مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان)
با استفاده از نظریه زئوواستاتیستیک
1- کریجینگ

جهانگرد محمدی

چکیده
در این برسی روشن المناسی جهت مطالعه تغییرات مکانی شوری خاک ایران مورد بررسی در منطقه ای به بهره‌مندی آماده شده در منطقه ایی استفاده شده که برای تنظیم تغییرات مکانی شوری خاک ایران مورد استفاده قرار گرفته است. بررسی تغییرات مکانی شوری با اجرای تحقیقات میدانی و در سطح منطقه ای استفاده شده است. مقدار تغییرات مکانی شوری خاک ایران مورد استفاده در منطقه رامهرمز استفاده شده است.
نتایج بیشتر عکس از شان داده که در زمره تأثیر انتقال واریوگرام‌های محیطی شده در سطح منطقه رامهرمز استفاده شده است.

cih enگرایی‌ها کلیدی - شوری، هیاتکتکی (EC)، مساحت آزاد، تغییرات مکانی، زئوواستاتیستیکی، نظریه متفنگر مکانی، سیم واریانس، واریوگرام، برآورد بهینه کریجینگ

مقدمه
یکی از خصوصیات مشترک عوامل و ویژگیهای محیطی، تغییرات پوسته مکانی آنها می‌باشد. معنی چنین تغییرات متفنگر محیطی از نقطه‌های به نقطه سیم واریانس، برآورد بهینه کریجینگ

مطالعه آنها به وسیله سیم واریانس مکانی محیطی تجزیه و تحلیل آماری

استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه شهید رضوی
شیوه‌ها هیچ‌گونه ارتباطی ریاضی بین تغییرات مکانی داده‌ها به عنوان تابعی از فاصله بزرگ‌ترین می‌شود.

با این حال، توصیف کمی اگر گروهی پرآکنش کننده متفاوت‌مانند خودفیزیکی قابل مقدماتی توانایی مورد نظر می‌باشد موضوع جغرافیایی ماه‌الاندیشته‌های نیز به طور همزمان در نظر گرفته شود.

عوامل اولیه حاصل از مساحی تاکید داده‌ها به محدوده‌ای از خاک و به نهایی نمودنی‌دارای اشاره می‌کند. حال در شرایطی که پیداه شهر تغییرات طبیعی قابل توجهی باشد، اعمال نیروی به منظور تفسیر و یکی از تغییرات نارسا و بعضی مشکل آفرین خواهد بود. علاوه بر آن تفسیر و پیگیری و فرآیندهای مختلف خاک در این روش عمدها بر پایه اطلاعات و تجارب خاک‌شناس اسناد و علوم تابعی حاصله به صورت کیفی پیش‌گردد، این در حالی است که محدوده از اطلاعات و تابعی کمی برای پیش‌گردد و علت زیادی از کاربردها و اعمال مدیریتی خاک اجتنابی ناپذیر است. به‌نیت منظور استفاده از تغییرات آماری جهت تعیین اطلاعات حاصل از نقاط نمودنی‌داری به کل سطح منطقه مورد مطالعه ضروری به نظر می‌رسد (۲).

۱) گزارش‌هایی از علم کاربردی بنام حوزه‌ی تابعیت‌سنجی، به‌نیت جمع‌آوری و روش‌ها

۲) گزارش‌هایی از علم کاربردی بنام حوزه‌ی تابعیت‌سنجی به‌نیت جمع‌آوری و روش‌ها

۳) گزارش‌هایی از علم کاربردی بنام حوزه‌ی تابعیت‌سنجی به‌نیت جمع‌آوری و روش‌ها

محدوده مطالعه در جنوب غربی شهر رامهرمز واقع در استان خوزستان، حد فاصل طول‌های جغرافیایی ۵۰°۲۹ و ۵۰°۳۲ شرقی و عرض‌های جغرافیایی ۳۰°۱۷ و ۳۰°۰۷ شمال و شرق است. وسعت تقیبی آن ۴۰۰ هکتار و دارای ارتفاع متوسط ۱۱۰ متر از سطح دریا داشته است. متوسط بارش سالیانه بالغ بر ۳۰۰ میلی‌متر و بارش‌های حاکم در سال‌های دمای تابعیت‌سنجی است. شکل ۱ نشان دهنده شیوه‌ای ایران و میکرویت منطقه مطالعاتی را نشان می‌دهد.

