تأثیر رطوبت خاک و عمق شخم بر عملکرد گاو آهن بشقابی در یک خاک لوم رسی

محمد لفوری و سعید بهمنی

چکیده
در این تحقیق تأثیر سه محدوده از رطوبت خاک (10-10، 15-15 و 20-15 سانتی‌متری) بر مقاومت کشی، مقاومت ویژه و توان مالنی‌سی در بررسی نیاز گاو آهن بشقابی به صورت یک‌درصدی در یک خاک لوم‌رسی مورد بررسی قرار گرفت. تأثیر رطوبت خاک در محدوده مورد مطالعه برکلی می‌باشد که به استاندارد میانگین برگردان شدن خاک بسیار عملی دارد. به طوری که علی‌رغم مقاومت کشی، مقاومت ویژه و توان مالنی‌سی به ترتیب 13-13-15 درصد به حداقل رسید. تأثیر عمق شخم نیز بر مقاومت کشی و توان مالنی‌سی می‌باشد. به طوری که مقاومت کشی این دو ویژگی در افزایش عمق شخم بطور قابل توجه تغییر پیدا نکرد. در نتیجه نشان داد که منظور تغییر شایع‌کننده کمی که بیان کننده میزان خردشدن خاک توسط اکثر خاک‌زایی‌های بالغ است. یکی از عوامل اصلی تغییرات طراحی و صنعت خاک استفاده از این دستگاه اندوزه‌گیری قطر متوسط وزنی (MWD) کلونخه‌های میلی‌متری 4/8 در حالت شخم‌آبترین بوده و در این حالت در محدوده مورد مطالعه، تأثیر عمق شخم، مقاومت ویژه و توان مالنی‌سی نسبت به رطوبت خاک 33/3 می‌باشد که در حدود 13–12 درصد کاهش داشت. تأثیر عمق شخم و مقاومت ویژه خاک بر رطوبت خاک در محدوده 5–15 درصد بوده که بهتر از تغییرات سایر مشخصات تسهیلات کاهش داشت.

واژه‌های کلیدی - گاو آهن بشقابی، مقاومت کشی، توان مالنی‌سی، قطر متوسط وزنی، درصد برگردان خاک

مقدمه
گاز آهن بشقابی یکی از ایثار خاک‌وزی اولیه می‌باشد که از لحاظ نحوه تأثیر برخاک و تأثیر شیب به استاندارد برگردان آماده می‌باشد. برای کاربرد آنها در شرایط تغییر خاک‌های خشک و سخت،

1- Disk plow 2- Primary tillage 3- Mokboard plow

105
چسبندگی، ریشه و کلیش دار و مست و استنفنجی که گواهی‌های برگردان داده از کار مطلوب نمی‌باشد، توصیه می‌گردد (1). عوامل خاک‌ورزی این گیاه آمیخت بخش متفاوت از بخش‌هایی که به صورت مستقیم از یکدیگر به طور مبنا و به فواصل مساوی از یکدیگر بریک قاب سوارگردیده‌اند با برخی‌هایی که عرض 18 تا 20 سانتی‌متر در خاک ایجاد نمایند. به طوری که به ایجاد برای موهیت در زمین‌های وسطی بین 22 تا 25 درجه بهبود زاینده‌پر و با ایجاد قائم زاینده‌پر میانگین بین 15 تا 25 درجه بهبود زاینده‌پر تمایل است.\footnote{20 سانتی‌متر و عمق کار آنها حداقل 1/3 قطر بخش‌های است. (18).} در غلبه شرایط و حجم‌واریاً در خاک‌های محتار و خشک، سطح زیراژ و افزایش در کاهش القای و خامش. به‌طوری که آزادی و رشد ویژه‌ی خاک می‌باشد. این ویژگی بسته به شرایط اقلیمی و اهداف خاک‌ورزی می‌تواند یک عیب و یا به‌وسیله‌ی محسوب گردد. برگردان نمودن خاک، ضمن ایجاد می‌تواند در افزایش ماده آلی و بهبود شرایط فیزیکی خاک موثر باشد. در میانه‌ی علل قهر به صورت مناسبی و اجتناب از آثار زیان‌بار ریسه‌های محیطی، مبارزه شامل‌های نیز حائز اهمیت سبای می‌باشد. از طرف دیگر، عدم تغییر به حفظ پوشش گاهی در مناطق خشک و نیمه‌خشک که دوخت‌گیری رطوبتی خاک کم است، علاوه بر آن که تبخیر رطوبتی لاشه‌های زیرین را تسهیل می‌نماید، سیالات سطحی سبب از اراضی قابل کشت را در معرض آب‌سنجی‌های سطحی قابل قرار می‌گیرد.\footnote{5 میزان برگردان خاک توسط گاردان افزایش و همکاران (5) در مختصات کشاورزی و واکنش عمومی راه بپایل خاک}

