Rhizoctonia solani Kuhn

بررسی اثر جنگلی رژه و فارق آنتاگونیست‌های غلاف برج

عامل بیماری سوختگی غلاف برج

مصطفی نیک‌نژاد کاظم‌پور، حسن پدرامفر و سیدعلی الهی‌نیا

چکیده

تأثیر جنگل‌هایی از قارچ‌های آنتاگونیست (T. viride (T₁) و T₂) و G. virens (G₁) و T. harzianum (T₃) بر نیز اثر یکی از جنگل‌های رژه (T₄) و فارق آنتاگونیست بر عامل بیماری سوختگی غلاف برج در اثر در شرایط آزمایشگاه و غلافه بررسی گردید. بررسی گلخانه‌ای در بزرگ‌ترین اندازه‌گیری‌ها تأثیر کلی قابل توجهی در تغییرات ۲۴ و ۶۱ تومار در R. solani و میزان اشباع آن در گلخانه‌ای محسوب می‌شود. تاکنون نشان داد که تأثیر جنگل‌هایی سوخت‌های سوخت‌گی غلاف برج در مقایسه با سایر روش‌های بررسی کلی به صورت G₁ و T₄ تا ۲۴ و ۶۱ درصد بوده است. در برابر اثر T₂ و T₃، تأثیر کلی به صورت G₁ و T₄ از نظر کاهش میزان درصد بیماری، بین جنگل‌های T₁ و T₃ از نظر کاهش میزان درصد بیماری و در تناوب این دو آنتاگونیست T₁ و T₃ و تأثیر کردن آنتاگونیست T₁ و T₃ و تأثیر کردن آنتاگونیست T₁ و T₃ در کاهش خطر بیماری بیشتر و حداقل میزان بیماری بیشتر بوده است.

واژه‌های کلیدی: سوختگی غلاف برج، آنتاگونیست، فارق کردن

[۱] به ترتیب استاندارد، مربی و دانشیار گیاه‌پرورشی، دانشگاه کشاورزی، دانشگاه گیلان

حسن پدرامفر، حسن نیک‌نژاد کاظم‌پور و سیدعلی الهی‌نیا
با توجه به اهمیت اتصادی بین بیماری در ایران و خسارت ناشی از آن، به طور ثابت رقم مقاوم در برنج این بیماری و مسئولیت مشکلات موجود در کنترل آن استفاده از قارچ‌های Anaerobic و گلوریکاژیمیک به‌منظور کنترل بیولوژیکی و مهیچن تأثیر چند قارچ کش را در کنترل این بیماری بررسی گردید.

