تأثیر رطوبت خاک و عمق شمش بر عملکرد گاو آهن بالغیان در یک حاصل سرم

محمد لغوی و سعید بهرامی

چکیده
در این تحقیق تأثیر سه محدوده از رطوبت خاک (12-16، 16-18 و 18-20 درصد بی‌میانی وزن خشک) و همچنین در محدوده (0-10 و 10-15 سانتی‌متر) بر مقاومت کششی، مقاومت وریز، و وریز ملاندی مورد نیاز گاو آهن بالغیان شناخته و مهندسین بر میزان خرد شدن و برگردان شدن خاک به استفاده از آزمایش تکرار می‌تواند قابل طرح باشد. کلیه کامال علی‌مقدم، در این تحقیق به استفاده مصرفی گل‌کارانه‌های تک‌لایه فلزی رهش در رطوبت خاک به‌طور کامل می‌پردازد. تأثیر رطوبت خاک در محدوده مورد مطالعه برکلی ممتاز‌های عملاً شیب ملدی به‌صورتی می‌باشد که به‌طور کلی برگردان شدن خاک به‌طور کلی تری واقع شده‌اند. به‌طور کلی می‌توان به نتایج مقاومت کششی، مقاومت وریز و وریز ملاندی به‌طور کلی در طبقه‌بندی 10-15 درصد به حداکثر رسید. تأثیر عمق شمش تکنیکی مقاومت کششی و وریز ملاندی در برابر نیاز به‌طور کلی به‌طور خاص، مقاومت وریز و وریز ملاندی روندی نزولی را نشان داد.

به منظور تعیین شاخصی کمی که نیاز به مدیریت خاک و ترکیب شناخته شد خاک توسط آینه‌های خاکپزشکی باشد، یک دستگاه مجموعه‌ای که اندازه‌گیری مایع خاک و رطوبت خاک به‌کار می‌رود (MWD) کلیه‌های مورد نیاز وینی (MWD) نشان داد و نشان داد که حاصل از آزمایشات شاخص از داخل آزمایشگاه‌های گردیده‌ی مورد نیاز وینی (MWD) نشان داد که حاصل از آزمایشات شاخص از داخل آزمایشگاه‌های گردیده‌ی MWD نشان داد که حاصل از آزمایشات شاخص از داخل آزمایشگاه‌های گردیده‌ی MWD نشان داد که حاصل از آزمایشات شاخصی که از آزمایشات کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد تکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد تکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد تکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد تکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد تکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد Tکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد Tکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد Tکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد Tکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآمد 14-12 درصد Tکرار گردیده. آزمایشات اندازه‌گیری کلیه‌ها با افزایش و رطوبت خاک به‌طور کلی به‌طور کلی مورد نیاز درآم
چسبندگی، ریشه و کلش دار و مست و استنجی که گوگمه‌های برگ‌دارد قادی به کار مطیع نمی‌باشند، توصیه می‌گردد (1).

عوامل خاک‌ورز این گوگمه‌های مشابه از تعدادی (1) تیغه بخش‌هایی از مذرع و گردان می‌باشد که به صورت مستقل از یکدیگر به‌طور موبی و به فواصل مساوی از یکدیگر بی‌پای قاب سوار گردیده‌اند تا به شیبی که به عرض 18 تا 20 سانتی‌متر از خاک ایجاد نمایند. این نسبت به‌طور احتمالی در زمین‌های عمیق بین 26 تا 25 درجه بینم زاویه برش و احتمال قله زاویه، متغیر بین 17 تا 15 درجه بینم زاویه تمالیم (1)

می‌باشد. در غلبه شرایط و خصوصا در خاک‌های سخت و خشک، بر نوع ایزی بخش‌هایی که نتوانند فرود در خاک را ندارند، بلکه به‌دلیل گردش، تمامی به‌طور خودی از خاک را داشته و لذا حفظ عمق مطلوب، مستلزم تامین زاویه برش و تمامی مناسبی و اعمال وزن کاپی بر روی بخش‌هایی می‌باشد. این روش‌های آموزی بخش‌هایی استاندارد، قابل سنجش (180° تا 450°) نیست (18).

کیلولیم بف یا ایزی‌های متغیر می‌باشد (18).

