روند کلسیمی شدن خاکها در یک ردیف تورپرگرافی در شرایط نیمه خش克 کرمانشاه

چکیده
در این تحقیق چگونگی کلسیمی شدن خاکها در شرایط نیمه خشک کرمانشاه و اثرات تورپرگرافی بر روی آن بر اساس مدل کلیسی شده، مطالعه گردید. برای این مطالعه مدل تورپرگرافی در دو دامنه گرمایی خاکی و جوی و در دو صورت نیمه خشک، کلیسی و غیر کلیسی استفاده گردید.

مقدمه
فرآیند کلسیمی شدن شامل تجمع کربنات کلسیمی در تعریق خاک است که ممکن است با افزایش مقدار میزان محاله و کربنات‌های در خاک معرفی شده است. این باید به تکثیری که در تنفس خاک‌های چرب، متغیر است و باعث تغییرات محوری و حالت‌های نیمه خشک می‌باشد. در این مقاله، مطالعه کلسیمی شدن خاک‌های چرب در شرایط نیمه خشک، کلیسی و غیر کلیسی انجام شد.

واژه‌های کلیدی - ردیف تورپرگرافی، کلسیمی شدن، پدپنیک، کالی‌نی

33
سطور دوم و سوم مقاله نوشته‌های مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

نظرات و دیدگاه‌های مختلف:

کلیه این مطالب به روش‌های مختلفی در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

بهترین مثالها و روش‌ها:

به‌نظر می‌رسد که در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

نتایج و پیش‌بینی‌های مختلف:

نتایج و پیش‌بینی‌های مختلفی در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

مقدمات مختلف:

مقدمات مختلفی در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

بحث و نتیجه‌گیری:

بحث و نتیجه‌گیری‌های مختلفی در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

چکیده:

چکیده‌های مختلفی در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

پناسیب‌ها:

پناسیب‌های مختلفی در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

مشخصات ویژه‌ها:

مشخصات ویژه‌های مختلفی در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.

مراجع:

مراجع مختلفی در مقاله نوشته‌های مختلفی در موضوعات مختلفی را تکمیل کرده و در پایان جایگاه ویژه‌ای را در بخش‌های مختلف مقاله نشان می‌دهد.
روند کلیسی شدن خاک‌ها در یک ردیف تری‌پتری در شرایط ...

شکل 1 - محدوده مورد مطالعه و موافقان آن نسبت به شهر کرمانشاه
کانی به طریق شمارش نقاط و به وسیله کاغذ شفاف (ترانسفرت) با شیبکه ۵ میلی‌متری بر روی عکس‌های بازگری می‌باشد. ۳۱۰۰۰ باره اقدام گردیده. از آنجا که وجود کانی فلزات در جریه شیشه‌های داده شده درصد کانی ایزید کل رس تخمین زده شد (۲۹) و مقدار نسبی کانی ورمیکولیت در جریه سر روش خفیف و جکسون (۱۱) تعیین گردید و سایر کانی‌های رسان به قیمت اسکالیت و کلریت از روی شدت نسبی ارتفاع اوج (پیک) بر روی نموده شده با استفاده گلکیز تحقیق زده شد (۳۰).

برای مطالعه میکروسکوپی نمونه‌های رسان از میکروسکوپ الکترونی استفاده شد.

تایپ و بیان

فرآیند کلسیمی شدن خاک‌ها

گروهی که تثبیت نیز تعداد ۴ نمونه گردید، تهیه شده و با استفاده از روش‌های پرتوی ایکس و الکترونیکی و میکروسکوپی ۲‌متر مطالعه شدند. در این دو روش خوب (۲۱) و جکسون (۳۲) استفاده شد. خارجی سازی آمک با استفاده از بینا فاصله سدیم یک نانومی با استفاده از روش اسید (۲۹) موارد آلی با افزودن آب اسیدهای ۵۰ دام و آتش واکنش در حمام پار خارج گردید (۲۳) با روشن‌گر و جکسون (۳۲) اسیدهای آم (۲۳) کمک سیستم - دی اینتو در حمام با خارج گردید (۲۵) در واکنش ۶۸۵ درجه سی (۳۲) خارج شدند. سپس از رسهای خالص شده می‌تواند خاک چهار اسید اول‌سان: اسید اسید اشباع با منیزیم، اسید اشباع با پتاسیم، و اسید اشباع با پتاسیم و ۵۰۰۰ حرارت تهیه گردید. تخصیص نوع کانی‌ها اشباع گری‌ای دارد. این کانی‌ها بر اساس پیک‌هایی ظاهر شده بر روی نمودارهای پرتوی ایکس در حالت‌های اشباع با منیزیم، اشباع با منیزیم و اینوگرگول، اشباع با پتاسیم و اشباع با پتاسیم و حرارت‌های ۵۰۵ درجه سانتی‌گراد صورت گرفت.

