر یک دست پاسیفیک به شدت رنگ بی‌یار در نمونه‌های آزمایشی و شاهد تعیین شد. میزان دوم از پودر رنگ در فرمول‌سازی کارامال شده، آنجا جذب نمونه آزمایشی در طول موج 420 نانومتر برابر میزان جذب نمونه شاهد در همین طول موج گردید.

8. بررسی اثر نور، دما و مدت تهیه‌گذاری بر پایداری رنگ تولیدی، در مقایسه با کارامال وارداتی در نوشابه‌های تهیه شده: نمونه‌های تهیه شده با رنگ تولیدی و نمونه‌های شاهد در شرایط مای حیاتی و در محیط‌های مناسب فاصله‌ها نگه‌داری شدند. همچنین، نمونه‌هایی نیز در بی‌خانگی و در دمای حیاتی و در شرایط تاریکی نگهداری شدند. در طول مدت ایجادگری و بر پایداری نگهداری نمونه‌های آزمایشی و شاهد رنگ پایداری مانده در همین طول موج گردید.

ICUMSA

178
جدا کردن رنگ کاراملی از ملامس چهندنده و بررسی ویژگی‌ها و کاربرد آن در صنایع غذایی

خوراک‌ها، یا شرایط اسیدی مختلف قابل استفاده است.
5. قابلیت حل پودر رنگ تولید شده در اب، در دمای حرارت محیط (4 درجه سانتی‌گراد) برای 120 دقیقه بود. این حلال علاوه بر زیاد شدن دما که زایم نسبت استفاده از رنگ و خراب شدن آن به صورت رسوپ در مواد غذایی است.
6. توان رنگ‌دهی EBC بالا در سه هزار واحد در مقایسه با کارامل، حدود 24 درصد بوده که به داده اصلی به قیمت بسیار کمتر نگر رنگ تولید و نداشتن نیاز به افزایش واردات و سلامت آن نسبت به کارامل که در بنیادی را نیاز داشته باشد.
7. پایداری رنگ تولید شده در پایداری در گونه‌های مختلف نگردهای در مقایسه با کارامل، در واجبه سبای دنیا زمین عضیف است. همیشه پایداری رنگ در این است که فناوری‌های که احتمالاً این رنگ به‌صورت می‌شوند در شرایط مختلف ایجاد می‌گردد.
8. این پایداری رنگ تولیدی کارامل در دمای محیط و دمای چهار درجه سانتی‌گراد مقایسه شد. (شکل‌های 3 و 4). نتایج نشان داد که در رنگ تولیدی شده رنگ نگر روز‌ها روز پاک‌شده اکثریت ارزیابی داشته و سنگ به افزایش دما است.
9. همین تغییرات در کارامل نیز مشاهده شد، با این تفاوت که روند افزایش شدت رنگ کمتر از روند افزایش در رنگ تولیدی بود. علت افزایش شدت رنگ، احتمالاً حلت شدن نهایی رنگ می‌باشد.

دبای ایمپر تُن‌سوس، پایداری رنگ تولید شده و یا کارامل نداشت. پایداری از نظر پایداری رنگ، اکثریتی در پیچ و بار حرارت محیط تفکیک مقدار داده می‌کنند. مقایسه این اکثریتی در شرایط روشنایی دایم قلمروی است. دی اکثریتی نشان داد که در شرایط نور، شدت رنگ تولیدی و کارامل به تدریج کاهش یافته است (شکل 3). با دمای راک‌شده (می‌توان چشمه‌های پس از یک کاهش اولیه نسبتاً شدت به نحوی که پس از 42 روز اکثریتی، شدت رنگ نوشابه‌های نگهداری شده در

به منظور تعیین اثر متقابل مقدار رنگ (حجم با واحد میلی لیتر) و درجه بی‌پریکس محلول ملامس رقیق شده بر پاژده جداسازی رنگ توسط رنگ از آماده ذائق و مدل آماری زیب استفاده گردید:

\[X_{ijk} = \mu + S_j + S_k + S_{jk} + \Sigma_jk \]

