مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان)
با استفاده از نظریه رئوواستاتیستیک

1- کریجینگ

چهانگرد محمدی

چکیده
در این بررسی روست مناسبی جهت مطالعه تغییرات مکانی شوری خاک ارائه می‌گردد. بدن منظور اطلاعات حاصل از مطالعات تفصیلی اراضی منطقه رامهرمز خوزستان که در یک روش مشابه آزاد استفاده گردیده، مورد استفاده قرار گرفت. بررسی تغییرات مزیان شوری، با استفاده از حدود 600 نمونه به فاصله تقریبی 500 متر در سه عمق 0-50، 50-100 و 100-150 سانتی‌متر انجام گردید.

برای تعیین تغییرات مکانی شوری در اعماق مختلف خاک از واریوگرام‌ها به کای واریوگرافی که یک تای آماری مخصوص تجزیه و تحلیل ساختار مکانی متغیرهای جغرافیایی می‌باشد، استفاده شد.

نتیجه‌ی کلی‌ی، مطالعه روزهای کلیدی (EC)، مساحت آزاد، تغییرات مکانی، رئوواستاتیستیک، تفسیره، متغیرهای مکانی، سیم واریانس، واریوگرام، باوره و پهنای کریجینگ

مقدمه
یکی از خصوصیات مشترک عوامل و ویژگی‌های محیطی، تغییرات پوسته مکانی آنها می‌باشد. معده‌ای چنین تغییرات متغیرهای محیطی از نقطه‌ی دیگر، به دنبالی است که مطالعه آنها به وسیله شباهت‌های محیطی تجزیه و تحلیل آماری این

- استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه شهرکرد.
شدها هیچ گونه ارتباطی بین تغییرات مکانی داده‌ها به‌عنوان نتایجی از فاصله بر قرار نمی‌شود.

بنابراین جهت توصیف کمی‌گوهای پراکنش چنین تغییرات محیطی، علاآ و بر مقدار تغییر خصوصیت مورد نظر می‌باشد مفاهیم جغرافیایی مشاهدات نیز به طور همزمان در نظر گرفته شود.

عوامل تأثیری حاصل از مساحی‌خاک‌ها به محدوده‌ای از خاکا و به اندازه‌ی نمونه‌برداری اشاره می‌کند. حال در شرایطی که پیدا می‌شود تغییرات مکانی قابل توجه باشد، اعمال چنین روشی به منظور تفسیر و تعبیه این تغییرات سارس و بعضاً مشکل‌هایی دارد. علاوه بر آن تفسیر برای رویکرد و فرآیندهای مختلف خاک در این روش متغیر یا پارامترهای احتمالاتی و تجارب خاکشناسی استقرار بوده و علوم انتخابی حاصل به صورت کیفی‌بان همگردد. این در حالی است که اساس از اطلاعات و تابع کم‌برای محدوده وسیعی از کاربردها و اعمال مدیریتی خاک اجتناب ناپذیر است. بنیان منظور استفاده از تغییرات آماری جهت تعیین اطلاعات حاصل از نقاط نمونه‌برداری به کلیه منطقه مورد مطالعه ضروری به نظر می‌رسد (۴).

شناختی از لحاظ آمار کاربردی به‌یادداشتهای آماری به منظور برآورد تغییرات مورد نظر در مکانی که نمونه‌برداری نشده است، با استفاده از تغییرات حاصل از نقاط نمونه‌برداری، به‌یادداشت می‌باشد. در این بررسی از روش‌های آماری زوئوژئانستیکی که با آمارکلاسیک متفاوت و مختص تجزیه و تحلیل تغییرات متمرکز جغرافیایی بوده و در علم عادی جهت تعبیه مفاهیم جغرافیایی گونه‌ها و تخیل دخای معادن به کار می‌روند، استفاده گردید. تفسیر تجربیه‌ها چنین جهت به کارگیری روشهای آماری مبتنی بر زوئوژئانستیکی در صدای خاک، با توجه به تحلیل‌های پس‌بازی و میزان شان خاک با استفاده از ناحیه واریوگرام، توسط کمپیوتر (۹) آغاز گردید. بعد از آن مطالعات

1- Geostatistics
شکل 1- نقشه قبیسی‌ایران و محل منطقه مطالعاتی

شکل 2- نقشه واحدهای فیزیوگرافی منطقه مطالعاتی به همراه راهنمای آن

شیوه‌های آبی‌پوش رودخانه‌ای می‌باشد. این اراضی عموماً از رسوبات رودخانه‌ای تشکیل یافته و میزان شوری خاک نسبتاً کم است. اراضی فوق عمدتاً به کشت محصولات زمستانی مانند گندم و جو و گاهی سبزیجات اختصاص یافته‌اند.