تخمین نیمه کمکی و قراردادی کانی‌های نسبی نازک نیز به طور زیر انجام گردیده است: برای تعیین قراردادی نسبی کانی پالی گررسکیت از الکترون میکروسکوپی و منحنی‌های حاصل از پرتوی ایکس و ۱۰ انگلر استفاده شد. تخمین نیمه کمکی این

۱- X-ray diffraction ۲- Electron micrography ۳- Transmission Electron Microscope ۸۰ Kw, SM300 कان के बेहतरीन दृष्टिकोण हैं, जिनकी खोज तृतीय श्रेणीमें भूमिका है।

जेह अंजाम मालयों से नेगती निम्न तहलों एवं विशेष अंशों से प्रभावित हुई है।

तहलों की परोक्षित असली फ़िज़िकी एवं शिमियाई खाकी परोक्षित हुई है,

पॉर्फिरआय शादी के दो अंग अर्थातः

हथों निर्माण क्षेत्र में कक्षासारोखी शादी एवं दिग्गज छात्राओं की एक नवीनता और शिमियाई खाकी परोक्षित हुई है।

पॉर्फिरआय शादी के दो अंग अर्थातः

हथों निर्माण क्षेत्र में कक्षासारोखी शादी एवं दिग्गज छात्राओं की एक नवीनता और शिमियाई खाकी परोक्षित हुई है।

पॉर्फिरआय शादी के दो अंग अर्थातः

हथों निर्माण क्षेत्र में कक्षासारोखी शादी एवं दिग्गज छात्राओं की एक नवीनता और शिमियाई खाकी परोक्षित हुई है।

पॉर्फिरआय शादी के दो अंग अर्थातः
جدول 1 - مشخصات مورفولوژیک و رودیدی پروپیل‌های شاهد