نتایج و بحث
1. پایدار شکل 11 مقدار رنگ و درجه بی‌پریکس اثر معمولی (P<0.05) بر پاژده جداسازی رنگ داشتند. (4). با توجه به نتایج به دست آمده با لزوم دستیابی به پیشینه جداسازی، درجه مطلوب بی‌پریکس محلول ملامس رقیق شده برای 100 و مقدار رنگ 150 میلی‌لیتر به عنوان بهترین شرایط جداسازی تعیین شد. در هر آزمایش فرد استفاده نمونه به ستون نیاز اکثر ادامه یافته.
2. مقدار خاکستر ملامس به طور میانگین با چهار تکرار برای 80 درصد و مقدار خاکستر رنگ تولیدی 1/3 درصد بود. پایداری خاکستر رنگ تولیدی نسبت به ملامس 97/2 درصد کاهش یافت که مؤثر درجه خلوص رنگ تولیدی و قدرت تغییر جذب انتخابی رنگ کارامل می‌باشد.
3. مقدار قند کل ملامس به طور میانگین با چهار تکرار 74/5 درصد بود در حالی که میزان قند کل رنگ تولیدی با استفاده از روش سوئی‌گر- لنسون و پایداری 13/2 درصد بود.
4. پایداری، میزان قند رنگ تولیدی نسبت به ملامس 97/3 درصد کاهش یافت که نشان دهنده قدرت یک طرف جذب است. انتخابی رنگ است. میزان ناپایدار نشان دهنده قدرت رنگ تولیدی نیز مؤثر درجه بالای خلوص و پایداری نسبت به عوامل قند است.
5. کننده میکروژی، و قابلیت زیاد اکثریتی آن است.
6. شاخه‌ای IV برای پایداری شده شده بار 1/29 و برای کارامل IV 1/24 محسوس گردید. قابل مقایسه بودن شاخه IV رنگ تولید شده و کارامل نشان داده شده شاهب این دو، و حساسیت نداشتند رنگ تولیدی به تغییر محیط pH می‌باشد. پایداری رنگ تولید شده در محدوده‌گسترده‌ای از
جدول 3. مقایسه رنگ تولیدی (نمونه) و کارامل (شاهد) در نوشابه زرمیم در دمای محیط

شکل 4. مقایسه رنگ تولیدی (نمونه) و کارامل (شاهد) در نوشابه زرمیم در دمای C 40°
شکل ۵. مقایسه اثر نور و طول زمان بر پایداری رنگ تولیدی و کارآمدی

شکل تاریکی به مراتب بیشتر از شدت رنگ نوسانه‌ای نگهداری شده در شرایط نور بوده است (شکل‌های ۳ و ۴). بنابراین، پایداری رنگ تولید شده در شرایط مختلف، هننوباً به پایداری کامل در همان شرایط قابل مقایسه بوده، بلکه در نهایت، برای شکل ۶، شدت رنگ تولید شده از شدت رنگ کارآمد پیشتر بوده است.

۸. نتایج نشان داد که با افزایش pH میتوان به عنوان جاگردگی بهبودی حاصل کرده در شرایط دردلالی شده در شرایط مختلف مورد نظر به‌همراه با تولید شده و کارآمد ملاحظه شده (جدول ۳). در نتیجه، رنگ تولید شده برای مصرف در غذاهای مختلف، بندون توجه به pH آنها، کاملاً قابل مصرف بوده، در غذاهای با pH نزدیک به حمایتی از شدت رنگ پیشتری برخوردار است.

۹. طول موج حداکثر حذف برای رنگ تولید شده و کارآمد، با استفاده گزینه‌ای طبیعی انتخابی، آنها در محدوده ۱۹۰ تا ۶۰۰ نانومتر، مطابق شکل‌های ۷ و ۸ به ترتیب ۲۸۷ و ۲۷۷ نانومتر به دست آمده. بنابراین نواع رنگ در رنگ تولید شده و کارآم لفتر (پیکسان است) انتخاب شده.

۱. اندازه‌گیری در دما و نشان داده که رنگ تولید شده از نظر کمی نیز بسیار مشابهی کار آم‌ل می‌باشد (شکل ۹). ابتدا
جدول ۱. مقایسه اثر pH پیاده‌سازی رنگ تولیدی و کارامل

<table>
<thead>
<tr>
<th>نمونه (رنگ تولیدی)</th>
<th>هاش</th>
<th>مقدار جذب شاهد (کارامل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۵۳</td>
<td>۱/۵</td>
<td>۰/۵۳</td>
</tr>
<tr>
<td>۰/۵۴</td>
<td>۰</td>
<td>۰/۵۳</td>
</tr>
<tr>
<td>۰/۵۵</td>
<td>۲/۲</td>
<td>۰/۵۳</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۲/۷</td>
<td>۰/۵۳</td>
</tr>
<tr>
<td>۰/۵۷</td>
<td>۳</td>
<td>۰/۵۳</td>
</tr>
<tr>
<td>۰/۵۸</td>
<td>۵</td>
<td>۰/۵۳</td>
</tr>
<tr>
<td>۰/۵۷</td>
<td>۷</td>
<td>۰/۵۳</td>
</tr>
</tbody>
</table>

شکل ۶. مقایسه رنگ تولیدی (نمونه) و کارامل (شاهد) در نوشابه زمزم، در دماهای محیط و درجه C۴۲.
جدول ۲. تجزیه‌بندی مختلف چگونگی تولید رنگ در کاکائو