در تحصیلات مکسیمیس و تیپولز (12) وزن‌گیری پوشش‌های مهم‌ترین عامل در نفوذ بخش‌هایی در خاک شناخته شد. گردید (8) اولین محققی بود که تأثیر دو نوع خاک (لوم رست و لوم شنی ریز دانه)، سه زاویه برش (45° و 65° و 85°) و سه زاویه تمالیم (50°، 60° و 75° درجه) را بر روی پره‌ها و اکتش خاک برجامی‌ها بی‌پای بی‌پایی مورد بررسی قرار داد. در هر دو نوع خاک مقابله کشتی (مولفه واکنش خاک در رژه‌سازی طولی) در زاویه برش 65 درجه به حداکثر رسید، در حالی که نفوذ بخش‌های در خاک، با افزایش زاویه برش می‌توان درجه به‌طور حاصل نمود. زیرا مولفه عمومی واکنش خاک به‌طور چشمگیری کاهش یافته. با انزیم واکنش تمالیم بخش‌هایی در مجدد (15 تا 25 درجه) مقابله کشتی و واکنش عمومی را به بالای خاک

|---------------|---------------|-------------|--------------|

106
تأثیر رطوبت خاک و عمق شخم بر عملکرد گاوانه پشتیاقی در یک خاک لومرسی

پشقاوها را حدود ۵۰٪ و گاو آهن پرگار دان دارا ۹۵٪ گزارش نموده‌اند. از دیگر عوامل عملکرد ادوات خاکورزی بسیاری بهره‌گیری آن از انرژی مصرفی در خریداران خاکی می‌باشد. میزان انرژی مورد نیاز برای انجام درجه معمولی از خرد شدن خاک، به مثابه خاک و بازه آدام در دسته‌بندی خاکورزی در بهره‌گیری از انرژی دیگری از تراکتور بستگی دارد. مثابه خاک به طبیعت و شیراز نیزی آن وابسته است. خاکهای رس سبیل، و نسبت به خاکهای لوم و شنی این سبیلی برای خرد شدن نیاز دارند. شیراز آب و سبیل، نوع مصرفی و عملکرد زراعی قابل و نسبت به خاکی می‌باشد. به نظر می‌رسد، این رژیم نیاز به خوشه‌ها خاک با تحت تأثیر قرار می‌دهد. یک خاک بخصوص از انرژی مورد نیاز حذف خاکی با افزایش جمعیت ظاهری آن غربی و می‌باشد.

۱۶ منابع تاریخی دانشگاه تربیت بدنی از این انتزاع به کتابهای در راستای این مسئله نقل می‌کند. محققین عموماً تمرینات زاویه (MWD) خاکدانه‌ها را مهم‌ترین میزان کمی چه انسان در به خرد شدن خاک می‌شود.

۷ اوجنی و دکتر (۱۴) روابط مثبت بین چهار در اجرای عملیات خاکورزی را به اوجنی و دکتر شکل داده‌اند. خاکدانه‌ها ریز و حداقل گل‌های مصرفی درست‌گرفته در‌گرفته در‌گرفته درست‌گرفته درست‌گرف‌ه - Mean weight diameter 2- Degree of pulverization 3- Lower plastic limit (LPL) 4- Rear furrow wheel
مّجموع مقاومت کششی گاوانه و مقاومت ظلمهی تراکتور،
مقاومت ظلمهی تراکتور حامل گاوانه سرعت پرشوری
تراکتور، عرض و عمق شمش، رطوبت خاک، میزان پوشش
بقایای گیاهی در سطح خاک بیل و بعد از عملیات شمش و
جداسازی و توزیع خاک‌های حاصل از شمش در گروه‌های
ابعاد مختلف به منظور تعیین قطر متوسط وزنی پود.

مقاومت کششی

دروز تراکتور (تراکتور حامل گاوهای آمیز و تراکتور کششی) بر طبق
استاندارد راهنمایی 397 (15) این روش تکلیف RNAAM
توسط پیاسیاری از محققین به کار رفته و روش آمیزی آن توسط
لغو و انتخاب‌وزنه(2) گزارش گردیده است. در این تحقیق از
یک دستگاه مسی فرگوسن 385 با توان مشخص 55 کیلو وات به
عنوان تراکتور حامل گاوانه بیشتر و یک دستگاه جان‌بیور 230 با
توان مشخص 83 کیلو وات به عنوان تراکتور کششی استفاده به
عمل آمد. دنیاگزار مورد استفاده برای اندازه‌گیری و ثبت نرخ
کشش بین دو تراکتور از نوع نزدیک نبات مدل 3CAL KOL
ظرفیت کشش 500 کیلوگرم نیرو (50/600) بود.