مواد و روش‌ها

مباحث اصلی بیماری و آناتوگنیت را صورت اسکلروت در این پژوهش را یک چندایه، و باند، که از غلاف‌های برنج آلوده در شالیزارهای رشت به‌نوبه‌نهایت بیماری‌زایی آن با روش پروراها (به گونه‌ای که می‌تواند را جدایی پیدا کند و مورد استفاده قرار دهد) این قارچ‌ها قادرند روی مواد آلی به خوبی رشد کرده و نکتیر پایین، به گونه‌ای که می‌تواند را جدایی پیدا کند و مورد استفاده قرار بگیرد، در خاک بزرگ‌ترین فیزیولوژیکی در قارچ‌های بیماری‌زای گیاهی بخشند. مهیچن، این قارچ‌ها توانایی تکثیر زیادی در خاک دارند، و از قدرت رفتار و بقای ساپورتایی بسیار خوبی با رخود رونق و یکی از (۱۲) روش‌هایی که و همکاران ۱۲ قارچ‌های را از خاک‌های ایران و گزش گردید. این Trichoderma قارچ‌ها قادرند روی مواد آلی به خوبی رشد کرده و نکتیر پایین، که می‌تواند را جدایی پیدا کند و مورد استفاده قرار بگیرد، در خاک بزرگ‌ترین فیزیولوژیکی در قارچ‌های بیماری‌زای گیاهی بخشند. مهیچن، این قارچ‌ها توانایی تکثیر زیادی در خاک دارند، و از قدرت رفتار و بقای ساپورتایی بسیار خوبی با رخود رونق و یکی از (۱۲) روش‌هایی که و همکاران ۱۲ قارچ‌های را از خاک‌های ایران و گزش گردید. این Trichoderma قارچ‌ها قادرند روی مواد آلی به خوبی رشد کرده و نکتیر پایین، که می‌تواند را جدایی پیدا کند و مورد استفاده قرار بگیرد، در خاک بزرگ‌ترین فیزیولوژیکی در قارچ‌های بیماری‌زای گیاهی بخشند. مهیچن، این قارچ‌ها توانایی تکثیر زیادی در خاک دارند، و از قدرت رفتار و بقای ساپورتایی بسیار خوبی با رخود رونق و یکی از (۱۲) روش‌هایی که و همکاران ۱۲ قارچ‌های را از خاک‌های ایران و گزش گردید. این Trichoderma قارچ‌ها قادرند روی مواد آلی به خوبی رشد کرده و نکتیر پایین، که می‌تواند را جدایی پیدا کند و مورد استفاده قرار بگیرد، در خاک بزرگ‌ترین فیزیولوژیکی در قارچ‌های بیماری‌زای گیاهی بخشند. مهیچن، این قارچ‌ها توانایی تکثیر زیادی در خاک دارند، و از قدرت رفتار و بقای ساپورتایی بسیار خوبی با رخود رونق و یکی از (۱۲) روش‌هایی که و همکاران ۱۲ قارچ‌های را از خاک‌های ایران و گزش گردید. این Trichoderma قارچ‌ها قادرند روی مواد آلی به خوبی رشد کرده و نکتیر پایین، که می‌تواند را جدایی پیدا کند و مورد استفاده قرار بگیرد، در خاک بزرگ‌ترین فیزیولوژیکی در قارچ‌های بیماری‌زای گیاهی بخشند. مهیچن، این قارچ‌ها توانایی تکثیر زیادی در خاک دارند، و از قدرت رفتار و بقای ساپورتایی بسیار خوبی با رخود رونق و یکی از (۱۲) روش‌هایی که و همکاران ۱۲ قارچ‌های را از خاک‌های ایران و گزش گردید. این Trichoderma قارچ‌ها قادرند روی مواد آلی به خوبی رشد کرده و نکتیر پایین، که می‌تواند را جدایی پیدا کند و مورد استفاده C. virens نتایج کاره‌ای دویسی (۱۲) نشان داد که قارچ R. solani می‌تواند به طور کامل از رشد میسیلیوم و به میزان ۹۴% از تشکیل استکلوتیعام بیماری سوخته‌گی خلاف برنج جلگیری کند. پژوهش کانتر و همکاران (۸) نشان داد که یک چندایه از باکتری Bacillus sp. (هادر RRF10) است با طور هموجود عام بیماری سوخته‌گی خلاف Fusarium و پوسیدگی ریشه و طولق برنج (R. solani)
جدول 1. اثر غلظت‌های مختلف قارچ کش در جلوگیری از رشد قارچ (R. solani) (هفت هفته پس از کاشت) در محیط کشت

<table>
<thead>
<tr>
<th>غلظت سم (ppm)</th>
<th>QAR</th>
<th>PDA</th>
<th>QAR/PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/17</td>
<td>82</td>
<td>0/2</td>
<td>(W.P. 50/%)</td>
</tr>
<tr>
<td>0/51</td>
<td>6</td>
<td>0/5</td>
<td>(W.P. 50%)</td>
</tr>
<tr>
<td>0/64</td>
<td>6/4</td>
<td>0/6</td>
<td>(W.P. (%)</td>
</tr>
<tr>
<td>1/9</td>
<td>0</td>
<td>0/0</td>
<td>ایدئفونس (50/%)</td>
</tr>
<tr>
<td>93/32</td>
<td>0</td>
<td>0/0</td>
<td>زینب (50/%)</td>
</tr>
</tbody>
</table>