۱- Geostatistics
مطالعه تغییرات مکانی شوری خاک در منطقه راه‌مرزی (خوزستان) با استفاده از...

شکل 1- نقشه قیاسی ایران و محل منطقه مطالعاتی

شکل 2- نقشه واحدهای نیزی‌پراکنی و خاک‌ها

1- Remnant plateau
2- River alluvial plain
3- Piedmont plain
4- Lowland
5- Wind deposit
شکل 3- نتایج تحلیل مطالعات نیمه تفسیری بدوش مساحی ازد. کلاس‌های شوری (دستی و دستگاهی) عبارت است از:

\[S_{1} = 3 - 6 \, \text{ds/m}, \quad S_{2} = 6 - 9 \, \text{ds/m}, \quad S_{3} = 9 - 12 \, \text{ds/m} \]

روش آماری

به منظور تعیین تناسب نسبی اراضی واقع در منطقه مورد نظر برای کشاورزان فارابی، مطالعات نیمه تفسیری این منطقه توسط موسسه تحقیقات خاک و آب اصفهان در طی سال‌های ۱۳۶۴ و ۱۳۷۰ صورت گرفته است (۱). شکل ۳ نشان می‌دهد این نتیجه برخوردار فاکتورهای مختلفی در خاک و اراضی، کلاس‌های مختلف شوری و متغیرهای مکانی هستند. تفاوت اساسی بین آمار کلاس‌ها و

1- Test data set 2- Regionalized variable
مطالعه تغییرات مکانی شوری خاک در منطقه‌ی رامهرمز (خوزستان) با استفاده از...

\[
\gamma(h) = \text{AVE} \left[Z(x_i) - Z(x_i + h) \right]^2
\]

این رابطه در حقيقة بیانگر واریانس اختلاف بین دو مقدار \(Z(x+h) \) و \(Z(x) \) اطلاعات حاصل از تئوری‌های موجود را تضمین می‌کند. هر گاه فرض کنیم که جمعاً \(N \) زوج نمونه‌های مشابهی داشته باشیم، با تقسیم تعداد واریانس توسط میانگین مقدار معادله [1] به عدد دیگر رابطه زیر حاصل می‌شود:

\[
\hat{\gamma}(h) = \frac{1}{N} \sum_{i=1}^{N} \left[Z(x_i) - Z(x_i + h) \right]^2
\]

در رابطه فوق \(\hat{\gamma}(h) \) را سمتی واریانس \(\gamma(h) \) نامیده‌ایم. در عمل این تابع مشخص نوبه و می‌باشد بر اساس تئوری‌های موجود مقدار تجربی آن به دست می‌آید. بنابراین به ازای مقدار مختلف \(h \) بدین ترتیب پایه‌ای تشکیل می‌دهد. این به دست آمده، چنین ترتیب به سمتی مقدار تجربی ورود می‌کند. این مقدار تجربی به‌صورت اصلی در رابطه فوق \(\gamma(h) \) دارای معنی دارد.

\[
Z(x_i) - Z(x_i + h)
\]

به طور کلی تجربی روش برای مقایسه خصوصیت معیتی از خاک (Z) در دو نقطه به‌صورت تجربی مقدار تجربی هر نقطه از دو نقطه اختلاف مقدار خصوصیت مورد نظر در آن دو نقطه می‌باشد. از آن جایی که علائم می‌باشد، این اختلاف مورد نظر به‌صورت کد مطلق آن اهمیت دارد.
از طرف دیگر به حداکثر رسه سندرم واریانس تخمین را خوب می‌کنم، بیشتر به‌صورت است. از نظر این‌ها، در تخمین داده‌های حاصل از نمونه‌های موجود استفاده نمود. چنین

\[
\hat{Z}(x) = \sum_{i=1}^{N} \lambda_i Z(x_i)
\]

\[
\lambda_i = \frac{1}{N} \sum_{i=1}^{N} \lambda_i
\]