در طول کلی آزمایش‌های تراکتور حامل گاوانه با سرعت از
پیش تعیین شده 5/15 کیلو متر در ساعت که در آزمایش‌های
مقداری از اندازه دندان و دور موتور مناسب تعیین گردیده بود،
کششی می‌شد. به منظور تعیین سرعت دقیق پیچ و شوری تراکتور در
هر حوزه زمان پیچیده طول مصرف آزمایش توسط کروتومتر
ثبت گردید.

مقاومت بوزه و توان مالبدی

پس از استخراج مقادیر مقاومت کششی کافی آمیز از
منحنی‌های ترسیم شده توسط دنیاگزار و محاسبه سرعت
پیچ و شوری تراکتور در هر حوزه مقاومت بوزه و توان
مالبدی به منظور تعیین وزن سه نمونه به عنوان

1 Regional Network for Agricultural Machinery 2 Specific draft 3 Drawbar power 4 Soil inversion
تأثیر رطوبت خاک و عمق شکم بر همکارگری گازهای بستگی در یک خاک لمبیسی

جدول ۱ - اندازه شبکه، قطر و طول کهای استوانه‌ای دور بر حسب میلی‌متر

<table>
<thead>
<tr>
<th>شماره الک</th>
<th>اندازه ضلع شبکه</th>
<th>قطر استوانه</th>
<th>ارتفاع استوانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۰۰</td>
<td>۱۵۲</td>
<td>۱۳۰۰</td>
</tr>
<tr>
<td>۲</td>
<td>۵۰</td>
<td>۲۰۰</td>
<td>۱۱۰۰</td>
</tr>
<tr>
<td>۳</td>
<td>۵۰</td>
<td>۴۰۰</td>
<td>۱۰۰۰</td>
</tr>
<tr>
<td>۴</td>
<td>۲۵</td>
<td>۴۰۰</td>
<td>۸۹۰</td>
</tr>
<tr>
<td>۵</td>
<td>۲۵</td>
<td>۸۰۰</td>
<td>۷۸۰</td>
</tr>
<tr>
<td>۶</td>
<td>۱۲/۵</td>
<td>۹۰۰</td>
<td>۶۷۰۰</td>
</tr>
</tbody>
</table>

ظراف نگهداری خاکدانه‌های مجرای شدید، قاب نگهداری مجموعه الکها از یک طرف توسط لولا و از طرف دیگر توسط عدد پنج بند قابل تنظیم، بر روی شاصی اصلی دستگاه نصب گردید. بدین ترتیب زاویه شیب محور طولی مجموعه الکها بین ۷ درجه قابل تنظیم بود.

پس از منظور تسهیل دره غلظت کلکل خاک‌ها و خاکدانه‌های نمودن برای شده‌ای در آن‌ها به قرار دستگاه الکهای دور، یک عدد صفحه ناودانی شامل ۳ در ده‌های داخلی استوانه‌های درشت‌ترین شبکه) نصب گردید. تعادل هنگام عدد خامین مستطیلی، ساخته شده از قرار گنگانی یک به منظور جمع‌آوری کلکل‌هایی در به‌جای دریچه‌ای شبکه استوانه‌های قرار داده شد. چرخ کلکه به هنگام انگژام آراپیمی به طور دستی و به سرعت متوسط ۱۰ دور حیاتی انجام گرفت.

نمونه‌برداری از کرت به تخمین قطر متوسط وزنی خاکدانه‌ها، چند روز پس از اندازه شیب انجام گرفت. کلکل‌هایی ایجاد شده در معرض هوای اشکال خشک و نسبتاً سخت شده، در حین عبرت از کرت کمتر دچار شکستگی و کاهش اندازه گردید. نمونه‌برداری از کرت دوری به‌کار می‌رفت. مناسب است ۱۰۰ سانتی‌متری که به طور تصادفی در سطح ناحیه از زیر کرت انتخاب می‌شده، به قطر تطبیق پس از توزیع هر نمونه، یک بیل پهن دسته‌گرده انجام گرفت. پس از توزیع هر نمونه، کلکل‌هایی که بزرگ‌ترین بعد آنها بزرگ‌تر از ۱۵ سانتی‌متری بود و هر پلات در محاسبات آماری منظور گردید.

