همبستگی بین منگنز عصاره‌گیری شده به وسیله پنچ روش با خصوصیات خاک و
پاسخ‌های گیاه سویا در خاک‌های آهکی استان فارس

چکیده

تعداد ۲۲ نمونه گیاه (از عملکرد ۱۰۰ نمونه) استان فارس به روش‌های DTPA، آزمایش Na, NaEDTA و H₂PO₄ در مقدارهای برابر ۲۰۰ مایلی‌گرم در کیلوگرم، ۵ مایلی‌گرم در کیلوگرم، ۲۰ مایلی‌گرم در کیلوگرم و ۲۲ مایلی‌گرم در کیلوگرم به صورت متغیر در بالا گزارش شد. میزان منگنز در گیاه با کمک روش DTPA و شیمیایی مراجعه‌شده ارائه شد. نتایج نشان دادند که میزان منگنز در گیاه برابر با روش DTPA به صورت مثبت بود و کمیته کمیت میزان منگنز در گیاه با استفاده از روش‌های آزمایشی Sun (L) و DTPA، کلیه روش‌ها و روش‌های آزمایشی موجب افزایش منگنز در گیاه می‌شد. این نتایج نشان دادند که روش‌های آزمایشی DTPA و Sun (L) بهترین روش برای تعیین مقدار منگنز در گیاه بودند.
پایه حاضر با هدف‌های زیر به اجرا درآمد:
1. یافته و وضعیت منطقه در خاک‌های آمیک این استان فارس.
2. تغییر در وضعیت منطقه در خاک‌های آمیک این استان فارس.
3. وضعیت و تغییرات مهلک برای تمام مناطق در استان خاکهایی استان فارس.

مواد و روش‌ها
غلامریز زاده‌انه‌گر و همکاران (15) در این مطالعات پیراهن وضعیت منطقه در خاک‌های آمیک این استان فارس را بررسی کرده‌اند. به این ترتیب، منطقه در استان خاکهایی استان فارس در ارتفاع ۱۵۲۵ متر از سطح دریا واقع شده‌است. در این مطالعه، شاخص‌های مشخصاتی از منطقه، شاخص‌های زراعی استان فارس جمع‌آوری و پیوسته بر روی گزارش‌های خاکی از مناطق مختلف استان فارس جمع‌آوری شدند. این اطلاعات به میزان بالا و اندازه‌گیری صدای خاکهایی استان فارس در ارتفاع ۱۵۲۵ متر از سطح دریا واقع شده‌است. در این مطالعه، شاخص‌های منطقه‌ای از منطقه در استان خاکهایی استان فارس در ارتفاع ۱۵۲۵ متر از سطح دریا واقع شده‌است. در این مطالعه، شاخص‌های منطقه‌ای از منطقه در استان خاکهایی استان فارس در ارتفاع ۱۵۲۵ متر از سطح دریا واقع شده‌است.

در مورد وضعیت منطقه در خاک‌های آمیک ایران، اطلاعات زیادی در دست نیست. کاشیکی در (16) تأکید می‌کند که کار را در خاک با کاشیکی استان فارس را بر عملکرد دانه‌های گندم گزارش کرده‌اند. این اطلاعات به میزان بالا و اندازه‌گیری صدای خاکهایی استان فارس در ارتفاع ۱۵۲۵ متر از سطح دریا واقع شده‌است. در این مطالعه، شاخص‌های منطقه‌ای از منطقه در استان خاکهایی استان فارس در ارتفاع ۱۵۲۵ متر از سطح دریا واقع شده‌است. در این مطالعه، شاخص‌های منطقه‌ای از منطقه در استان خاکهایی استان فارس در ارتفاع ۱۵۲۵ متر از سطح دریا واقع شده‌است.