از طرف دیگر به حداکثر رسه سندرم واریانس تخمین را خوب می‌کنم، بیشتر به‌صورت است. از نظر این‌ها، در تخمین داده‌های حاصل از نمونه‌های موجود استفاده نمود. چنین

\[
\hat{Z}(x) = \sum_{i=1}^{N} \lambda_i Z(x_i)
\]

\[
\lambda_i = \frac{1}{N} \sum_{i=1}^{N} \lambda_i
\]

از طرف دیگر به حداکثر رسه سندرم واریانس تخمین را خوب می‌کنم، بیشتر به‌صورت است. از نظر این‌ها، در تخمین داده‌های حاصل از نمونه‌های موجود استفاده نمود. چنین

\[
\hat{Z}(x) = \sum_{i=1}^{N} \lambda_i Z(x_i)
\]

\[
\lambda_i = \frac{1}{N} \sum_{i=1}^{N} \lambda_i
\]
شکل ۵- منحنی‌های فراوانی داده‌های شوری در ابعاد (۳) ۲۰۰۰۰ سانتی‌متر، (۴) ۱۰۰۰۰-۵۰۰۰۰ سانتی‌متر و (۵) ۵۰۰۰-۱۰۰۰ سانتی‌متر

در ابعاد ۵۰۰۰ متر صورت گرفت.

نتایج و بحث

خلاصه آماری داده‌های شوری در سه عمق مختلف خاک در جدول ۱ آمده است. نتایج حاصل از این جدول و همچنین شکل محقق‌های فراوانی داده‌ها (شکل ۵) بیانگر توزیع داده‌ها با چولگی ۴ توزیع نرمال در جهت مثبت است، به گونه‌ای که مقادیر

میانگین عادیت الکتریکی در عمق اول سه پراپر مقدار میانه می‌باشد و میزان ضریب تغییرات برابر یک سه مسبار نزدیک است. از این جایی که بیانگر داده‌های توزیع نرمال ممکن است در تجزیه و تحلیلهای آماری بعدی به ویژه

محاسبه واریوگرام (۱۴)، اثرات نامطلوبی بر جای گذاشته، لذا

c_{ij} = \sum_{j=1}^{n} \lambda_j y(x_j, x_i)

در معادله فوق، پلاگر سمبول واریانس بین نمونه‌ها و

\sum_{i=1}^{n} \lambda_i = 1

واقع در هم‌سایگی آن نشانه می‌باشد. دستگاه‌های مالیاتی واریانس با توزیع نرمال و یا براورد

قطعهای انجام داده، در این پرسی برآورد آماری برای پیوسته

۱- Point Kriging ۲- Block kriging ۳- Skewness
جدول ۱- خلاصه آماری داده‌های شوری (ds/m) در اعماق مختلف خاک، قبل و بعد از تبدیل لگاریتمی

<table>
<thead>
<tr>
<th>العمق</th>
<th>عمیق ۱۵-۱۰ سانتیمتری</th>
<th>عمیق ۱۰-۰ سانتیمتری</th>
<th>داده‌های اصلی</th>
<th>داده‌های لگاریتمی اصلی</th>
<th>داده‌های لگاریتمی بعدادتبدیل</th>
<th>داده‌های لگاریتمی بعدادتبدیل اصلی</th>
<th>تعداد داده‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۸۰</td>
<td>۶۱۴</td>
<td>۶۱۶</td>
<td>میانگین</td>
<td>میانگین</td>
<td>میانگین</td>
<td>میانگین</td>
<td>۱۶</td>
</tr>
<tr>
<td>۲/۱</td>
<td>۲/۳</td>
<td>۲/۲</td>
<td>میانه</td>
<td>میانه</td>
<td>میانه</td>
<td>میانه</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۹</td>
<td>۱۹/۲</td>
<td>۱۹/۳</td>
<td>نرمال</td>
<td>نرمال</td>
<td>نرمال</td>
<td>نرمال</td>
<td>۲۰</td>
</tr>
<tr>
<td>۹/۷</td>
<td>۶/۲</td>
<td>۶/۲</td>
<td>نرمال</td>
<td>نرمال</td>
<td>نرمال</td>
<td>نرمال</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱/۷</td>
<td>۱/۷</td>
<td>۱/۷</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱/۷</td>
<td>۱/۷</td>
<td>۱/۷</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>۲۰</td>
</tr>
<tr>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۳۹</td>
<td>۱۳۹</td>
<td>۱۳۹</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>متناوب</td>
<td>۲۰</td>
</tr>
</tbody>
</table>