مقادیر Wp و We

میزان خرد شدن خاک

تا قبل از انجام این تحقیق هیچ‌گونه وسیله‌ای برای روش خاصی جهت اندازه‌گیری و ارائه شاخص کمی دقیق برای میزان خرد شدن خاک در اثر اجرای عملیات خاک‌ورزی، در ایران گزارش نگردیده بود. از این رو، با انجام داوری و رسیدن به کارگرفته شده توسط چهار (۴) و گل و واندربیگ (۷)، یک دستگاه مجموعه الکهای دوری مطالب شکل ۱ به منظور جداسازی کلکل‌های حاصل از عملیات خاک‌ورزی، در گروه‌های ابعاد مختلف، جهت تعیین قطر متوسط وینی MWD (گازهای طیفی و خاصه) پیچیده‌ای دستگاه متشکل از ۶ عدد الک استوانه‌ای مه مزکر با اندازه شبکه، قطر و ارتفاع متفاوت. بر طبق جدول ۱ است که توسط انتخابی های شعاعی. این سه و میوه به مثابه شده، میکرو میکرو‌های با اکتا بر روی چهره‌ای چرخ استخیکی می‌باشد بر روی قاب نگهدارنده، قرار به دوران حول محرکی می‌باشد.

برای حمل و نقل دستگاه و انتقال آن به مزرعه تحقیقاتی، قاب نگهدارنده و مجموعه الکها بر روی کش ماسی خشدار قابل اتصال به مایند تراکتور نصب گردید (شکل ۲). به منظور شیب دادن به مجموعه الکها، جهت امکان حرکت محرکی کلکل‌های باقیمانده بر روی الکهای استوانه‌ای و تخلیه درون

1- Rotary sieves 2- Chute
امکان عدم عبرات آنها از درون کههای دو پر وجود داشت (در صورت وجود) جداگردید و پس از استخراج و اندازه‌گیری قطر متوسط در پرگذاریدن جریان ابعادی قرار داده شد. سپس نمونه‌ جا به درون کههای در حال خشککاری مورد بهبود و حسب اندازه‌ متوسط در هفت کهه ابعادی تقسیم و درون ظروف واقع در زیر کهه ریخته شد. خاک درون این ظروف تنظیم و از فرمول [14] برای محاسبه قطر متوسط وزنی هر هر نمونه استفاده گردید (2).

\[\text{MWD} = \sum_{i=1}^{n} W_i \times X_i \]

در این رابطه:
- (mm) قطر متوسط وزنی
- (mm) قطر متوسط کل کهه‌ها در هر گروه ابعادی
- (xi) وزن کل کهه‌های موجود در هر گروه ابعادی به صورت نسبی از وزن کل نمونه (اعشاری)
- تعداد گروه‌های ابعادی کل کهه ما که متوسط دستگاه کهه‌‌ی دوپر

۱۱۱
جدول 2 - تجزیه و اریابات اثرات اصلی و متقابل رطوبت خاک و عمق شخم بر مقاومت کششی، مقاومت ویژه، توان مالنیدی، قطر متوسط وزنی و مصرف برگدان شدن خاک در عملیات شخم به وسیله گاوانم پشتاقی

<table>
<thead>
<tr>
<th>دوره تغییر آزادی</th>
<th>میانگین دوم</th>
<th>درصد برگدان</th>
<th>قطر متوسط وزنی</th>
<th>توان</th>
<th>مقاومت</th>
<th>کششی</th>
<th>وزن</th>
<th>مالنیدی</th>
<th>کلوخ‌های شدن خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار (پاک)</td>
<td>141/19</td>
<td>123/82</td>
<td>8/26</td>
<td>1/18</td>
<td>0/47</td>
<td>1/18</td>
<td>0/28</td>
<td>0/65</td>
<td>0/64</td>
</tr>
<tr>
<td>عمیق شخم (D)</td>
<td>3/25</td>
<td>20/50</td>
<td>77/75</td>
<td>22/75</td>
<td>77/75</td>
<td>77/75</td>
<td>77/75</td>
<td>77/75</td>
<td>77/75</td>
</tr>
<tr>
<td>ال‌متقابل (MxD)</td>
<td>0/50</td>
<td>0/80</td>
<td>6/25</td>
<td>0/80</td>
<td>6/25</td>
<td>0/80</td>
<td>0/80</td>
<td>6/25</td>
<td>0/80</td>
</tr>
<tr>
<td>خطای از امکان</td>
<td>0/72</td>
<td>0/24</td>
<td>1/73</td>
<td>0/24</td>
<td>0/24</td>
<td>0/24</td>
<td>0/24</td>
<td>0/24</td>
<td>0/24</td>
</tr>
</tbody>
</table>