با این حال سطح ایستایی یکی از مهم‌ترین خصوصیات اراضی واقع در مناطق پست می‌باشد. در این مناطق ظاهراً فضاهای بزرگ و در برخی از نقاط سطح خاک با لایه‌ای از نرم‌کننده شده شده است. مشاهده گردیده‌های اکسیداسیون و احیا در بسیاری از پرتویل‌های حفر شده در این اراضی باعث شده است. سطح اراضی معنی‌داری دارای طبقات مناطق تا محدوده و نسبت به منطقه می‌باشد. این اراضی عمداً به عنوان مرتفع به‌شمار می‌رود.

دشت‌های آبی‌پوش دامنه‌ای رودخانه‌ای نسبتاً عمیقی در پایان خاک‌هایی از طرف دیگر، چنین خوردن ناکامی‌های زمین‌پیش می‌باشد.

1- Remnant plateau 2- River alluvial plain 3- Piedmont plain 4- Lowland
5- Wind deposit
۱۷۷۳
علوم و فنون کشاورزی و منابع طبیعی / اجرد دوم / شماره چهارم / زمستان

شریه با توجه پراکنش واحدهای فیزیوگرافی گروه‌ای این واقعیت است که در کامپیوتر تطبیقه‌ای کلاس‌های شریه ارتباط مستقیم با نمودارهای منطقه‌ای مطالعاتی دارد. همان طور که ۱ بر روی نقشه شریه ملاحظه می‌گردد کلاس‌های شریه S1 و S2 عمدتاً در پیگیری دشتهای نمی‌گردد. در حالی که اراضی پنجم شامل کلاس‌های شریه S3 و S4 هستند.

در خلال مطالعات نیمه نسبی مورد نظر، حدود ۶۰۰ نقطه (شامل نیم‌خاک و متند) با متوسط فاصله ۲۰۰۰ متر از یکدیگر، مورد مطالعه و از لایه‌های مختلف خاک نمونه‌برداری شد. پس از آماده‌سازی نمونه‌ها، میزان هیدرات الکتریکی عصاره اشباع خاک اندازه‌گیری گردید. از آن جایی که به طور عموم در مطالعات مساحی خاک، میزان متوسط وزنی شریه لاشه‌های مختلف خاک در طبقه‌سازی و برای حساب عمودی و متوسط S1 و S2، ۱۰۰۰-۱۵۰۰ و ۱۵۰۰-۱۰۰۰ سانتی‌متری به همراه نقشه شریه خاک گزارش می‌شود، لذا در این پژوهش از اطلاعات اخیر استفاده شده است.

به منظور آرایی‌گذاری نتایج حاصل از تجزیه و تحلیل‌های آماری به صورت تصادفی انتخاب و به عنوان مجموعه داده‌های مناسب از کلیه تجزیه و تحلیل‌هایی که در این مقاله ارائه شده شد.

روش آماری
به طور کلی روش‌های آماری ژئوتستاتیسکی بر پایه نظریه منغی مکانیک! استوار است (۱۵ و ۷۱). به کمک منغی‌کاپی عبارت است از مهارت محیطی که در فضای دو بعدی و به سه بعد توزیع شده باید. تغییرات این دسته از منغی‌ها از طبقه‌بندی به طبقه دیگر مشخص و دارای پوستکی آشکاری می‌باشد. مشخصه حالت بیان خاک میزان مکانیک خاک می‌باشد. مشخصه‌های مچ‌های پاریس خاک، ترکیب‌های مختلف در خاک و یا شریه خاک می‌باشد. منغی‌های مختلف مکانیک هستند. تفاوت اساسی بین آمار کلاس‌های مختلف شریه در منطقه مورد مطالعه است. مفهوم نقشه

شکل ۳. نقشه حاصل از مطالعات نیمه تفسیری به‌روش مساحی آزاد کلاس‌های شریه (دسی گرامسی پرمر) عبارت است از S1 = ۰-۴ دسی‌گرامسی سانتی‌متر، S2 = ۴-۱۵ دسی‌گرامسی سانتی‌متر، S3 = ۱۵-۳۰ دسی‌گرامسی سانتی‌متر

مطالعات نیمه تفسیری
به منظور تعیین تناسب نسبی اراضی واقع در منطقه مورد نظر برای کشاورزان فاراب، مطالعات نیمه تفسیری این منطقه توسط موسسه تحقیقات خاک و آب اصفهان در طی سال‌های ۱۳۴۲ و ۱۳۴۴ صورت گرفته است (۱). شکل ۳ نقشه شریه منطقه مطالعاتی راک در طی مطالعات نیمه تفسیری تهیه شده توسط این گروه در شهروند شید. این نقشه معروف چگونگی پراکنش کلاس‌های مختلف شریه در منطقه مورد مطالعه است. مفهوم نقشه

۱- Test data set ۲- Regionalized variable

۵۲
مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از...