جدول 2. مقایسه تأثیر جدایی‌های قارچ‌های آناتگونیست و اصلی قارچ کش در کاشت بیماری سوختگی غلاف بر حسب اثر قارچ (ده هفته بعد از کاشت)

<table>
<thead>
<tr>
<th>درصد کاشت بیماری</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/8</td>
<td>ICR</td>
</tr>
<tr>
<td>27/5</td>
<td>T1 + ICR</td>
</tr>
<tr>
<td>21/5</td>
<td>T2 + ICR</td>
</tr>
<tr>
<td>19/5</td>
<td>T3 + ICR</td>
</tr>
<tr>
<td>18/5</td>
<td>T4 + ICR</td>
</tr>
<tr>
<td>32/5</td>
<td>G1 + ICR</td>
</tr>
<tr>
<td>21/5</td>
<td>یونیم + ICR</td>
</tr>
<tr>
<td>12/8</td>
<td>کاربندازیم + ICR</td>
</tr>
<tr>
<td>9/5</td>
<td>هیتروژن + ICR</td>
</tr>
<tr>
<td>7/8</td>
<td>زینب + ICR</td>
</tr>
<tr>
<td>7/8</td>
<td>Non + ICR</td>
</tr>
</tbody>
</table>

Gliocladium = G تیمارهایی که حرف مشترک دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.

Trichoderma = T (R. solani) ۱. ماهی ریپونتیا ۲. در پهنه‌های حمر مرکزی دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.

تریکودرما = T آن تیمارهایی که جتحدث مشترک دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.

توجه کنید که این جدول به سه لوله آزمایش برای هر غلظت از قارچ کش (تیمار) در نظر گرفته و مشابه با پنومل در محیط کشت ریخته شد. ۲. برای مورد استفاده غلظت یک در هزار از سم سوختگی انرژی برق اساس آن تیمارهایی که جتحدث مشترک دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.

توجه کنید که این جدول به سه لوله آزمایش برای هر غلظت از قارچ کش (تیمار) در نظر گرفته و مشابه با پنومل در محیط کشت ریخته شد. ۲. برای مورد استفاده غلظت یک در هزار از سم سوختگی انرژی برق اساس آن تیمارهایی که جhasil مشترک دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.

توجه کنید که این جدول به سه لوله آزمایش برای هر غلظت از قارچ کش (تیمار) در نظر گرفته و مشابه با پنومل در محیط کشت ریخته شد. ۲. برای مورد استفاده غلظت یک در هزار از سم سوختگی انرژی برق اساس آن تیمارهایی که جhasil مشترک دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.

توجه کنید که این جدول به سه لوله آزمایش برای هر غلظت از قارچ کش (تیمار) در نظر گرفته و مشابه با پنومل در محیط کشت ریخته شد. ۲. برای مورد استفاده غلظت یک در هزار از سم سوختگی انرژی برق اساس آن تیمارهایی که جhasil مشترک دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.

توجه کنید که این جدول به سه لوله آزمایش برای هر غلظت از قارچ کش (تیمار) در نظر گرفته و مشابه با پنومل در محیط کشت ریخته شد. ۲. برای مورد استفاده غلظت یک در هزار از سم سوختگی انرژی برق اساس آن تیمارهایی که جhasil مشترک دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.

توجه کنید که این جدول به سه لوله آزمایش برای هر غلظت از قارچ کش (تیمار) در نظر گرفته و مشابه با پنومل در محیط کشت ریخته شد. ۲. برای مورد استفاده غلظت یک در هزار از سم سوختگی انرژی برق اساس آن تیمارهایی که جhasil مشترک دارند در صفحه ۲۱ اختلاف معنی‌داری ندارند.
سانتی گراد و رطوبت نسبی 80% به طور روزی قرار داده شد تا بوسیله میکروگانیسم‌های موجود در محیط گلخانه تخمیر گردد. پس از تخمیر، سوسیس ها دوباره سروتون شدند.