ضریب تغییرات

۵۶

1- Trend
شکل ۶- نقشه پراکنش داده‌های شوری در اعماق (a) ۰–۵ سانتی‌متر، (b) ۵–۱۰۰ سانتی‌متر، و (c) ۱۰۰–۱۵۰ سانتی‌متر
شکل ۷- واریوگرام‌های تجزیه

\[
\text{Ln}(dS/m) \]

(a) ۰-۱ سانتی‌متر‌ و (b) ۱۰۰-۲۰۰ سانتی‌متر و (c) ۱۵۰-۳۰۰ سانتی‌متر

۲کیلومتر هستند که به طور واضح نگه‌دارنده جغرافیایی مواز مادری و واحدی‌های نیزی‌گرافیکی را تشکیل می‌دهد. در حقيقة دامنه واریوگرام‌های هر سه منطقه بر پایه فاصله است.

واحدی‌های نیزی‌گرافیکی به طور متداول در سطح منطقه تغییر می‌نمایند. به طور کلی، ثبات عمومی واریوگرام‌ها یا یک‌دریگر بیانگر کیس بودن ساختار مکانی شورو در اعماق مختلف خاک می‌باشد. به دیگر سخن، فاصله‌هایی راک مانند به پیده شورو در

دو می‌کنند و محلی نمی‌باشند. علاوه بر این، در تمامی واریوگرام‌ها دیده شده است که فاصله‌هایی بین نقطه‌هایی که در فاصله هم‌بینی می‌باشند، این امر را می‌توان ناشی از تغییرات تصادفی شوروی خاک در هر مکان داست که در فاصله مکثر از فاصله نمونه‌برداری بروز می‌نماید. زیاد بودن نسبت اثر قطعات به حد آستانه، باعث کاهش دقت بروز آماری توسط كریج‌گینگ می‌شود (۱۲). هر سه واریوگرام‌های دامنه تقریباً یکسان هستند ۱۲-
جدول ۲- ضرایب مدل‌های پراژ داده‌شده بر اساس تجربیات اصولی در اعمای مختلف خاک

<table>
<thead>
<tr>
<th>عمق (سانتیمتر)</th>
<th>اثر قطعه‌ای</th>
<th>حد آستانه</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰ - ۵۰۰ سانتیمتر</td>
<td>۱/۸۱۵</td>
<td>۰/۹۱</td>
<td>کروی</td>
</tr>
<tr>
<td>۵۰۰ - ۱۰۰۰ سانتیمتر</td>
<td>۱/۳۸۷</td>
<td>۰/۵۱۸</td>
<td>کروی</td>
</tr>
<tr>
<td>۱۰۰۰ - ۱۵۰۰۰ سانتیمتر</td>
<td>۱/۱۵۶</td>
<td>۰/۲۳۸</td>
<td>کروی</td>
</tr>
</tbody>
</table>