لذا این ارتباط‌های اختلاف را می‌توان به صورت $\gamma(h) = \text{AVE} \left[Z(x_i) - Z(x_i + h) \right]$ نمود تجزیه و تحلیل قرار داد.

عمل این اختلاف که باینگر نامیده و گزارش می‌دهد، چنین مورد توجه نبوده بلکه اختلاف مقدار میانگین نت نشتر در نقطه x و کلیه نقاط نزدیک به آن قرار گرفته‌اند. مورد نظر می‌باشد نمودار داده در نظر گرفت. با توجه به این که میانگین این کمیت صفر و یا تندیک به صفر خواهد بود در محاسبات مربوط اختلاف را در نظر گرفته و می‌گویند که توسط م معدل زیر مشخص می‌گردد:

$\gamma(h) = \text{AVE} \left[Z(x_i) - Z(x_i + h) \right] \quad \text{(1)}$

این رابطه در حقیقت باینگر و ویانس اختلاف بین دو مقدار $Z(x+h)$ و $Z(x)$ می‌باشد. در عمل، رابطه فوق باید از طریق اطلاعات حاصل از نمونه‌های موجود تخمین زده شود. گاه به توجه به تکمیل کردن جمعاً $N(h)$ از روی نمونه که به فاصله h از یکدیگر واقع شده در دست باشند، به تقسم نمودن طرفین معادله

$\hat{\gamma}(h) = \frac{1}{\sum_i N(h_i)} \sum_i \left[Z(x_i) - Z(x_i + h) \right] \quad \text{(2)}$

در رابطه فوق $\gamma(h)$ را نمودار واریوسیتی متامید. در عمل این تابع مشخص نیست و می‌پایست بر اساس $N(h)$ موجود مقدار تجربی آن به دست آید. بنابراین به ازای مقدار مختلف h به دست آمده به دست آمده، به دست آمده، به دست آمده ترتیب پایستی مدلی را با این مقدار تجربی وقت داد. در عمل با رسم متداوم مقدار $Z(x_i)$ واریوسیتی بر روی مخرج عمومی به ازای فواصل مختلف h، سعی می‌شود که بهترین مدل مناسب بر داده‌ها انتخاب و رسم شود. منحنی به دست آمده را اصطلاحاً

واریوسیت

به طور کلی، تری‌برن روش برای مقایسه‌های خصوصیت

معیار از خاک (Z) در دو نقطه به فاصله مشخص ای پرسی اختلاف مقدار یک مورد نظر در دو نقطه

$\gamma(h) = \text{AVE} \left[Z(x_i) - Z(x_i + h) \right] \quad \text{(3)}$

این اختلاف مورد نظر نبوده بلکه قادر مطلق آن اهمیت دارد.

1. Variogram
2. Semi-variance
در اینجا نشان داده شده است که باید از الگوریتم‌های معرفی شده در جدول 1-9 استفاده کنیم.

۱- Sill
2- Spherical
3- Gaussian
4- Range
5- Nugget effect
6- Optimal estimation
7- Kriging
8- Generic
9- Lagrange multiplier
شکل ۵-‌ منحنی‌های فراوانی داده‌های شوری در اعماق (a) ۵۰-۰ سانتی‌متر، (b) ۱۰۰-۰ سانتی‌متر و (c) ۱۵۰-۰ سانتی‌متر

سیستم معادلات کریجینگ را که با استفاده از محاسبات ماتریسی حل می‌گردد، می‌توان به شکل زیر نوشت:

\[
\sum_{j=1}^{n} \lambda_j (x_i, x_j) + \mu = \lambda (x_i, x_i)
\]

در معادله فوق (\(x_i, x_j\)) و (\(x_i, x_i\)) سیستم واریانس بین نمونه‌ها و واقع در همسایگی آن نقطه می‌باشد. دستگاه معادلات کریجینگ را می‌توان به ارائه براورد نقطه‌ای و با بروز قطعه‌ای انجام داد. در این پروسه براورد آماری برای بلوک‌های