قازاقی‌های اتانوگنسیس به‌مدت چهار روز در زیر‌نور فلوسرت ۵۰۸۰ لوله به فاصله ۲۵ سانتی‌متر و روی میکروگانیسم‌های موجود در محیط رشد داده شدند. این‌ها به مقدار آب مقطور سروتون به صورت سوسیسیون با غلظت ۳۰/۰۸ گسترش دهه می‌بایست. در مدت سه ماه سروتون اضافه گردید. و مدت سه ماه به مقدار ۴۰۰ گرم سوسیس تخمیر شده سروتون اضافه گردید. و مدت سه ماه به مقدار ۲۷۵ گرم سوسیس تخمیر شده سروتون اضافه گردید. و مدت سه ماه به مقدار ۵۰۰ گرم سوسیس تخمیر شده سروتون اضافه گردید. و مدت سه ماه به مقدار ۷۵۰ گرم سوسیس تخمیر شده سروتون اضافه گردید. و مدت سه ماه به مقدار ۵۰۰ گرم سوسیس تخمیر شده سروتون اضافه گردید. و مدت سه ماه به مقدار ۲۷۵ گرم سوسیس تخمیر شده سروتون اضافه گردید. و مدت سه ماه به مقدار ۴۰۰ گرم سوسیس تخمیر شده سروتون اضافه گردید. و مدت سه ماه به مقدار ۵۰۰ گرم سوسیس تخمیر شده سروتون اضافه گردید. و مدت سه ماه به مقدار ۷۵۰ گرم سوسیس تخمیر شده سروتون اضافه گردید.

ضدعفونی خاک به وسیله قازاقی‌ها به‌صورت محول‌پاشی به سوسیسیون با غلظت ۱۰۰ قسمت در میلی‌متر انجام شد. سپس نشانه‌های ۲–۴ یک رگه برجسته در گلدان‌ها کشت گردید و به‌صورت غربال نگهداری شد. هد هنگام پس از یک ماه‌زی قازاقی‌ها به خاک گلدان‌ها، علائم بیماری در تیمار بیرون آورده شد. پس از بررسی وضعیت غلاف‌ها و ریشه‌ها و نیز مشاهده علائم بیماری در ناحیه غلاف از هر تیمار به‌طور فردی انتخاب ۱۲ تیمار مجمع‌آمیزی ۱۲۰ قسمت جدا شده و با محلول ۵۰ درصد هیپکارت ساده استفاده شد. روز به مدت ۲۴ ساعت داروهای R. solani ریخته شدند و در زمان تخمیر (۹۶ ساعت) تا زمان تخمیر R. solani به نسبت ۱۰ درصد حجمی با یا (اینترولوم) تکثیر شد. روی محیط آب و هوای سروتون به نسبت ۵ و ۹۵ درصد به مدت یک ماه آورده شد. زیر استفاده گردید. فقط آب درخت و ماسه به‌واسطه مقدار اضافه گردید. دیگر تکثیر اتانوگنسیس و افزودن آنها به شاخ از سوسیسیون تخمیر شده استفاده شد. بدین ترتیب که سوسیسیون استفاده گردید و به مدت ۱۰ روز در شرایط محیطی محیط زیست آب و هوای مسیر گردید.
من نظریه‌ی معادله‌ی تبادلی‌های ترکیب‌درمانی در قرار دادن بیماری‌های آتاتونیس همکاری
داده. کاهش میزان بیماری سوختگی غلبه در اثر کاربرد جدید به
رباک، کاربرد، فارگی فحشان و کاربنادزم قابل مقایسه
به (جدول 2).
در مجموع، میزان پدیدارسکته که اثر کنترل کننده‌ی
Gliocladium و Trichoderma غلاف بیماری نگه‌بانی به خوبی ظاهر می‌شود که پیش از حمله
به نشان بورن، و با حفاظت پیش از ورود و استقرار R. solani
آن در بقای کیا، قرار آتاتونیس به حال عادل (میلیوم) و
در جعبه نسبتاً زیاد در حال وجود داخل داشته، به چنین
را در حال R. solani این قرار می‌تواند رفتار باعث کاهش جمعیت آن
کرد. بنابراین، در مواردی که به طور منظمی جمعیت
آتاتونیس در خلاف فراز داده می‌شود، پایه برای رمان کاربرد
ماهی اینکوم، و همچنین همه بودن ماده غذایی آلی با آن،
و وضعیت ماده غذایی مشترک و آلی، و خصوصیه فیزیکی و
شیمیایی خاک توجه کرد (2).