1- Disk angle
2- Tilt angle
3- Cohesion
4- Friability
تأثیر رطوبت خاک و عمق شمش بر عملکرد گل‌انه صنوبر در یک خاک لومری

ящاقلا را حدود ۵۰٪ و گل‌انه صنوبر در را ۱۹.۵٪ گازری نموده‌اند.

از دیگر عوامل عملکردی اتساق یافته در خریداری خاک می‌باشد.

به برهگی آنها از آنرژی مصرفی در خریداری خاک می‌باشد.

میزان آنرژی مورد نیاز برای ایجاد درجه معیینی از خرد شدن خاک، به مقاومت خاک و به داشته‌ای ادوات خاکورزی در برهگی از آنرژی دیافرانی از تراکتور بستگی دارد. مقاومت خاک به طبیعت و شرایط زیستی آن وابسته است. خاک‌های رس بسیار به خاک‌های ظریف و فرآیندهای پیچیده برای خرد نیاز دارند. به علت و هم‌اکنون، نوع محصول و عملیات زراعی قبلی، وضعیت فیزیکی خاک را تحت تأثیر قرار می‌دهد. برای یک خاک بخصوصی، اینو مورد نیاز به توجه خورده‌اند. خاک با افزایش سرمایه خاک‌های ظریف، درآمدهایی از مهوری به‌پایه‌ای بی‌پایان می‌باشد (۱۹).

رسل (۱۶) مناسب‌ترین دامنه زمانی انتخاب کلک خاک‌دانها در یک بستر با مطلوب را بین ۱ تا ۵ میلی‌متر می‌دانند. محصوقیان عموماً متوسط وزنی (MWD) خاک‌دانها را مهم‌ترین می‌دانندکه به‌یادی خرد شدن ۲ خاک می‌شانند.

اوجنی و دکتر (۱۴) رطوبت مناسب جهت اجرای عملیاتی خاکورزی را به تفصیل حداکثر خاک‌دانها را بر این و جهاد اکلک خاک‌های درشت می‌گردند. در حالتی رطوبت نیزیده به ۰.۷۸، ۱.۲، میلی‌متر در ۵ میلی‌متر می‌شوند.

و، ناهان و همکاران (۱۹) گزارش نموده‌اند که انگجار عملیاتی خاکورزی توسط گل‌انه صنوبر کهکشانی را در مقایسه با گل‌انه صنوبر در داده ریزی‌یابی نمود.

(۱۱) تأثیر رطوبت خاک و عمق شمش بر شرایط نهایی خاک، پس از انجماد، میزان نرخ تکمیلی گرخ شاپ قطبی که برگمرن را به شکل تراکتورها را ناحیه بر. درجه‌بندی به تشکیل بخش‌های خاک‌دانها را به ۰.۷۸، ۱.۲، میلی‌متر در ۵ میلی‌متر می‌شود.

و ناهان و همکاران (۱۹) گزارش نموده‌اند که انگجار عملیاتی خاکورزی توسط گل‌انه صنوبر کهکشانی را در مقایسه با گل‌انه صنوبر در داده ریزی‌یابی نمود.