1- Point Kriging 2- Block Kriging 3- Skewness

55
جدول 1- خلاصه آماری داده‌های شوری (ds/m) در اعمال مختلف خاک، قبل و بعد از تبدیل لگاریتمی

<table>
<thead>
<tr>
<th>عمق 0-5 سانتی‌متری</th>
<th>عمق 10-20 سانتی‌متری</th>
<th>عمق 15-30 سانتی‌متری</th>
<th>عمق 30-50 سانتی‌متری</th>
</tr>
</thead>
<tbody>
<tr>
<td>داده‌های اصلی</td>
<td>داده‌های تبدیل</td>
<td>داده‌های اصلی</td>
<td>داده‌های تبدیل</td>
</tr>
<tr>
<td>لگاریتمی</td>
<td>لگاریتمی</td>
<td>اصلی</td>
<td>اصلی</td>
</tr>
<tr>
<td>1200</td>
<td>1320</td>
<td>120</td>
<td>1320</td>
</tr>
<tr>
<td>1015</td>
<td>1125</td>
<td>102</td>
<td>1125</td>
</tr>
<tr>
<td>875</td>
<td>985</td>
<td>87</td>
<td>985</td>
</tr>
<tr>
<td>765</td>
<td>875</td>
<td>76</td>
<td>875</td>
</tr>
<tr>
<td>610</td>
<td>720</td>
<td>61</td>
<td>720</td>
</tr>
<tr>
<td>460</td>
<td>570</td>
<td>46</td>
<td>570</td>
</tr>
<tr>
<td>315</td>
<td>425</td>
<td>31</td>
<td>425</td>
</tr>
<tr>
<td>170</td>
<td>275</td>
<td>17</td>
<td>275</td>
</tr>
<tr>
<td>95</td>
<td>106</td>
<td>9</td>
<td>106</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

تعدادمیانه‌ها
- میانگین
- میانه
- واریانس
- حداکثر
- حداکثر
- چنگال
- ضریب تغییرات

روخانه واقع شده در حالتی که مقدار بزرگترین پیش‌سنجش شما در یک پردازش بالا و به ورود اراضی پست قرار گرفته است.

نتایج بین‌گیر این واگذاری است که مقدار های کمترین یونسیفمیت با دانه‌های خاک در ارتقاء مستقیم با خصوصیات لناداسکب منطقه مطلوب است. این داده‌های نشان می‌دهد تغییرات و نوسانات شدید شوری در داخل هر کدام از واحدهای فیزیوگرافی بود.

یک حاکم بی‌پرستی مطالعه ساختار تغییرات مکانیکی داده‌های شوری واریوگرام‌های تجربی، پس از تبدیل لگاریتمی داده‌ها، با در نظر گرفتن متوسط فاصله 800 متر، به طور مجازی برای آن عمک محاسبه و ترسیم شدند. نتایج حاکم از آن است که واریوگرام‌های مربوط به طریق ایدل‌آن با مدل کروی سازگاری دارد. در این مدل کروی مربوط به این مدل کروی سازگاری دارد. در این مدل کروی سازگاری داده‌های شوری به صورت لگاریتمی تبدیل و خلاصه آماری حاصل در جدول فوق ذکر آورده شده است. همان طوری که ملاحظه می‌شود بین داده‌های لگاریتمی داده‌ها اختلاف بین میانگین و میانه در غیر عمل به شدت کاهش یافته است.

مقاومه میزان متغیر شوری در هر عمق خاک تشانگر این تکنیک است که میزان هداهنکرکی عصاره اشاع خاک با افزایش عمق خاک کاهش می‌یابد. روند مشاهده برای تغییرات واریانس با عمق نیز مشاهده شده است. از طرف دیگر بر مقدار ضریب تغییرات با افزایش عمق افزوده شده که چنین افزایش احتمالاً تحت تأثیر نوسانات موقتی سطح ایستا بوده است (10).