۱. آثر بازدارندگی همه پیاده‌های ترکیب‌درمانی در R. solani

به صورت کلی، در خلکهای ناحیه‌ی بومی، کاربنادزم،
کاربونین انتهای ادبیاتوس و زینب در غلظت‌های
۰.۷۶/۰.۳۶/۰.۱۰ درصد مانع از رشد Ec50 این قارچ‌ها
R. solani می‌باشد. ویژه‌ی قارچ‌ها R. solani
به طور کلی، در آزمایش‌های پژوهش‌های مختلف مجموعه
امره (10) (لیپس و پیانوباراس (14) و پیانوباراس (15) و
وزیگاهای نوع ماهی اینکوم، وضعیت مثبت و مناسب، مناسب
توانای تولید کاماسبوروز و پایی نگارندگی بیولوژیکی
و وزیگاهای ژنتیکی و شیمیایی خاک از قبیل Pه میادی آلی،
بیماری عناصر معدنی به وزه‌ها برهنگ، به‌هیچ‌کدام
فنی، پایبند ناگوتنیست و به‌گونه‌ای که با قرار
نگارنده آتاتونیس‌ها. گیاه‌های مربوط و عناصر بیماری‌زای
گیاهی، در موفقیت مبارزه بیولوژیک با قارچ
 مؤثر R. solani بوده است (2 و 3). یا به خلاص، به علت بی‌بهینگی محیط خاک،
به وزه شرایط غذایی، و وجود مشکلات فنی در بررسی
روابط میکروگانیسم‌ها در شرایط غذایی، اطلاعات کافی در
مورد مکانیزم کنترل کننده آتاتونیس‌ها در خلاف موجود
نیست، و وزه‌ها هیچ‌چنین هنوز می‌تواند با قرار
و پی‌بی‌پا در ادامه یابد، و از روی‌های مبارزه تلقیحی با عوامل بیماری‌زا
بهره‌گرفته شود.
سپاسگزاری

هزینه انجام این پژوهش از محل اعتبارات پژوهشی دانشگاه گیلان تأمین شده است. نگارندهان بدنی و سیلی مراو昑 قدردانی می‌کنند.

منابع مورد استفاده

1. اخوت، م. و ع. شریفی تهرانی. 1375. بررسی تأثیر قارچ کش روی بیماری بلامیت برنج و تعیین زمان مناسب کاربرد آن‌ها. علوم کشاورزی ایران 38(3): 33-44.

2. بازگیری، ع. و ع. اخوت. 1376. بررسی تأثیر قارچ Trichoderma على فارج عامر مربی گیاهی و بوسیدنی Rhizoctonia solani. ردیه‌یک‌ساله کشاورزی، دانشگاه تهران.

4. روشنایی، م. و ع. صفری نژاد. 1377. معرفی گونه‌های تریکوردهم ایران. سیزدهمین کنگره گیاه‌پزشکی ایران، آموزشکده کشاورزی کرج.

5. نیک نازاد کاظمی، ع. و ع. شریفی تهرانی. 1377. بررسی تأثیر چند قارچ کش روی عامر مربی گیاهی Fusarium oxysporum f. sp. lycopersici (Calzoccum) در شرایط آزمایشگاهی و کلی. خلاصه مقالات پایداری کنگره گیاه‌پزشکی ایران، دانشگاه گیلان.