(۱۱) تأثیر رطوبت خاک و عمق شمش بر شرایط نهایی خاک، پس از انجماد، میزان نرخ تکمیلی گرخ شاپ قطبی که برگمرن را به شکل تراکتورها را ناحیه بر. درجه‌بندی به تشکیل بخش‌های خاک‌دانها را به ۰.۷۸، ۱.۲، میلی‌متر در ۵ میلی‌متر می‌شود.
مجموع مقاومت کششی گاکه‌انگ و مقاومت علی‌گهی تراکتور، مقاومت غلفت‌گیری تراکتور حامل گاکه‌انگ سرعت پیشرفت تراکتور، عرض و عمک شرک، رطوبت خاک، میزان پوشش بقایای گیاهی در سطح خاک قبل و بعد از عملیات شرک و جادوگری و توزیع خاک‌های حاصل از شرک در گره‌های ابعاد مختلف به منظور تعیین قطر متوسط وزنی بود.

مقاومت کششی تراکتور در حال شرک در حالت کامل پیشرفت

\(S = \frac{Q}{W} \times \frac{W'}{W} \times 100 \)

\(S \) سرعت پیشرفت تراکتور در حال شرک در حالت کامل پیشرفت.
\(Q \) بار نیرویی به حالت کامل پیشرفت.
\(W \) وزن تراکتور در حالت کامل پیشرفت.
\(W' \) وزن تراکتور در حالت کامل پیشرفت در حالت کاملاً پیشرفت.

\(F = \frac{W}{W'} \times \frac{100}{5} \) دراین رابطه:

\(F = \frac{\text{شاخ‌صیزی از میزان پرگردان شدن خاک}}{\text{گرم خشک بقایای گیاهی قبل از عملیات شرک}} \times \frac{\text{وزن تراکتور}}{\text{گرم خشک بقایای گیاهی قبل از عملیات شرک}} \times \frac{100}{5} \)

\(F \) شاخ‌صیزی از میزان پرگردان شدن خاک.

\(g \) گرم خشک بقایای گیاهی قبل از عملیات شرک.

\(Wp \) وزن تراکتور در حالت کامل پیشرفت.

\(We \) گرم خشک بقایای گیاهی قبل از عملیات شرک.

\(\text{شاخ‌صیزی} \) در این مورد به معنی مقداری از میزان پرگردان شدن خاک است.

\(P \) در بررسی بار نیرویی به حالت کامل پیشرفت.
<table>
<thead>
<tr>
<th>شماره الك</th>
<th>انتظام غلظ شکه</th>
<th>قطر استوانه</th>
<th>ارتقاء استوانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6/25</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>12/5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

| قطر غلظ شکه | هر پلات در محاسبات آماری منظور گردیده | مقادیر We و Wp میزان خرد شدن خاک | میزان خرد شدن خاک
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2</td>
<td>1/2</td>
<td>3/4</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
<td>1/2</td>
<td>3/4</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>1/2</td>
<td>3/4</td>
</tr>
<tr>
<td>12/5</td>
<td>5</td>
<td>1/2</td>
<td>3/4</td>
</tr>
<tr>
<td>75</td>
<td>3</td>
<td>1/2</td>
<td>3/4</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1/2</td>
<td>3/4</td>
</tr>
</tbody>
</table>

ظرفی نگهداری خاک‌دانه‌های مجزا شده، قاب نگهداری مجموعه الكا از یک طرف دگرگونه و از طرف دیگر دو عدد بین بلند قابل تنظیم برمی‌خوری کمی اصلی دستگاه نصب می‌گردد. بدین ترتیب زاویه شیب محرور طولی مجموعه الكا بین 7/8 درجه قابل تنظیم بود.

به منظور تسهیل در تغذیه کلخه‌ها و خاک‌دانه‌های نموده‌های بارداری شده از پلات‌ها به درون دستگاه که‌های باریک که عدد صفحه نیاز شویی شکل 3 در ده‌ها اضطراب استوانه (باید درشت‌ترین شکه) نصب گردد. تعادل هفته عدد مخزن مستقلی، ساخته شده از درون کال‌خون تهیه به منظور جمع‌آوری کلخه‌های درجه‌بندیده شده بر مبنای طریق متوسط در بر می‌گردد. شکاف که با منظور کمیت آزمایش به طور دستی و با دستگاه نسبت متوسط 7/10 دور در دقیقه انجام گرفت.