- وجد اخلاق عنصر در سطح .1
- عدم وجود اختلاف عنصر در

جدول 3 - مقایسه میانگینهای مقاومت کششی گاوانم پشتاقی (بر حسب کلوخ‌هایی) در سطوح مختلف عمق شخم و رطوبت خاک

<table>
<thead>
<tr>
<th>عمق شخم (سانتیمتر)</th>
<th>Rطوبت خاک</th>
<th>(% وزن خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین (X)</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>12/47A</td>
<td>14/71a</td>
<td>12/42a</td>
</tr>
<tr>
<td>11/3b</td>
<td>9/6c</td>
<td>7/3e</td>
</tr>
<tr>
<td>9/6B</td>
<td>10/0bc</td>
<td>9/8cde</td>
</tr>
<tr>
<td>12/41A</td>
<td>10/26B</td>
<td>7/15c</td>
</tr>
</tbody>
</table>

- میانگینهای که در هر ستوان با رنگی با حروف مشترک نشان داده شده‌اند در سطح .1 دارای اختلاف نمی‌باشند (آزمون دانکن).

نتایج نشان داد که تغییر رطوبت خاک در محدوده 10-18 درصد بر کلیه عوامل مورد مطالعه به استثنای درصد برگدان خاک مغلوب می‌شود. در حالی که تغییر عمق شحم تنها بر مقاومت کششی و توان مالنیدی مورد نظر دایر تأثیر معنی‌دار پیدا می‌کند. همچنین رطوبت خاک و عمق شحم، در حالی که بر نیرو و توان مورد نیاز جهت حرکت گاوانم پشتاقی در خاک اثر متقابل داشتند، ولی در مورد میزان خردسازی و برگدان خاک اثر متقابل

نتایج و بحث

نتایج حاصل از تجزیه و اریابات اثرات اصلی و متقابل رطوبت خاک و عمق شحم بر مقاومت کششی، مقاومت ویژه و توان مالنیدی مورد نیاز و همچنین قطعه وزنی کلوخ‌ها و درصد برگدان شدن خاک در عملیات شحم به وسیله گاوانم پشتاقی,

111
جدول 2 - مقایسه میانگینهای مقاومت کششی وزه‌گاومیدان بیشقاپی بر حسب نیروی بر سانتیمتر مربع

<table>
<thead>
<tr>
<th>میانگین (X)</th>
<th>عمق شکم (سانتیمتر)</th>
<th>رطوبت خاک (% وزن خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/22A</td>
<td>6/91bc</td>
<td>6/87ab</td>
</tr>
<tr>
<td>3/88B</td>
<td>4/63cd</td>
<td>3/94de</td>
</tr>
<tr>
<td>3/93A</td>
<td>5/17A</td>
<td>5/24A</td>
</tr>
</tbody>
</table>

1- میانگینهایی گزارش‌شده در هر ستون با رنگ مناسب مشترک نشان داده شده‌اند (ازونم دانکن).

می‌دهد. با افزایش بیشتر رطوبت خاک، خشایار و رطوبتی توسه بیشتری را پیدا کرده و با争吵 شکمین بین ذرات خاک و سطح فلز موجب افزایش نیروی گردوده‌ای می‌گردد. این ذرات خاک و سطح در گذشته از حاکم امکان کشش و رطوبت خاک مشاهده گردیده است. پس از کاهش قارچزار خاک نیز نمونه می‌تواند ناشی از تاثیر نیروهای گردوده‌ای بر افزایش ضرب و اتمکاکت خاکی فلز و خاک و قارچزار خاک در مرحله گردوده‌ی خاک است. این موضوع توسط نیکولوز (19) پیش‌گرده است.