<table>
<thead>
<tr>
<th>جامدات</th>
<th>تعداد</th>
<th>مقدار (گرم)</th>
<th>مقدار (میلی‌اینر)</th>
<th>مقدار چربی (%)</th>
<th>کاکائو (گرم)</th>
<th>نمونه پودر رنگ (درصد)</th>
<th>طعم رنگ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۵۰</td>
<td>۰/۸</td>
<td>۰/۲</td>
<td>۷۶/۵</td>
<td>۱۲/۵</td>
<td>۸۴/۵</td>
<td>۸۴/۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۷</td>
<td>۴/۵</td>
<td>۲/۴</td>
<td>۷۵/۵</td>
<td>۱۸/۷۵</td>
<td>۷۱/۵</td>
<td>۷۱/۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۴</td>
<td>۴/۵</td>
<td>۲/۴</td>
<td>۷۵/۵</td>
<td>۱۸/۷۵</td>
<td>۷۱/۵</td>
<td>۷۱/۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۷</td>
<td>۴/۵</td>
<td>۲/۴</td>
<td>۷۵/۵</td>
<td>۱۸/۷۵</td>
<td>۷۱/۵</td>
<td>۷۱/۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۷</td>
<td>۴/۵</td>
<td>۲/۴</td>
<td>۷۵/۵</td>
<td>۱۸/۷۵</td>
<td>۷۱/۵</td>
<td>۷۱/۵</td>
</tr>
</tbody>
</table>

شکل ۷. طیف چسبینگی رنگ تولید شده از ماس (نمونه)
شکل 8. طیف جذبی کارامل (شاهد)

شکل 9. مقایسه شاخص‌های کمی رنگ تولیدی و کارامل به کمک سیستم هاترلپ
12. بررسی بهداشتی رنگ تولید شده نشان می‌دهد که بانویه
بی اِستفاده از ملایس به عنوان یکی از مواد اولیه سالم و مغذی
در صنایع غذایی و کارایی زیاد را برجسته نماید و روش جدید‌ازی
مورد استفاده در حذف املاح و فلزات، به همراه چندین قرارگرفتن
رنگ تولید شده به عنوان کارامل‌های طبیعی یک و دو (ک) در
رنگ آنتی‌بیاکتریال به دنبال فناوری میزان میلی‌میکروگرم
نیمی باشد)، اکثر رنگ تولید شده بهداشتی بوده و از
سلامت بیشتری نسبت به رنگ‌ها مصنوعی سیاه
کارامل‌های سنتزی و طبیعی سوم رخ‌دار می‌باشد. لذا با
توجه به این که در ایران تکنیک پژوهش مشابه صنعت
نگفته است، تولید رنگ از ملایس در حد نیمه صنعتی و
صنعتی توصیه می‌گردد (3).

11. مبدأ تولید بر اساس اتصالی تولید رنگ از ملایس نشان
داد که از هر کیلوگرم مسلا به طور میانگین گرم پودر
رنگ تولید می‌شود. با توجه به پروپد هرزینهای تولیدی (در
زمان اندازه‌گیری شده)، هزینه تولید هر کیلوگرم ورود رند
300تیلار برودی شد. مبدأ تولید نشان می‌دهد که به‌جای
کاراشتهای با طرفیت تولید سالانه یک هزار تن کاراصلی
مالیه (معادلات مقدار مورد نیاز کاراشهای مالیه سازی)
تأسس گردد. حدود 16000 تن ملایس تولیدی کشور که
در حال حاضر به هدر می‌رود، مورد استفاده قرار نمی‌گردد.
4. محلول تغییر شده قند مایع را نیز می‌توان به عنوان
یک محصول فرعی در چنین کاراشهای تولید نمود.

مباحث مورد استفاده

1. 1. خیلی، ع. 1488، طرح‌های آماده در علوم کشاورزی، چاپ چهارم، انتشارات دانشگاه شیراز.
2. پوئن، و. 1353، کنترل کیفی و آماده‌سازی نهایی مواد غذایی، انتشارات دانشگاه تهران.
3. محری، م. علی 1375. استخراج رنگ از ریشه چمن‌فرزند کاراکرد آن در صنایع غذایی، دانشگاه تربیت مدرس.
4. مسکوکی، ع. م. 1377. استفاده از رنگ‌های طبیعی گیاهی در مواد غذایی، دانشگاه علم و صنعت.
6-25.
Colours. F.A.O. Publication, Geneva, Switzerland.
Cane Sugar Refining Research, Project 145-156.
Ph.D., University of Reading, UK.
U.S.A.
Wiley, New York.