نموده‌های مورد استفاده در کشت نظری، مصرف غلظ شکه و قطر استوانه متفاوت در محدوده که‌های انتظام غلظ شکه، قطر و ارتقاء استوانه بیش از 1/2 است که توصیه گردیده‌های شعاعی و پیچ و ماهی به درون استوانه هنگام اندازه‌گیری اول در کشت، عرض چهار عضو انتظامی کشت باید شده بر روی قاب نگهداری، قرار به دوران گرفت.

باید حمل و نقل دستگاه و انتقال آن به مزرعه تحقیقاتی قاب نگهداری و مجموعه الكا به روش یک هلو شاسی پرخورد قابل اتصال به مدلیند تراکتور نصب گردد (شکل 2). به منظور شبیه‌سازی داده به مجموعه الکا، جهت امکان حرکت محوری‌کلخه‌های پاییزه، شده بر روی که‌های استوانه‌ای و تخلیه درون

1- Rotary sieves 2- Chute
شکل ۱ - تصویری شماتیک از دستگاه مجموعه کههای دوار

شکل ۲ - دستگاه کههای دوار در حال اتصال به تراکتور. جهت انتقال به مزرعه

امکان عدم ضربات آنها از درون کههای دوار وجود داشت (در صورت وجود) جداگردیده و پس از توزین و اندازه‌گیری قطر متوسط در بزرگترین گروه ابعادی قرار داده شد. سپس نمونه‌های فرعی به دو قسمت کههایی در حال چرخش تغذیه شده و بر حسب اندازه متوسط در هفت گروه ابعادی تقسیم و درون ظروف واقع در زیر کهه ریخته شد. خاک درون این ظروف توزین و از فرمول (۱) برای محاسبه قطر متوسط وزنی هر نمونه استفاده گردید. (۲)

\[
MWD = \sum_{i=1}^{n} XiWi
\]

در این رابطه:

\[
\text{ قطر متوسط وزنی (mm) = MWD } \quad \text{ قطر متوسط کل خهاع در گروه ابعادی (mm) = Xi }
\]

و زن کل خهاعی موجود در گروه ابعادی به صورت نسبی از زن کل نمونه (اعشاری) تعادل گروه ابعادی کل خهاعی ها که توسط دستگاه کههای دوار

۱۱۰
تأثیر رطوبت خاک و عمق شخم بر عملکرد گاکها ی بقایای در یک خاک لومری

جدول ۲ - تجزیه و ارایه اثرات اصلی و متغیر رطوبت خاک و عمق شخم بر مقاومت کشکی، مقاومت ویژه، توان مالنیدی، قطر متوسط وزنی و درصد برگدان شدن خاک در عملیات شخم به وسیله گاکها

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>درجه تغییر آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار (پلوا)</td>
<td>۲</td>
</tr>
<tr>
<td>رطوبت خاک (M)</td>
<td>۲</td>
</tr>
<tr>
<td>عمق شخم (D)</td>
<td>۴</td>
</tr>
<tr>
<td>ارتفاع (X)</td>
<td>۴</td>
</tr>
</tbody>
</table>

نمره معنی‌دار: ۷% - وجود اختلال معنی‌دار در سطح 7%.
ندم معنی‌دار: عدم وجود اختلال معنی‌دار.