با توجه به این نتایج، امکان‌ها و مشکلات منطقه در خاک‌های آمیک ایران به‌طور کامل پیش‌بینی می‌شود که این منطقه در خاک‌های آمیک ایران به‌طور کام
جدول 1 - نام سری و برخی از خصوصیات فیزیکی و شیمیایی خاک‌های به کار رفته در گلخانه

<table>
<thead>
<tr>
<th>DTMn (mgkg⁻¹)</th>
<th>CCE (%)</th>
<th>CEC (cmolkg⁻¹)</th>
<th>رس ماده آلی (%)</th>
<th>pH</th>
<th>EC (dSm⁻¹)</th>
<th>شماره سری خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>37</td>
<td>17</td>
<td>1/9</td>
<td>8/0</td>
<td>1/43</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>39</td>
<td>17</td>
<td>3/28</td>
<td>8/0</td>
<td>1/21</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>55</td>
<td>11</td>
<td>2/3</td>
<td>8/1</td>
<td>1/72</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>37</td>
<td>20</td>
<td>3/8</td>
<td>8/0</td>
<td>1/58</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>28</td>
<td>21</td>
<td>2/2</td>
<td>8/0</td>
<td>1/22</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>36</td>
<td>25</td>
<td>3/2</td>
<td>8/1</td>
<td>1/36</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>53</td>
<td>24</td>
<td>2/0</td>
<td>8/0</td>
<td>1/36</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>39</td>
<td>18</td>
<td>2/4</td>
<td>8/0</td>
<td>1/50</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>17</td>
<td>2/9</td>
<td>8/0</td>
<td>1/26</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>49</td>
<td>16</td>
<td>3/6</td>
<td>8/0</td>
<td>1/71</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>51</td>
<td>17</td>
<td>1/9</td>
<td>8/1</td>
<td>1/44</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>21</td>
<td>2/3</td>
<td>8/0</td>
<td>1/50</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>11</td>
<td>1/5</td>
<td>8/0</td>
<td>1/52</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>23</td>
<td>2/5</td>
<td>8/0</td>
<td>1/40</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>25</td>
<td>2/3</td>
<td>8/0</td>
<td>1/58</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>20</td>
<td>4/9</td>
<td>8/0</td>
<td>1/78</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>15</td>
<td>2/1</td>
<td>8/0</td>
<td>1/98</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>12</td>
<td>1/9</td>
<td>8/0</td>
<td>1/66</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
<td>11</td>
<td>1/1</td>
<td>8/0</td>
<td>1/98</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>18</td>
<td>1/9</td>
<td>8/0</td>
<td>1/34</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>9</td>
<td>1/4</td>
<td>8/1</td>
<td>1/35</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>10</td>
<td>1/9</td>
<td>8/0</td>
<td>1/32</td>
<td>22</td>
</tr>
</tbody>
</table>

* سلسله‌بندی کربنات CCE، مقدار EC و pH نشانه‌های قابلیت هیدات کاتیونی CEC و ظرفیت تبادل کاتیونی DTPA می‌باشند.
جدول 2 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
<th>مصرف منبع روغن</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td>0/1 N H₄PO₄</td>
<td>15 دقیقه</td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td>0/10M Na₂EDTA</td>
<td>15 دقیقه</td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td>0/10M Na₂EDTA</td>
<td>15 دقیقه</td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td>0/10M Na₂EDTA</td>
<td>15 دقیقه</td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td>0/100M DTPA</td>
<td>15 دقیقه</td>
</tr>
</tbody>
</table>

جدول 3 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 5 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 7 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 8 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 9 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 10 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 11 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>

جدول 12 - ترتیب و بیشترین عصاره‌گیری متفاوت

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>علامت اختصاصی</th>
<th>زمان تكوین دانه</th>
<th>نسبت محلول خاک</th>
<th>مربع وزن‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>APm</td>
<td>(20)</td>
<td>1/5M NH₄H₂PO₄</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>PAm</td>
<td>(17)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₁</td>
<td>(25)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>EDMn₂</td>
<td>(9)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
<tr>
<td>DTMn</td>
<td>(21)</td>
<td>1/25M Na₂EDTA</td>
<td>60 دقیقه</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۳- منگنز عصاره‌گیری شده، خاکها با پنج روش به کار رفته در آزمایش