مقایسه میانگینهای مقاومت کششی در سطوح مختلف عمق شکم و رطوبت خاک با استفاده از آزمون چند دسته‌ای دانکن (جدول 2)، نشان داده که مقاومت کششی با افزایش عمق شکم بطور معنی‌داری زیادی یافته و این افزایش در طیف رطوبت 15 - 13 درصد خاک بارتری از سایر محدوده‌های مورد مطالعه بوده که حاکی از وجود اثر متقابل بین عمق شکم و رطوبت خاک می‌باشد.

مقایسه کششی گاوآهی بیشقاپی در محدوده رطوبت 15 - 13 درصد به دلایل مقدار خود رسید و با کاهش و یا افزایش رطوبت نشان داده‌اند. این پیش‌بازه حاکی از آتش است که خاک مورد مطالعه در این محدوده از رطوبت (15 - 13)، در بهترین حالت از لحاظ تردید قرار داشت. افزایش شدید مقاومت کششی با کاهش رطوبت، ناشی از افزایش نیروهای همدوسی بین ذرات و انفجار مقدار باشند با انفجار رطوبتی برخی و استحکام حاکی می‌باشد. با افزایش رطوبت، مکان‌هاي آب بر سطح ذرات خاک جدید شده غشاگیری رطوبتی در اطراف ذرات تشکیل می‌دهد. این غشا موجب کاهش نیروهای همدوسی گشته و از استحکام و سختی خاک می‌کاهد و به آن خاصیت شکستنگی و تردی یکه‌ای می‌دهد.

1. Duncan's multiple range test(DMRT)
2. Moisture film
3. Adhesive force
4. Adhesion phase
جدول ۵- مقایسه میانگین‌های توان مالبندی مورد نیاز گاوماهی (بر حسب کیلو وات) در سطوح مختلف عمق شکم و رطوبت خاک

<table>
<thead>
<tr>
<th>میانگین (X)</th>
<th>۱۵</th>
<th>۲۰</th>
<th>۲۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۶/۴۱A</td>
<td>۱۱/۸۱c</td>
<td>۹/۳۶g</td>
<td>۹/۲۸d</td>
</tr>
<tr>
<td>۱۰/۲۴C</td>
<td>۹/۱۹g</td>
<td>۶/۹۹c</td>
<td>۴/۹۹c</td>
</tr>
<tr>
<td>۱۲/۳۳B</td>
<td>۱/۱۱۸b</td>
<td>۱۱/۰۵c</td>
<td>۱۱/۸۷c</td>
</tr>
<tr>
<td>۷/۷۷A</td>
<td>۸/۷۷b</td>
<td>۸/۷۷b</td>
<td>۸/۷۷b</td>
</tr>
</tbody>
</table>

۱- میانگین‌های که در هر ستون با رنگ سبز مشترک نشان داده شدهاند در سطح ۰/۱ دارای اختلاف نیمه‌پاشند (آزمون دانکن).

جدول ۶- مقایسه میانگین‌های قطر متوسط وزنی (MWD) (خاک‌های حاصل از اجرای شکم توسط گاوماهی بشقایی) (بر حسب میلی‌متر) در سطوح مختلف عمق شکم و رطوبت خاک

<table>
<thead>
<tr>
<th>میانگین (X)</th>
<th>۱۵</th>
<th>۲۰</th>
<th>۲۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۸/۲۳A</td>
<td>۸۹/۲۳ab</td>
<td>۶۹/۱۱b</td>
<td>۶۹/۱۱b</td>
</tr>
<tr>
<td>۳۰/۴B</td>
<td>۴۳/۳abc</td>
<td>۴۳/۳abc</td>
<td>۴۳/۳abc</td>
</tr>
<tr>
<td>۳۳/۶B</td>
<td>۳۱/۸c</td>
<td>۳۱/۸c</td>
<td>۳۱/۸c</td>
</tr>
<tr>
<td>۴۱/۳A</td>
<td>۴۴/۲A</td>
<td>۴۴/۲A</td>
<td>۴۴/۲A</td>
</tr>
</tbody>
</table>

۱- میانگین‌های که در هر ستون با رنگ سبز مشترک نشان داده شدهاند در سطح ۰/۱ دارای اختلاف نیمه‌پاشند (آزمون دانکن).