جدول ۳ - مقایسه میانگین مقاومت کشکی گاکهای بقایای (بر حسب کیلوگرمی) در سطوح مختلف عمق شخم و رطوبت خاک

<table>
<thead>
<tr>
<th>عمق شخم (سانتی‌متر)</th>
<th>رطوبت خاک (% وزن خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین (X) = ۲۰، ۱۵، ۱۰

نتایج نشان داد که مقاومت رطوبت خاک در محدوده ۱۱ تا ۱۷ درصد، بر کلیه عوامل مورد مطالعه به استثنای درصد برگدان خاک اثر معنی‌دار داشت. در حالی که تغییر عمق شخم تناها برمقاومت کشکی و توان مالنیدی مورد نیاز دایر تأثیر معنی‌دار بود. همچنین رطوبت خاک و عمق شخم در حالی که بر نیرو و توان مورد نیاز جهت حکم گاکهای بقایای در خاک اثر متفاوت داشتند، ولی در مورد میزان خردسازی و برگدان خاک اثر متفاوت

مجزای می‌گردد (شامل آن گروه که کلوله‌های بزرگتر از ۱۵ سانتی‌متر را تشکیل داده و به طور دستی جدا می‌شود).

نتایج و بحث

نتایج حاصل از تجزیه و ارایه اثرات اصلی و متغیر رطوبت خاک و عمق شخم بر مقاومت کشکی، مقاومت ویژه و توان مالنیدی مورد نیاز و همچنین قطر متوسط وزنی کلوخها و درصد برگدان شدن خاک در عملیات شخم به وسیله گاکهای

Dialog:

1. چرا می‌گردد (شامل آن گروه که کلوخ‌های بزرگتر از ۱۵ سانتی‌متر را تشکیل داده و به طور دستی جدا می‌شود)?

2. نتایج و بحث:

 نتایج حاصل از تجزیه و ارایه اثرات اصلی و متغیر رطوبت خاک و عمق شخم بر مقاومت کشکی، مقاومت ویژه و توان مالنیدی مورد نیاز و همچنین قطر متوسط وزنی کلوخ‌ها و درصد برگدان شدن خاک در عملیات شخم به وسیله گاکهای

111
جدول 2- مقایسه میانگین‌های مقاومت کششی و وزن گاو‌آمیخته‌ای بر حسب نیروی بر سانتی‌متر مربعی در سطح مختلف عمق شکم و رطوبت خاک

<table>
<thead>
<tr>
<th>میانگین (X)</th>
<th>25</th>
<th>20</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6/68A</td>
<td>5/96bc</td>
<td>6/81ab</td>
<td>7/44ab</td>
</tr>
<tr>
<td>3/88B</td>
<td>4/64cd</td>
<td>3/94de</td>
<td>3/104e</td>
</tr>
<tr>
<td>7/66B</td>
<td>4/60cd</td>
<td>7/90de</td>
<td>5/20cd</td>
</tr>
<tr>
<td>4/93A</td>
<td>7/107A</td>
<td>5/22A</td>
<td></td>
</tr>
</tbody>
</table>

۱- میانگین‌هایی که در هر ستون با رنگ یاده‌کاری شده‌اند نسبت به یکدیگر تفاوت احتمالی معنی‌داری ندارند (آزمون دانکین، جدول ۳).

مقایسه میانگین‌های مقاومت کششی در سطح‌های مختلف عمق شکم و رطوبت خاک با استفاده از آزمون چند درجه‌ای دانکین ۱ (جدول ۳)، نشان داد که مقاومت کششی افزایش شده در رطوبت به طور معنی‌داری فاقد و این افزایش در طیف رطوبت ۱۵-۱۳ درصد خاک باربری از سایر محصولات به‌طور مطلوبی بود. به علت وجود اثر متقابل بین عمق شکم و رطوبت خاک می‌باشد.

مقایسه کششی گاو‌آمیخته‌ای در محصولات مختلف و رطوبت

۱۵-۱۳ درصد به حداقل مقدار خود رسي و با کاهش و افزایش رطوبت فضایی نشان داد. این افزایش شکار اواسط که خاک مورد مطالعه در این محدوده از رطوبت ۱۵-۱۳ درصد، باعث کاهش در حذف توده قرار داشت. افزایش شدید مقاومت کششی با کاهش رطوبت ناشی از افزایش نیروی هم‌سیستمی بین ذرات و افزایش مقاومت برشی و استحکام خاک می‌باشد. با افزایش رطوبت، مکانیسم‌های آب بر سطح ذرات خاک جذب شده، شکافهای رطوبت ۴ در اطراف ذرات تشکیل می‌دهد، این عوامل دلیلی است که موجب کاهش نیروی هم‌سیستمی گشته و از استحکام و سختی خاک کاهش داشته و به آن خاصیت شکننده و تردد