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>منگنز عصاره‌گیری شده (میلیگرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EDMn2</td>
</tr>
<tr>
<td>۱</td>
<td>۲۵</td>
</tr>
<tr>
<td>۲</td>
<td>۴۶</td>
</tr>
<tr>
<td>۳</td>
<td>۳۹</td>
</tr>
<tr>
<td>۴</td>
<td>۳۹</td>
</tr>
<tr>
<td>۵</td>
<td>۳۹</td>
</tr>
<tr>
<td>۶</td>
<td>۳۹</td>
</tr>
<tr>
<td>۷</td>
<td>۳۰</td>
</tr>
<tr>
<td>۸</td>
<td>۳۲</td>
</tr>
<tr>
<td>۹</td>
<td>۳۲</td>
</tr>
<tr>
<td>۱۰</td>
<td>۳۷</td>
</tr>
<tr>
<td>۱۱</td>
<td>۳۵</td>
</tr>
<tr>
<td>۱۲</td>
<td>۳۵</td>
</tr>
<tr>
<td>۱۳</td>
<td>۳۰</td>
</tr>
<tr>
<td>۱۴</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۵</td>
<td>۳۷</td>
</tr>
<tr>
<td>۱۶</td>
<td>۳۰</td>
</tr>
<tr>
<td>۱۷</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۸</td>
<td>۳۷</td>
</tr>
<tr>
<td>۱۹</td>
<td>۳۴</td>
</tr>
<tr>
<td>۲۰</td>
<td>۳۲</td>
</tr>
<tr>
<td>۲۱</td>
<td>۱۵</td>
</tr>
<tr>
<td>۲۲</td>
<td>۱۸</td>
</tr>
<tr>
<td>میانگین</td>
<td>۳۴</td>
</tr>
</tbody>
</table>

- علائم اختصاری در جدول ۱ شرح داده شده است.

کربناتی استفاده می‌شود. بنیانگر کربنیوم (۵) با استفاده از این روش مشابه در کننده ۱۲۱ درصد منگنز موجود در خاک‌های اراضی زیر سد دورو دندن به شکل کربناتی بوده و پس از است ناشی از وجود مقدار قابل ملاحظه‌ای منگنز کربناتی در این خاک‌ها باشد. در روش‌های چندسازی شکل‌های شیمیایی عناصر کم مصرف خاک از EDTA برای چندسازی شکل کربناتی استفاده می‌شود. بنیانگر کربنیوم (۵) با استفاده از این روش مشابه در کننده ۱۲۱ درصد منگنز موجود در خاک‌های اراضی زیر سد دورو دندن به شکل کربناتی بوده و پس از است ناشی از وجود مقدار قابل ملاحظه‌ای منگنز کربناتی در این خاک‌ها باشد. در روش‌های چندسازی شکل‌های شیمیایی عناصر کم مصرف خاک از EDTA برای چندسازی شکل کربناتی استفاده می‌شود. بنیانگر کربنیوم (۵) با استفاده از این روش مشابه در کننده ۱۲۱ درصد منگنز موجود در خاک‌های اراضی زیر سد دورو دندن به شکل کربناتی بوده و پس از است ناشی از وجود مقدار قابل ملاحظه‌ای منگنز کربناتی در این خاک‌ها باشد. در روش‌های چندسازی شکل‌های شیمیایی عناصر کم مصرف خاک از EDTA برای چندسازی شکل کربناتی استفاده می‌شود. بنیانگر کربنیوم (۵) با استفاده از این روش مشابه در کننده ۱۲۱ درصد منگنز موجود در خاک‌های اراضی زیر سد دورو دندن به شکل کربناتی بوده و پس از است ناشی از وجود مقدار قابل ملاحظه‌ای منگنز کربناتی در این خاک‌ها باشد. در روش‌های چندسازی شکل‌های شیمیایی عناصر کم مصرف خاک از EDTA برای چندسازی شکل کربناتی استفاده می‌شود. بنیانگر کربنیوم (۵) با استفاده از این روش مشابه در کننده ۱۲۱ درصد منگنز موجود در خاک‌های اراضی زیر سد دورو دندن به شکل کربناتی بوده و پس از است ناشی از وجود مقدار قابل ملاحظه‌ای منگنز کربناتی در این خاک‌ها باشد. در روش‌های چندسازی شکل‌های شیمیایی عناصر کم مصرف خاک از EDTA برای چندسازی شکل کربن
جدول ۴ - ضرایب همبستگی (r) بین رشته‌های عصاره‌گیری منگنز*