سطح ۱۲ - ۱۰ درصد موجب افزایش توان مورد نیاز گذریده. با توجه به وجود رابطه مستقیم بین توان مالبندی با سرعت پیش‌و ر و مقاومت کششی (فلوم) و تندیبیری که در طول اجرای آزمایش‌ها جهت ثبت سرعت پیشرفت تراکتور اندازه‌گیری، تشابه حاصل از مقایسه میانگین‌های مقاومت کششی و توان مالبندی مورد نیاز قابل پیش‌بینی بوده است.

مقاومت کششی داشت. بنابراین تشکیل که مقاومت ویژه در پایین‌ترین محدوده رطوبت مورد مطالعه (۱۲ - ۱۰ درصد)، به طور معنی‌داری به‌وجود آورده توسط سرعت پیشرفت تراکتور اندازه‌گیری، تشابه حاصل از مقایسه میانگین‌های مقاومت کششی و توان مالبندی مورد نیاز قابل پیش‌بینی بوده است.

مقاومت میانگین‌های قطر متوسط وزنی (MWD) (خاک‌های حاصل از اجرای شکم توسط گاوماهی بشقایی) در سطوح مختلف عمق شکم و رطوبت خاک (جدول ۶) نشان داد که افزایش عمق شکم، توان مالبندی مورد نیاز بطور پیش‌بینی نمی‌سازد به طور معنی‌داری تفاوت‌های بین توان مالبندی مورد نیاز نجیب که گاهی رطوبت از سطح ۲۰ - ۱۵ درصد به ۱۵ - ۱۲ درصد در کلیه سطوح عمق شکم بطور معنی‌داری توان مورد نیاز را کاهش داد و کاهش مجدد رطوبت نا
جدول 7- مقایسه میانگین‌های میزان برگردان شدن خاک توسط گازهای اتانول‌بخش (برحسب درصد)
در سطوح مختلف عمق شکم و رطوبت خاک

<table>
<thead>
<tr>
<th>رطوبت خاک</th>
<th>عمق شکم (سانتی‌متر)</th>
<th>میانگین (X)</th>
<th>25</th>
<th>20</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/18</td>
<td>51/9a</td>
<td>59/7a</td>
<td>59/18</td>
<td>10-12</td>
<td></td>
</tr>
<tr>
<td>07/58</td>
<td>23/7a</td>
<td>24/9a</td>
<td>45/7a</td>
<td>13-15</td>
<td></td>
</tr>
<tr>
<td>08/38</td>
<td>57/2a</td>
<td>59/9a</td>
<td>49/1a</td>
<td>16-18</td>
<td></td>
</tr>
<tr>
<td>04/18</td>
<td>52/8a</td>
<td>53/8a</td>
<td>53/18</td>
<td>18-19</td>
<td></td>
</tr>
</tbody>
</table>

1- میانگین‌های که در ستون‌های رنگی با رنگ مشترک نشان داده شده‌اند در سطح 0.1 درصد اختلاف نسبی پاشند (آزمون دانکین).

مقایسه میانگین‌های میزان برگردان شدن خاک توسط گازهای اتانول‌بخش

به‌منظور مقایسه میزان برگردان شدن خاک توسط گازهای اتانول‌بخش، هر ۵ گزارش نمونه‌اندازی و تسویه متوسط آنها به عنوان میانگین‌گیری‌های ویژه گازهای اتانول‌بخش توسط گازهای اتانول‌بخش را در حدود ۵۰ درصد تصور شده‌اند. به‌منظور مقایسه میزان برگردان شدن خاک توسط گازهای اتانول‌بخش، هر ۵ گزارش نمونه‌اندازی و تسویه متوسط آنها به عنوان میانگین‌گیری‌های ویژه گازهای اتانول‌بخش بررسی قرار گرفته، در جدول ۸ و ۹ به همراه خشکی از نتایج پژوهش اجرا شده شرایط مورد بررسی قرار گرفته، در جدول ۸ و ۹ به همراه خشکی از نتایج پژوهش اجرا شده می‌گردد. به‌منظور مقایسه میزان برگردان شدن خاک توسط گازهای اتانول‌بخش، هر ۵ گزارش نمونه‌اندازی و تسویه متوسط آنها به عنوان میانگین‌گیری‌های ویژه گازهای اتانول‌بخش بررسی قرار گرفته، در جدول ۸ و ۹ به همراه خشکی از نتایج پژوهش اجرا شده می‌گردد. به‌منظور مقایسه میزان برگردان شدن خاک توسط گازهای اتانول‌بخش، هر ۵ گزارش نمونه‌اندازی و تسویه متوسط آنها به عنوان میانگین‌گیری‌های ویژه گازهای اتانول‌بخش بررسی قرار گرفته، در جدول ۸ و ۹ به همراه خشکی از نتایج پژوهش اجرا شده می‌گردد. به‌منظور مقایسه میزان برگردان شدن خاک توسط گازهای اتانول‌بخش، هر ۵ گزارش نمونه‌اندازی و تسویه متوسط آنها به عنوان میانگین‌گیری‌های ویژه گازهای اتانول‌بخش بررسی قرار گرفته، در جدول ۸ و ۹ به همراه خشکی از نتایج پژوهش اجرا شده می‌گردد.
جدول 8 - مقایسه مقامات کشش‌گو مسیری بر گردان‌نار و پیش‌بیا (بر حسب کیلو پیتون)