به منظور پی بردن به چگونگی پراکنش مکانیکی داده‌ها، مقدار جدایی کرکی عصاره اشاع خاک به صورت نتیجه‌های تغییرات در شکل 6 نمایش داده شده است. این تغییر به دست آمده که میزان عصاره اشاع خاک به چگونگی پراکنش مقدار شوری در منطقه مطلوبی می‌باشد. همان طوری که ملاحظه می‌شود کمترین مقدار شوری عوموماً در کنار و به موازات

1- Trend
شکل 6- نقشه پراکنش داده‌های شوری در اعماق (a) 0-5 سانتی‌متر، (b) 5-100 و (c) 100-150 سانتی‌متر
شكل 7- واریوگرام‌های تجزیه (\(\sqrt{\ln(dS/m)} \)) (نقاط و مدل‌های برآورد داده شده) (منحنی‌ها) داده‌های شوری در اعتیاق

دو مقياس اقتصادی و محلی تیم‌بندی. علاوه بر آن، در تمامی واریوگرام‌ها میزان اثر قطعه‌ای نسبی یکسان و حدود ۲۸٪ حد آستانه را تشکیل می‌دهد. این امر را می‌توان ناشی از تغییرات تصادفی شوری خاک در هر مکان دانست که در فواصل کمتر از فاصله نمونه‌برداری بروز می‌نماید. زیاد بودن نسبت اثر قطعه‌ای به حد آستانه، باعث کاهش دقت برآورد آماری توسط کراینگی می‌شود (۱۴). هر سه واریوگرام‌های دامنه تقریباً یکسان -
جدول ۲- ضرایب مدل‌های پرازش داده شده برای پارامترهای تجربی سه‌چهارم در اعماق مختلف خاک

<table>
<thead>
<tr>
<th>دامنه تأثیر</th>
<th>حد آستانه</th>
<th>اثر قطعه‌ای (Ln(dS/m))</th>
<th>مدل</th>
<th>عمق (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۰۳</td>
<td>۱/۸۱۵</td>
<td>۵۰۰</td>
<td>کروی</td>
<td>۵۰-۵۰۰</td>
</tr>
<tr>
<td>۱۲/۱۰</td>
<td>۱/۳۸۷</td>
<td>۵۰۰</td>
<td>کروی</td>
<td>۵۰-۱۰۰۰</td>
</tr>
<tr>
<td>۱۳/۶۰</td>
<td>۱/۱۵۶</td>
<td>۵۰۰</td>
<td>کروی</td>
<td>۱۵۰-۱۰۰۰</td>
</tr>
</tbody>
</table>

(a) (b)

شکل ۸- نقشه‌های کریجینگ شوری در اعماق (a) ۱۵۰-۱۰۰۰ سانتی‌متر و (b) ۱۰۰۰-۵۰۰ سانتی‌متر
مقایسه نتایج کریجینگ برای اعمال مختلف، گویای این واقعیت است که میزان نرخ داو در لایه سطحی بیشتر از لایه‌های عمیق‌تر، به دلیل تغییرات در غلیب بودن فرآیند
صعود مولیکول از محلول در نیمه خاک دارد.
به مطابق یافته‌های باشک خاک و این واقعیت که کدام یک از تنش‌های شوری حاصل از مصالح خاک و کریجینگ، دارای دقت قابل قبولی مطرح هستند از داده‌های میزان نیمه قطعه آنها استفاده شد. به‌طور کلی برای این اکثریت مصالح شوری نیم‌نیم
افزایش می‌تواند تحقیقات خاک و آب (2)، برای کاهش
به نمایندگی قطعه مورد نظر با شاخص 120 بروز واقع شدند، استفاده گردید.
پس از بروز آماری، تاکنون از حالت‌گذاری به
حلول اولیه دیگری بزرگ‌تر داده شد. شکل 8 نتیجه‌های شوری
حاصل از کریجینگ، بیان دارد عملکرد شرایط در این تنها متمایز شده است. چنین نتایج‌های این اثبات داشته می‌شود مشخص است که داو در لایه‌های عمیق‌تر نرخ معیار بوده و میزان
متغیرهای تنش‌های خاکی مشخص گردید. مقایسه بین نتایج
تو او روش با محتوایی جدول و طرفه بهتری منجر گردید (5) در این جدول داده‌های میزان همه به وسیله سیستم‌های جدول مزبور
نماشگ داده‌های شده است، با تحقیقات حاصل از روش مساحی
آزاد و کریجینگ برای کلاس‌های مختلف شوری مقایسه گردید.
به طور کلی در جداول دو طرفه تنش‌های اعتماد که بر روی قطر اصلی
و فراوانی داده‌های هدایت الکتریکی کمتر از 2 دسی‌زمین بر
متر است. از دوی نگه نشودی، تنش اقتبا حاصل از مصالح
مطابق با 15% از ارایه‌های کلاس 58 می‌باشد. در عوض، هریک از داده‌های منجر به این نتایج است که داو در لایه‌های عمیق‌تر نرخ مایل بوده، به‌طور کلی از روش‌ها بروز مکانیزم تطبیق و تفسیر نمود.
همان طوری که در جدول مزبور مشارکت می‌شود، روش
کریجینگ منجر به نتایج کسری شده که دارای دقت بالایی
نسبت به نتایج حاصل از روش مساحی آزاد می‌باشد. ممکن
از نظر کاربردی، چنین دقت نمی‌باشد. ابتدا تقسیم. جدول دو
طرح‌های را می‌توان با گوناگون دیگر مورد نظر و بررسی شرای
دار طوری که دو دانه تنش‌های و اشکال شوری در برابر
طرح جدایی تنش‌ها نمود. بدین ترتیب می‌توان چگونگی پردازش
تو ارزیابی نتایج در میان کلاس‌های مختلف را نشان داد. برای این