<table>
<thead>
<tr>
<th>DT Mn</th>
<th>EDM n4</th>
<th>EDM n1</th>
<th>PAM n</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Mn</td>
<td>0/13 ns</td>
<td>0/75 ns</td>
<td>0/65 *</td>
</tr>
<tr>
<td>PAMn</td>
<td>0/14 ns</td>
<td>0/74 ns</td>
<td>0/42 ns</td>
</tr>
<tr>
<td>EDM n1</td>
<td>0/63 **</td>
<td>0/97 **</td>
<td></td>
</tr>
<tr>
<td>EDM n2</td>
<td>0/69 **</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* علائم اختصاری در جدول ۲ شرح داده شده است. ns *, ** - به ترتیب غیر معنی‌دار، معنی‌دار در سطح ۵% درصد و در سطح ۱% درصد شکل تنه (شکل‌های غیرقابل استفاده گیاهی) قوایانی برندی منگنز بومی در خاک‌های آمک در است. عصاره‌گیری حاوی بنیان فسفات (P) و PAMn

جدول ۵ از نظر حداکثر عصاره‌گیری ناکام ملاحظه یا یک‌درگیر نشان داده (جدول ۲). این نتایج نمی‌تواند به‌عنوان ضرایب همبستگی بین منگنز عصاره‌گیری شده با روشها و

پنجمان در جدول ۴ نشان داده شده است. قوایانی تکمیلی همبستگی مشاهده شده که امری مپاشد می‌باشد که باعث احتمال بیشتر تکریبات منگنز خاک شده است. معادلاتی‌های رگرسیون بسیار معنی‌داری (P < 0/01) بین منگنز عصاره‌گیری شده با پراکنده‌ی روش‌ها و

** خصوصیات خاک به دست آمده:

EDM n1	R² = 0/61 [2]
EDM n2	R² = 0/52 [3]
PAM = 85-94 CCE	R² = 0/50-0/62 Clay

نتایج وزن خشک، عملکرد نسبی، ظلوسیت منگنز، و جذب کل منگنز اندام هوئی سویا در جدول ۵ و میانگین اثر اصلی منگنز پاسخ‌های گیاهی در جدول ۶ نشان داده شده است. در جدول ۶ اثرات منگنز در وزن خشک ناشی از گذراندن منگنز و

به‌عنوان برایی و استفاده منگنز به کار رفته در پراکنده‌ی روش‌ها و

که در آنها PAMn و EDM n2 منگنز عصاره‌گیری شده (میلی‌گرم منگنز در کیلوگرم خاک) با روش‌های مختلف به‌عنوان P به ترتیب ب پهنا، کلسیم