<table>
<thead>
<tr>
<th>ملاحظات</th>
<th>ساختمان</th>
<th>رنگ ماسل</th>
<th>پانت</th>
<th>افق</th>
<th>عمق</th>
<th>سری</th>
<th>نوع باکر</th>
<th>حداکثر</th>
<th>حداکمین</th>
</tr>
</thead>
<tbody>
<tr>
<td>در این پروپیل کاهش ناکامان مقدار ماد آلی با عمق دیده می شود</td>
<td>مکعبی متوسط</td>
<td>scl</td>
<td>v/0YR5/3</td>
<td>A1</td>
<td>20-18</td>
<td>0-18</td>
<td>رسوبات آبی و واریوزئ</td>
<td>مسکن</td>
<td>رباپی</td>
</tr>
<tr>
<td>درون ساختمان</td>
<td>مکعبی متوسط</td>
<td>scl</td>
<td>v/0YR5/3</td>
<td>B1</td>
<td>18-0</td>
<td>0-18</td>
<td>رسوبات آبی و واریوزئ</td>
<td>مسکن</td>
<td>رباپی</td>
</tr>
<tr>
<td>این افق مسون شده است</td>
<td>مکعبی مگه‌دار</td>
<td>c</td>
<td>10YR3/2</td>
<td>Ap</td>
<td>20-0</td>
<td>0-20</td>
<td>فلاتهای قدیمی پتروکلیسی</td>
<td>چنگالان</td>
<td>زقلوئیک 1</td>
</tr>
<tr>
<td>در این افق مقداری آمک به شدت تر می‌شود و در انتهای این افق مقداری آمک به شدت تر می‌شود</td>
<td>مکعبی متوسط</td>
<td>c</td>
<td>10YR3/2</td>
<td>Bk1</td>
<td>25-0</td>
<td>0-25</td>
<td>فلاتهای قدیمی پتروکلیسی</td>
<td>چنگالان</td>
<td>زقلوئیک 1</td>
</tr>
<tr>
<td>مانندی شکل تپیک</td>
<td>مکعبی متوسط</td>
<td>c</td>
<td>10YR3/2</td>
<td>Bk7</td>
<td>25-128</td>
<td>0-128</td>
<td>فلاتهای قدیمی پتروکلیسی</td>
<td>چنگالان</td>
<td>زقلوئیک 1</td>
</tr>
<tr>
<td>مانندی شکل تپیک</td>
<td>مکعبی متوسط</td>
<td>c</td>
<td>10YR3/2</td>
<td>C</td>
<td>128-150</td>
<td>0-150</td>
<td>فلاتهای قدیمی پتروکلیسی</td>
<td>چنگالان</td>
<td>زقلوئیک 1</td>
</tr>
<tr>
<td>در این افق شکاف‌های طولانی تا</td>
<td>مکعبی متوسط</td>
<td>c</td>
<td>10YR3/2</td>
<td>Ap</td>
<td>25-0</td>
<td>0-25</td>
<td>فلاتهای قدیمی پتروکلیسی</td>
<td>چنگالان</td>
<td>زقلوئیک 1</td>
</tr>
<tr>
<td>در این افق شکاف‌های طولانی تا</td>
<td>مکعبی متوسط</td>
<td>c</td>
<td>10YR3/2</td>
<td>Bk1</td>
<td>25-0</td>
<td>0-25</td>
<td>فلاتهای قدیمی پتروکلیسی</td>
<td>چنگالان</td>
<td>زقلوئیک 1</td>
</tr>
<tr>
<td>در این افق شکاف‌های طولانی تا</td>
<td>مکعبی متوسط</td>
<td>c</td>
<td>10YR3/2</td>
<td>Bk7</td>
<td>25-128</td>
<td>0-128</td>
<td>فلاتهای قدیمی پتروکلیسی</td>
<td>چنگالان</td>
<td>زقلوئیک 1</td>
</tr>
<tr>
<td>در این افق شکاف‌های طولانی تا</td>
<td>مکعبی متوسط</td>
<td>c</td>
<td>10YR3/2</td>
<td>C</td>
<td>128-150</td>
<td>0-150</td>
<td>فلاتهای قدیمی پتروکلیسی</td>
<td>چنگالان</td>
<td>زقلوئیک 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

1- Typic Xeroiuvents
2- Calcixerollic Xercrepts
3- Petrocalcic Xercrepts
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
روند کلسیمی شدن خاک‌ها در یک ردیف تیپوگرافی در شرایط ...

به عقیده سوارز و رودز (۳۳) فشار جذبی گاز کربنیک ذرات در آب یا آب آبی حلال می‌شود، در بدل کردن کلسیم نامحلول به پیکنک‌ها محلول و مستحیل آن از سطح خاک به عمق موثر است. بر طبق مطالعات صخرايی انجام شده، از آنجا که تشکیل افیل کلیسیکه که در خاک‌های زیر پوشش درختی CO₂ (سری خاکهای چندگانگی)، شاهد تولیدگری آن از روی گیاهان در این محدوده موثر بوده است.

گره‌گیاهی (۲۳) اصلاح نکن و انتقال کردن با هدایت یا با هماهنگ بودن همراه با آب به آب می‌داند اما به عقیده بافرانتس و دیرامیل (۱۲) باتوجه به وضوح اقلیمی مناطق خشک و نیمه‌خشک (بارانگیز)، و تعریف زعتر (یزد) و نیز حالات ثبات و نیز حالات بسیار نسبت به قابلیت این کردن‌ها به محلول نمی‌تواند با آن‌ها به مسیر رسیدگی کند. این شاهد آن‌ها از دسترسی آنها به بخش‌های به شکل جولی بندیده شده کلیسیکه که تعیقک ۷ کلیسیکه و موثر باشد. به طور نسبی صفحات کردن کلیسیکه که دارای می‌تواند به شکل تعلیق از افیل‌های سطحی غنی از کردن‌ها کلیسیکه به پایین منطقه و منجر به تجمع کردن‌ها گردد.

فرفشار افزایش میدانی شدن خاک در مناطق خشک و نیمه‌خشک، جریان فیزیکی ذرات ریز آمیزه محصول در بین سولو خاک باید با مکانیزم اصلی این نوع حرکت منطقی (در جایگاه و انتقال ذرات فیزیکی رس می‌باشد که علت کلودیت کلیسیکه که در شکل تعلیق آنها در عمل مستقیم برای عمل تجمع کلیسیکه (افیل کلیسیکه) است. به نظر می‌رسد این شکل‌ها می‌تواند در انتقال ذرات رسازی زیر آمیزه مولکولی باشد، که نیز انتقال کردن‌ها با شکل تعلیق در خاک‌های مناطق خشک و نیمه‌خشک، نیاز به مطالعه میکرومودالیتی و تحقیقات تکمیلی دارد.