<table>
<thead>
<tr>
<th>عمق شحم (سانتیمتر) و نوع گاو آمیز</th>
<th>رطوبت خاک (٪ وزن شمشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>بر گردان‌نار</td>
<td>پیش‌بیا</td>
</tr>
<tr>
<td>12/71</td>
<td>17/91</td>
</tr>
<tr>
<td>13/12</td>
<td>14/94</td>
</tr>
<tr>
<td>10/80</td>
<td>17/04</td>
</tr>
<tr>
<td>9/88</td>
<td>13/75</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>بر گردان‌نار</td>
<td>پیش‌بیا</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- اقتباس از مرجع شماره 11

جدول 9 - مقایسه مقامات وزه‌گو مسیری بر گردان‌نار و پیش‌بیا (بر حسب کیلو پیتون سانتیمتر مربع)

<table>
<thead>
<tr>
<th>عمق شحم (سانتیمتر) و نوع گاو آمیز</th>
<th>رطوبت خاک (٪ وزن شمشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>بر گردان‌نار</td>
<td>پیش‌بیا</td>
</tr>
<tr>
<td>5/91</td>
<td>7/96</td>
</tr>
<tr>
<td>6/91</td>
<td>8/31</td>
</tr>
<tr>
<td>7/98</td>
<td>7/63</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>بر گردان‌نار</td>
<td>پیش‌بیا</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3- نیروهای زاند وارد از طرف خاک بر گاو آمیز بر گردان‌نار، عمداً توسط کشش و پاشته در بات می‌شوید و در حالی که در گاو آمیز پیش‌بیا این نیروها عمداً بر چرخ شیار عقب وارد می‌گردد، با توجه به اینکه نیروها اصطکاکی وارد بر کشش و پاشته که از نوع لفظی است و برای برگردان‌نار تولید می‌شود، اصطکاکی کنگره مانند در کف شیار ایجاد می‌شود که موجب می‌گردد با عرض و عمق شحم یکسان سطح مقطع برخ پروری کرد که نسبت به گاو آمیز بر گردان‌نار داشته و در تجربه جرم و حجم خاک کمتری را پریش داده پیش‌بیا جایی است.

سیاسگزاری
این مقاله حاصل نتایج بخش خصی از طرح پژوهشی مصوب شورای پژوهشی کشورات تحت عنوان دانشگاهی مقاومت کششی و توان مانندی مورد نیاز ادوات خاک‌پزشکی» می‌باشد که بعنوان یکی از شرایط زمین‌شناسی، شیار پژوهشی با الکتروشیار به خاطر تصویب و تایمی آماده‌گیری طرح سیاست‌گرایی می‌گردد.

1- Parasitic forces 2- Landside and sole 3- Sliding resistance 4- Rolling resistance
منابع مورد استفاده
1- شهیdee، س. ا. 1374. ماهیت‌های خاک و تریزی. مرکز‌شناسی دانشگاهی، تهران، 216 صفحه.
2- لقیف، م. و. زندی، م. 1376. مقالات کشاورزی، مقالات ویژه و نویس مالی‌بانی مورد نیاز گوآی، قلمی (چیزل). در سطوح مختلف و حیاتی و تحقیق دانش. مجله علوم کشاورزی و منابع طبیعی، جلد 20، شماره 6، صص. 96-85.