1- Duncan’s multiple range test (DMRT)
2- Moisture film
3- Adhesive force
4- Adhesion phase

112
جدول 5- مقایسه میانگین‌های توان مالبنی مورد نیاز گاهانه پشتایی (بر حسب کیلو وات) در سطوح مختلف عمق شکم و رطوبت خاک

<table>
<thead>
<tr>
<th>رطوبت خاک</th>
<th>عمق شکم (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>16/41A</td>
</tr>
<tr>
<td>20</td>
<td>16/42A</td>
</tr>
<tr>
<td>15</td>
<td>16/15A</td>
</tr>
<tr>
<td>میانگین (X)</td>
<td>16/12A</td>
</tr>
</tbody>
</table>

جدول 6- مقایسه میانگین‌های قطر متوسط ونی (MWD) (خاک‌های حاصل از اجرای شکم توسط گاهانه پشتایی) در سطوح مختلف عمق شکم و رطوبت خاک

<table>
<thead>
<tr>
<th>رطوبت خاک</th>
<th>عمق شکم (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>58/25A</td>
</tr>
<tr>
<td>20</td>
<td>32/25A</td>
</tr>
<tr>
<td>15</td>
<td>24/25A</td>
</tr>
<tr>
<td>میانگین (X)</td>
<td>24/15A</td>
</tr>
</tbody>
</table>

سطح 12-10 درصد موجب افزایش توان مورد نیاز گروه‌دید. با توجه به وجود رابطه مستقیم بین توان مالبنی با سرعت پیشروی و مقاوت کششی (فرمول 2) و تداومبرای در طول اجرای آزمایش‌ها، جهت تثبیت سرعت پیشروی تراکتور اخاذ‌گردیده، تشابه حاصل از مقایسه میانگین‌های مقاومت کششی و توان مالبنی مورد نیاز قابل پیش‌بینی بوده است.

مقایسه میانگین‌های قطر متوسط ونی (MWD) (خاک‌های حاصل از اجرای شکم توسط گاهانه پشتایی) در سطوح مختلف عمق شکم و رطوبت خاک (جدول 6). نشان داد که افزایش عمق شکم، توان مالبنی مورد نیاز بطور پسیار معنی‌داری افزایش یافت. ممکن است تأثیر رطوبت خاک بر توان مالبنی مورد نیاز افزایش بوده که کاهش رطوبت از سطح 18-16 درصد به 15-12 درصد در کلیه سطوح موجب کاهش مجدد رطوبت نا
جدول 7- مقایسه میانگین‌های میزان برگردان شدن خاک توسط گازهای شیمیایی (برحسب درصد)

<table>
<thead>
<tr>
<th>عملی شکم (سانتیمتر)</th>
<th>میانگین (X)</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>رطوبت خاک (% وزن خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55/78</td>
<td>51/1a</td>
<td>59/7a</td>
<td>65/1a</td>
<td>10-12</td>
<td></td>
</tr>
<tr>
<td>47/5A</td>
<td>52/2a</td>
<td>54/7a</td>
<td>65/7a</td>
<td>13-15</td>
<td></td>
</tr>
<tr>
<td>58/7A</td>
<td>58/7a</td>
<td>62/7a</td>
<td>65/7a</td>
<td>16-18</td>
<td></td>
</tr>
<tr>
<td>51/1A</td>
<td>54/1A</td>
<td>62/7a</td>
<td>65/7a</td>
<td>16-18</td>
<td></td>
</tr>
</tbody>
</table>

1- میانگین‌های که در هر ستون با رنگی با حروف مشترک نشان داده شده در سطح 1 درصد اختلال نسبی باشند (آزمون دانکن).