1- Back-transformation
2- Two-sided similarity table
3- Overall accuracy
جدول 3- جداول تشایه دو طرفه بین داده‌های معیار (ستون‌ها) و (8) برای داده‌های طبقه‌بندی شده توسط کریجینگ،

(b) تنشأ شوری حاصل از مساحی آزاد (ردیفها)

<table>
<thead>
<tr>
<th>کریجینگ/داده‌های معیار</th>
<th>جمعه</th>
<th>سر</th>
<th>سه</th>
<th>چهار</th>
<th>پنج</th>
<th>سه‌نفر</th>
<th>چهار‌نفر</th>
<th>پنج‌نفر</th>
<th>شصت‌نفر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S4</td>
<td>S3</td>
<td>S2</td>
<td>S1</td>
<td>S6</td>
<td>S5</td>
<td>S4</td>
<td>S3</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>S6</td>
</tr>
<tr>
<td>53</td>
<td>19</td>
<td>-</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>S3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>S4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جمع ستون</td>
<td>67</td>
<td>12</td>
<td>7</td>
<td>16</td>
<td>50</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای/٪</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

دقت کلی: 67 ٪

<table>
<thead>
<tr>
<th>مساحی آزاد/داده‌های معیار</th>
<th>جمعه</th>
<th>سر</th>
<th>سه</th>
<th>چهار</th>
<th>پنج</th>
<th>سه‌نفر</th>
<th>چهار‌نفر</th>
<th>پنج‌نفر</th>
<th>شصت‌نفر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S4</td>
<td>S3</td>
<td>S2</td>
<td>S1</td>
<td>S6</td>
<td>S5</td>
<td>S4</td>
<td>S3</td>
</tr>
<tr>
<td>50</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>7</td>
<td>S6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>17</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>17</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>S3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جمع ستون</td>
<td>50</td>
<td>12</td>
<td>7</td>
<td>16</td>
<td>50</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای/٪</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

دقت کلی: 67 ٪

1- Omission error 2- Commission error
خطاهای نوع اخیر است. در حقیقت این نوع خطایهای کربنیک به راحتی می‌توان به منظور تعیین ساختار پراکنش مکانی شوری در منطقه مورد مطالعه استفاده نمود. این امر از نظر ناشی از اثرات پیوستهٔ سنگین در روش کربنیکگذشت (14). از سوی دیگر، با توجه به ماهیت کمی و هم‌گونی قطعه‌ها، از آنها می‌توان به عنوان بازه‌های مختلف اطلاعاتی در سیستم‌های اطلاعات جغرافیایی، جهت تجزیه و تحلیل‌های کمی پیروج جشن. وقتی برای نمونه در گزارش روش‌های معمول تهیه نشده‌های شوری خاک، از روشهای آماری ارائه شده در نظر گرفت، تست‌نامیستیک نیز استفاده گردید.

سپاسگزاری

بدین وسیله از آقای مهندس فريدون نوربخشی عضو هیئت علمی بخش تحقیقات خاک و آب اصفهان، به خاطر اخذی نهادن اطلاعات و نشانه‌ها مربوط تشریک و قدردانی می‌شود.

منابع مورد استفاده

1- وزارت کشاورزی. 1367. مطالعات خاک شناسی نیمه تفاضلی دقیق منطقه رامهرمز استان خوزستان. مؤسسه تحقیقات خاک و آب، شماره 1373. صفحه.
2- وزارت کشاورزی. 1358. راهنمای طبقه‌بندی آراضی برای کشت آبی. مؤسسه تحقیقات خاک و آب، تشریه شماره 1005. صفحه 103.

1- Reliability 2- Smoothing effect 3- Geographical Information System (GIS)