کربنات محلول (درصد) و رس خاک (درصد) می‌باشد. چنان که MCL (می‌باشد. راه‌حل و اثرات کربنات محلول و رس خاک از خصوصیات مؤثر در عصاره‌گیری منگنز به روش‌های مختلف می‌باشد.غلامعلیزاده‌ای (15) نتیجه کرده‌اند.
جدول 5- وزن خشک، عملکرد نسبی، غلظت منگنز و جذب کل منگنز اندام هوائی سویا در سطوح مختلف منگنز مصری (عند میکروگرادلند) (میلیگرم در کیلوگرم) (گرم در کیلوگرم) (میلیگرم در کیلوگرم) (گرم در کیلوگرم) (میلیگرم در کیلوگرم) (گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>شماره</th>
<th>وزن خشک (کیلوگرم)</th>
<th>عملکرد نسبی (میلیگرم در کیلوگرم)</th>
<th>غلظت منگنز (گرم در کیلوگرم)</th>
<th>جذب کل منگنز (میکروگرادلند)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

نظر آماری در سطح 0.05 درصد معنی دار بود (جدول 6). این کاهش غلظت آن در اندام هوایی را باعث گردید (جدول 5). این کاهش اصلی منگنز بر غلظت منگنز در اندام هوایی از نظر آماری معنی دار بود و حتی در برخی از خاک‌ها مصرف منگنز کاهش گرفت.
جدول 6- اثر اصلی منگنز بر وزن خشک، ظلمت منگنز و جذب كل منگنز اندازه‌ها سویا (در عدد میلیگرم penyکلکروم در گرم در گلدان است.)*

<table>
<thead>
<tr>
<th></th>
<th>ظلمت منگنز در گلدان (میلیگرم penyکلکروم در گرم در گلدان)</th>
<th>جذب منگنز در گلدان (میلیگرم penyکلکروم در گرم در گلدان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک</td>
<td>5/8</td>
<td>3/5</td>
</tr>
<tr>
<td>5/8</td>
<td>3/7</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>3/7</td>
<td></td>
</tr>
</tbody>
</table>

* - در هر ستون میانگین‌یابی که حرف مشترک دارند در سطح 0.05 به درصد تفاوت معنی‌دار هستند.

** - اعداد داخل پرانتز نشان دهنده درصد افزایش وزن خشک نسبت به سطح صفر منگنز است.

*** - اعداد داخل پرانتز نشان دهنده بازیابی ظاهری منگنز مصری است که از رابطه زیر محاسبه می‌شود:

(جدب كل منگنز در سطح صفر - جذب كل منگنز در سطح مورد نظر)

درصد بازیابی ظاهری (میلیگرم penyکلکروم در گلدان)

وبسله پژوهشگران مختصه (۵، ۶، ۱۵، ۲۶، ۲۷ و ۲۸) گزارش شده است. در آزمایش حاضر، میانگین انزایی وزن خشک برای خاکها در سطح 0، ۲۰ تنگنز به ترتیب 11.9 و 17 درصد محسوب گردید (جدول ۶). البته در یکی از خاک‌ها ۱۲ درصد هانیمی (نگره ۶) در سطح ۶ CEC ۱۰۰ درصد بود. کاهش ظلمت منگنز گیاه به بدبین مصرف آن در خاک به وسیله پژوهشگران دیگر نیز گزارش شده است (۶ و ۱۵).

با بازیابی ظاهری بسیار ناچیز منگنز مصری (جدول ۶) نشانگر ظرفیت بسیار زیاد خاک‌های آمریکایی برای تبدیل مجدد شکل محلول منگنز به شکل‌های کمتر محلول و موثر بر افزایش استفاده منگنز می‌باشد. نگره‌لاید زره آهنگر و همکاران (۱۵) نیز بازیابی بسیار ناچیز منگنز را در خاک‌های آمریکایی مشاهده نمودند. کرومیم و نگره‌لاید زره آهنگر (۲۰) علت ناچیز بودن بازیابی ظاهری را تغییر منگنز به وسیله ذرات چربی خاک دانسته و پس از مطالعه این پندیده با استفاده از همدان‌های چسب سطحی، ظرفیت تبادل کاتیونی، درصد ماده آلی و درصد کلسیم کربنات، معادل خاک را عوامل مؤثر بر این نگره‌لاید دانستند.