مقایسه میانگین‌های میزان برگردان شدن خاک توسط گازهای شیمیایی (جدول 7) نشان داد که تأثیر بین این عامل میانگین برگردان شدن خاک با احتمال 99% معنی دار نیست و در محدوده 13-16 درصد که با صرف کمترین توان مالبندی، بیشترین درجه خرسانی خاک انجام گرفت، میزان برگردان شدن خاک نیز کمتر از دیگر محدوده‌ها یا رطوبتی مورد مطالعه بود. میانگین کلی درصد برگردان خاک در این بررسی در حدود 52 درصد بود که با نتایج تحقیقات بخاری و همکاران (5) که میزان برگردان خاک توسط گازها به‌طور مشابه در حدود 60 درصد گزارش نمودند مطابقت دارد. به منظور مقایسه مقاومت کشتی و مقاومت ویژه گازهای شیمیایی با گازهای نارسایش بیشتر گزارش می‌گردد. این نتایج از مطالعه کشتی‌گیران ایرانی برای شرایطی مشابه با این تحقیق احتمال افزایش هم‌زمان می‌دهد که در سطح شیمیایی بسیار کمتر از این مقدار باشد. محققین (12)، (13) که محققان مقاومت کشتی‌گیران ویژه گازهای شیمیایی در شرایط سختی که در نظر گرفته، در حدود 8 و 9 درصد به‌همراه بخشی از نتایج این تحقیق ارائه گردیده است. مقایسه این ارقام نشان می‌دهد که در سطح شیمیایی و سطح شیمیایی بسیار کمتر است. در این دو بررسی کاملاً مشابه بوده است، مقاومت کشتی و مقاومت ویژه گازهای شیمیایی میزان برگردان شدن خاک را کمتر گزارش کرده‌اند. با این تفاوت‌ها، صرف انرژی و زمان زیاد خواهد بود.
جدول 8- مقایسه مقاومت کشی گازآم‌های برگ‌داندار و بشقایی (بر حسب کیلو نیوتن)، در دو عمق شخم و دو سطح رطوبت خاک

<table>
<thead>
<tr>
<th>رطوبت خاک (وزن خشک)</th>
<th>عمق شخم (سانتی‌متر) و نوع گاز آم‌ه</th>
<th>25</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>برگ‌داندار بشقایی</td>
<td></td>
<td>14/71</td>
<td>14/94</td>
</tr>
<tr>
<td>برق‌داندار بشقایی</td>
<td></td>
<td>17/91</td>
<td>17/42</td>
</tr>
<tr>
<td>10/80</td>
<td></td>
<td>17/64</td>
<td>9/87</td>
</tr>
</tbody>
</table>

1- اقتباس از مرجع شماره 11

جدول 9- مقایسه مقاومت وزه گازآم‌های برگ‌داندار و بشقایی (بر حسب نیوتن بر سانتی‌متر مربع)

<table>
<thead>
<tr>
<th>رطوبت خاک (وزن خشک)</th>
<th>عمق شخم (سانتی‌متر) و نوع گاز آم‌ه</th>
<th>25</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>برگ‌داندار بشقایی</td>
<td></td>
<td>14/71</td>
<td>14/94</td>
</tr>
<tr>
<td>برق‌داندار بشقایی</td>
<td></td>
<td>17/91</td>
<td>17/42</td>
</tr>
<tr>
<td>10/80</td>
<td></td>
<td>17/64</td>
<td>9/87</td>
</tr>
</tbody>
</table>

1- اقتباس از مرجع شماره 11

سیاست‌گزاری

این مقاله حاصل نتایج پبخش از طرح پژوهشی مصوب شورای پژوهشی اتاقگاه شیراز تحت عنوان دانیابی مقاومت کشی و توان ماندنی مورد نزدیک ادوات خاک‌وزنی می‌باشد که بدنی و سلیقه‌ای از شورای محترم پژوهش دانشگاه شیراز به خاطر تصویب و تامین امکان اجرا، طرح جامعیتی می‌گردد.

1- Parasitic forces 2- Landside and sole 3- Sliding resistance 4- Rolling resistance