۱- Pedogenic ۲- Nodule ۳- Concretion ۴- Salt movement ۵- Differentiation ۶- K- fabric ۷- Platelet
لازم به ذکر است که تکمیل این شکاف از خاکهای با فاصله واقع در گسترش منطقه، با مقادیر قابل توجهی از رسه‌های انقباض‌یابی موجب می‌شود که توجه به اقلیم می‌دیانه‌ای کرم‌سازی‌های تازه و تخریب شده ناشی از ناچیزی است در خاک دارد.

یک نکته قابل توجه این است که دیگر مسائل شد. با توجه به این انتقال کربنات در طول تغییر خاک، به‌طور گسترده‌ای می‌باشد، اما با گذشت زمان و تداوم آب‌نشین اقیم سطحی خاک در این مناطق هیچگاه با کمک‌سازی کربنات کلیسی به شکل خاصی افزایش نخواهد داشت. به عقیده ایحات، (10) با استحکام کربنات از سطح به عمق، آهنک از طریق فرسایش اراضی مرتفع اطراف و روستای حاصل از پارک‌ها، جابه‌جا کرده شده است. شهابی می‌گوید و با توجه به اقیم سطحی هموار هوا دلیل را که این شکاف خاکی گردیده است این خاکایا در گروه Xerorhepts قرار می‌گیرند.

مرحله میرم: پرورش خاکهای سطحی یافته بر روی مواد آب‌زدایی قدیمی‌تر واقع در دشت‌های آبرفتی - دانش‌های یافتگان (سری خاکهای اسیا)، درای می‌شود به مراتب کمتر A یا اقلیم کربناتی که از افق B واقع می‌شود پیش‌تر از اقلیم کربناتی است که از افق C و پایین‌تر در سطح کربناتی توزیع مجدد و تجمع کربنات‌ها از آفرینی زیرزمینی منجر به تشکیل اقیم کلیسی گردیده است. این خاکایا دارای سطحی ریز بوده و در گروه‌هایی می‌گیرند Calcixerollicollic

مرحله چهارم: خاکهای واقع بر فلاته و تراس‌های فوقانی (سری خاکهای جنگل‌آبی) درای اقیم از تجمع کربنات‌ها بوده که در زمان سخت سیلیست و توانایی شده و تبدیل به افق پتروکالی و گردیده است. این خاکایا دارای میزان تنگی در می‌گیرند گروه Petrocalcic به‌طور کلی بهترین بافت ۲۵ سانتی‌متری و دارد. در گروه Petrocalcic قرار می‌گیرند.

این نتایج تا حدی منطقی بر مشاهدات ایحاتی (10) در دشت سروستان فارس است.
مطالعات کاتیوشناسی رس
مطالعات کاتیوشناسی بخش رس خاک‌ها در بعضی
از پروپیل‌های شاهد به وسیله روش‌های پرش افقی و
الکترومیکروگرافی انجام شد. اشکال 2 تا 5
میکروهای اشعه ایکس
و جداصل شماره 2 تا ۷ تجزیه‌های نمی‌کند کانی‌های رس را نشان
می‌دهد. نتایج حاکی از این است که نوع کانی‌های رس در واحدهای
مختلف فیزیولوگی مشابه و داشته منشأ ماده‌رویلینتی،
اپیت، کلریت و پالی‌گروسیتی بوده و ذخایر فراوانی نسبی آن‌ها از مختل
مداوم و باعث افتادن آن‌ها در همه جایها نیست
پس ضمن بررسی این شاخص از این کانی‌ها می‌باشد. افزایش مقدار نسبی
این و دکان در خاک دشتی در مقیاس به ماده ماده (افقت
رسوایی آبی‌نارنجی و واردی) مؤثر مطلوب فوهر است. اما کانی
اسمکتی فراوانی‌ترین کانی بعضی رس تمام خاک‌های آمیکی
منطقه است و این نشان دهنده آن است که حضور آمیکی در مواد
ماده شید موکا افزایش و تحریک شکل آن، با حفظ و
میکروهای برای کتیرین و ۵۰ و ۶۰ و دوگانه ریشه (۴۳) در خاک‌های مناطق
خشنک، گردان‌های اسماکتی می‌تواند تحت تأثیر
PH و زیان و
کاتیویه قابلیت به وجود آید.
بررسی مطالعات میلانویزی نشان می‌دهد که به طور کلی کاتی
موزی موزیونیت به وسیله موکا افزایش شود، که جنین
تولید که بر آن است، این کانی از طریق تغییرنگه و موکاگذاری
ماده و بدون هیچ‌گونه تغییرهای وارد می‌گردد. و بگذار
خاک‌های آمیکی است. ایستگاه این کانی می‌تواند تحت پیک سری
خشک از اکنون به‌طور یک‌لیولیت شود. میچوری (۳۳)
میکانیسم اصلی این تبدیل اکسی‌سیلسپاسیون آمیک در
فازیه است. همچنین باید به پیک همچنین تغییر نسبی
پیک و دکان در خاک‌های مناطق