نام‌دان ماده آلی و ذرات کلسیم کربنات را عونان محلول‌های ۷۲
همیشه‌ی بین منگنز عصاره‌گیری شده به وسیله پنگ روی با خصوصیات خاک و...

آزمایش نیاک در مورد آزمایش هوش مالکون، سیموز و جانسون (۳۰۰) پس از
وری بر مطالعات انجام شده درباره عصاره‌گیری مختلف
مگنز ترتیب گرفته که برای پیش‌نمود پیش‌بینی پاسخ‌های
گیاه با پاسخ‌های عالی بر سطح آزمون خاک، خصوصیاتی از قبیل
می‌آمده آب، درصد کلسیم در گیاه، و بخصوص په‌های هاش را
در مطالعه‌های گرگیوری وارد نمود.

در مطالعه حاضر، با توجه به ورودی نسبی
پرورشی آن در خاک با استفاده از روش (DTMn)
لئسونن (۱۰) تعیین گردد که این مقدار ممکن در
کلیولگم خاک به دست آمده (شکل ۱). بنابراین می‌توان گفت که
گیاهان رونده بر خاک با سطح آزمون خاک
۱۲ میلیگرم منگنز در کلیولگم خاک به احتمال زیاد به کاربرد
منگنز پاسخ مثبت خواهد داد.

نتیجه‌گیری

بر اساس نتایج آزمایش نیاک در مطالعه کرده که برخی
خاک‌های آمریکایی استان خیس احتمالاً دارای کمیت منگنز
می‌باشند. در شرایط مشابه این آزمایش‌ها، از بیان روش‌های
مطالعه شده (DTMn) با سطح بحرانی ۱۳ میلی‌گرم منگنز در
کلیولگم خاک مناسب و در روست پایدار ترشح کرده است.
این روست، به ویژه هنگامی که مهم‌اندیشی از خاک
نظری طرفی نباید کاتایوی و رس خاک به کار رود تا قدر به
پیش‌بینی پاسخ‌های گیاهی در سطح بحرانی قابل قبولی می‌باشد.

DTMn

چنانکه در مطالعه‌های [۵] تا [۸] ملاحظه می‌شود
تنها روی ارائه‌گیری است که به توانایی یا هم‌رساه‌ها بپردازد
خصوصیات خاک قادر به پیش‌بینی پاسخ‌های گیاهی در سطح
اطمینان نسبتاً خوبی (در حدود ۵۰ درصد) می‌باشد. پیچ
گزارش‌های غلبه‌الزمانه از امکان‌ها و همچنین (۱۵) هیچ کدام از
روش‌های تهیه عصاره‌گیری آن‌ها به توانایی قادر به پیش‌بینی
قابل قبولی از پاسخ‌های گیاهی نود، لذا تکیه‌ای از چند روش را
برای این کار پیش‌بینی کرده. بیانگر (۳۱) هم‌بستگی
متغیرت‌های بین دنیای دنیا دنیا DTMn
و غلظت منگنز در پنج گیاه مورد

مباحث مورد استفاده

۱- امامی، ع. و. ا. دیپه‌گراند. ۱۳۸۸. راه‌های آزمایش، روش‌ها و مسئولیت‌های مصرف
کشت‌های در دانشگاه‌های مهندسی، سیستم‌های و تکنیک‌های ابزار
۲- سالارزادینی، ع. ۱۳۸۸. راه‌های آزمایش. شماره ۱۰۲۰-۱۰۲۹.
۳- کاشی راه‌داهن. ۱۳۸۳. تاثیر عناصر غذایی از مس، روی و منگنز بر روی مصرف و تکثیر شیمیایی گندم زمستانی. گزارش
۴- کاشی راه‌داهن. ۱۳۸۵. تاثیر از مس و دم‌گلیسید‌ها بر روی مصرف و تکثیر شیمیایی گندم. گزارش اخلاقی‌های مركز تحقیقات دانشگاه
کشاورزی دانشگاه شیراز، شماره ۱۲، صص ۱۳۷۷-۱۳۷۸.