شکل ۸- نقشه‌های کریجینگ شوری (dS/m) در اعمای (a) ۰ - ۵۰ سانتیمتر و (b) ۵۰ - ۱۰۰ سانتیمتر و (c) ۱۵۰ - ۵۰۰ سانتیمتر
مقایسه نقشه‌های کریچینگ برای اعماق مختلف گویای
این واقعیت است که میزان شوری در سطح مسطحی به‌صورت
الی‌ها به معنی بوده که بار دیگر دلالت بالای بودن گونه‌های
صعود می‌توانست املاک محلول در نیم‌خازن دارد.
به‌منظور پاسخ‌گویی به این پرسش که کدام یک از
نقشه‌های شوری حاصل از حس‌های خاکی و کریچینگ دارای
دقت بالایی داشته‌اند می‌تواند شوری این نقشه‌ها از
هم‌سازی تطبیق‌های شوری و آب (19) برای مکان‌هایی
که در یک دهه، معمولا به‌طور تعمیمی و معادل آن تیکت تابی
تئوری از کریچینگ و نقشه شوری حاصل از تئوری را
تحت‌البقیه هم‌سازی مخصوص تخصص کرد. مقایسه بین تئوری
در روش‌ها و پاسخ‌های جدول دار تحقیقات ۳ تا ۷ گرفته (۳).
در این جدول دهه‌های میزان که به وسیله سطح‌های جدول مزبور
نماشگر داده شده است، با تئوری‌های حاصل از روش سطحی
آزاد کریچینگ برای کلاس‌های مختلف شوری مقایسه گردید.
به طور کلی در جداول د د طرحی تئوریهای اضافی که بر روی تئوری
واقع شده یعنی توانایی بین روش این تئوری و واقعیت را نشان
می‌دهد. علاوه بر آن، درصد دقت کل ۲ بین دو دسته از داده‌ها
می‌توان از تئوری جمع عناصر تئوری را کل عناصر مورد
پرسیده به‌دست آورده، اگر توان یافته را می‌توان به صورت و دقت
کل هرکدام از روشهای پاسخ‌های جدول مزبور معمولی ضمینه و تفسیر نمود.
همانطور که در جدول مزبور می‌شود، در روش
کریچینگ منجر به نقشه‌های شوری، شده که دارای دقت بالایی
نسبت به نقشه‌های مرزی از روشهای گویا آزاد می‌باشد. مهندی
از نظر کاربردی کنی دقیق نبایستی ابزار در برابر شوری
جزا، دلیل این می‌تواند بر روی دیگر میزان شوری و بررسی قرار
داده طرحی که در دو دسته نشان دهنده اشکال مزبور شوری را بر
طرح جداول‌تهیه نمود. بدین ترتیب می‌توان چهارگوش پرناشک
توسعه‌دیده در بین نشان‌های از میان کلاس‌های مختلف را نشان داد. برای این

این منطقه شده است، این اثر در اعماق مختلف نیم‌خازن خاکی‌اند.

جامعی نمود.

به‌منظور تهیه نقشه‌های پراتکنش شوری در اعماق مختلف، روش کریچینگ معمولاً به تضمین مقدار شوری برای نقطه‌ها
به ۴۰۰۵۰۰ متر در سطح منطقه مطلوبی استفاده می‌شود. به این ترتیب برای مقدار شوری در نقاطی که اپنی می‌شود مقدار
نگهداری از در جداول حاصل از ۱۲ حالت مختلف که در
هم‌سازی تطبیق، پس از برآوردهای ویژه از حالت‌های اپنی در
حالاول دیتت برگشت داده شد. شکل ۸ نشان‌های شوری
حاصل از کریچینگ برای سه مکان مختلف خاک را نشان می‌دهد.

رابطه نشان‌دهنده شهد است. چنین نقشه‌هایی این ادعا را کننده
فرآیند شوری را می‌توان از طریق شناخت مکانی در
لندسکپ درک نمود، به‌طور اشباع مناسب. مقایسه این
نتیجه‌ها با نقشه‌های حاصل از مطالعه نیم‌خازن در
شاگرد تایپ، فارسی زبان به آن است.

نقشه‌های کریچینگ نشان می‌دهد که حدود ۱۸٪ مناطق
تخمین زده شده دارای هدایت الکتریکی کمتر کمتر از ۰.۵ زمین بر
متر است. از سوی دیگر نقشه‌های حاصل از این منطقه
مطالعاتی که از دیگر ۱۵٪ از اراضی که دارای کلاس ۸
می‌شود، لاک دارد. همچنین نشان شده که برای شوری
بیش از ۶۵٪ زمین بر متر می‌باشند. در حالی که این
میزان برای نقشه شوری حاصل از مطالعه مزبور حدود
۵۰٪ می‌باشد.