1 - Fibrous
دستگاه‌های نسبی (جدول 1) به نظر می‌رسد که قسمت اعظم تشکیل‌کننده مورفولوژی در خاک‌های منطقه به طوری‌اندیز برخوردارند و مقدار کمی به طرفه خاک‌سازی ایجاد شده است. از طرفی این جدول بیانگر تغییر مقدار نسبی بعضی کانی‌ها با عمق نیز می‌باشد. به عنوان مثال افقی سطحی (A1) مقدار کمی اسکالیت و بالی گورسکیت نسبت به افق Bk به کلیک به مقدار زیاد وجود دارد. این امر با گزارش‌های (10) موثر بوده و در خاک‌هایی کاملاً باقی ریزی نکرده و در خاک‌هایی با افق کلیک به مقدار زیاد وجود دارد. این امر با گزارش‌های بالی گورسکیت نسبت به افق Bk (سری چغاگلان) دلیل این امر، میزان شرایط تشکیل مجدد این کانی‌ها است. البته سپیدگی و همکاران (40) گزارش

جدول 2 - جزئی به کمی و فراوانی نسبی کانی‌های رس

| افق | پلاکله | انگشتی | کلیت | ورمیکولت | گورسکیت | مسکن | چغاگلان | Bk1 | چغاگلان | Ckm | جغرافیای
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>(40-40 درصد)</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>(40-30 درصد)</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>(30-10 درصد)</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>+</td>
</tr>
<tr>
<td>(10-0 درصد)</td>
<td></td>
</tr>
</tbody>
</table>

نموده‌اند که در افق C، اما در تحقیق حاضر یکی جزئی مشاهده نمی‌شود.

تصویر 1- الکترون میکروسکوپ نموده رس افق سطحی سری چغاگلان

تصویر 2- الکترون میکروسکوپ نموده رس تحت الأرض سری چغاگلان
منابع مورد استفاده

1- احمدی، ح. 1374. زئومورفولوژی کاربردی. جلد اول. فرسایش آبی. انتشارات دانشگاه تهران.
2- انتشارات ک. و. ش. محمودی. 1375. بررسی خصوصیات فیزیکی، شیمیایی، میکروبی و ردیابی خاک‌های گچی قم.
3- سلحفگان. پنج‌مین کنگره علوم خاک ایران، کرج.
4- جلد 28، شماره 3، صفحه 111-119.
5- امیری، نژاد، ع. و. م. 1374. اثرات توپوگرافی بر تشکیل و تکامل خاک‌های منطقه کرمانشاه. مجله علوم کشاورزی ایران.
6- بای بوردی، م. 1368. خاک پدایش و ردیابی، انتشارات دانشگاه تهران.
7- رامشی، خ. و. ابطحی. 1375. اثرات اقلیمی و توپوگرافی بر روی کانی‌های رسی خاک‌های کهگیلویه و بویراحمد گمسیری. پنج‌مین کنگره علوم خاک ایران، کرج.
8- محمودی، ف. 1373. زئومورفولوژی. جلد اول. زئومورفولوژی ساختاری و دینامیک بورونی. انتشارات دانشگاه تهران.
38. Salinity Laboratory Staff. 1954. Diagnosis and Improvement of Saline and Alkaline Soils. USDA. Handbook 60. Washington, D.C.
York.