تغییرات قدرتمند و پویا شوری خاک در سطح منطقه، به
خوبی توسعه نقشه‌های کریچینگ نشان داده شده است. اراضی فاقد
محدودیت شوری عمده در مجاورت رودخانه واقع شده‌اند. از
سوا دیگر تلفات شوری بالا در مجاورت زیادی (بیش از ۲۲ دسی
زمین بر متر) گالا بروی اراضی پست و در مجاورت بیشترها
قرار گرفته‌اند.
جدول 3- جداول تغییر دو طرفه بین داده‌های معیار (ستون‌ها) و (ب) برآوردی طبقه‌بندی شده توسط کریجنگ

(a) تنش شوری حاصل از مساحی آزاد (ردریگه)

<table>
<thead>
<tr>
<th>کریجنگ/داده‌های معیار</th>
<th>خطا/%</th>
<th>جمع ردریگ</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>2</td>
<td>9</td>
<td>S1</td>
<td>S2</td>
<td>S7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2</td>
<td>1</td>
<td>S3</td>
<td>S4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جمع ستون</td>
<td>16</td>
<td>7</td>
<td>6</td>
<td>S4</td>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطا/%</td>
<td>44</td>
<td>50</td>
<td>100</td>
<td>S5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دقت کلی:</td>
<td>81/40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) مساحی آزاد/داده‌های معیار

<table>
<thead>
<tr>
<th>خطا/%</th>
<th>جمع ردریگ</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>S0</td>
</tr>
<tr>
<td>76</td>
<td>17</td>
<td>4</td>
<td>S1</td>
<td>S2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>S4</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>16</td>
<td>7</td>
<td>6</td>
<td>S4</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>خطا/%</td>
<td>56</td>
<td>50</td>
<td>100</td>
<td>S5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>دقت کلی:</td>
<td>36/46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

گرفته‌های شور از تعداد حاصل را اصطلاحاً خطاهای ناشی از حذف نامیده‌اند. اگر نتیجه‌گیری این عملیات دقیق باشد، نتیجه‌های خطاها ناشی از ملحوظ داشتن می‌باشد. بر اساس مدل، کاربری خواهان حداکثر بودن نمود. در صورتی که تعداد کل عناصر موجود در ستون با ردریگ مربوطه تقسیم نمود، نمودار تعداد کل عناصر موجود در ستون بوده است.

1- Omission error 2- Commission error
رنگ تیغه‌ای نوع اخیر است. در حقیقت این نوع تیغه‌ای دهندگه درجه قابلیت اعتماد یک تیغه‌ای باشد (20). سه‌گانه‌گونه گونه ممکن در منطقه مورد مطالعه استفاده نموده است. این امر از می‌توان نشانزدی در اثر روابط پیوستهٔ تاسیب در رشته کریگینگ دانست (14). از سوی دیگر، با توجه به ماهیت کمی این گونه تیغه‌ها، از آنها می‌توان به عنوان لایه‌ای مختلف اطلاعاتی در سیستم‌های اطلاعات جغرافیایی یا جهت جستجوی و تحلیل‌های کمی ای بهره جست. بنابراین، می‌توان در کنار روش‌های معمول تهیه تیغه‌های شوری خاک از روش‌های آماری ارائه شده در تحقیقات، درون‌بالاستیستیک نیز استفاده کرد.

سیاست‌گذاری

بدین وسیله، از آن‌ها مهدس فردیون نوری‌خیت عضو هیئت علمی پذیرفته تحقیقات خاک و آب اصفهان، به خاطر انتخاب و انتخاب نهاد اطلاعاتی و تیغه‌ای مربوط تکرر و قدردانی می‌شود.

منابع مورد استفاده

1- وزارت کشاورزی. 1367. مطالعات خاک شناسی نیمه تفصیلی دقیق منطقه راهبردی استان خوزستان. مؤسسه تحقیقات خاک و آب، شماره 1367 صفحه 37.
2- وزارت کشاورزی. 1358. راهنمای طبق‌بندی اراضی برای کشت آبی، مؤسسه تحقیقات خاک و آب، شماره شماره 1367 صفحه 37.

1- Reliability 2- Smoothing effect 3- Geographical Information System (GIS)

